mirror of
https://github.com/AyuGram/AyuGramDesktop.git
synced 2025-06-17 04:23:55 +02:00
1048 lines
40 KiB
C++
1048 lines
40 KiB
C++
//===-- primary32.h ---------------------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef SCUDO_PRIMARY32_H_
|
|
#define SCUDO_PRIMARY32_H_
|
|
|
|
#include "bytemap.h"
|
|
#include "common.h"
|
|
#include "list.h"
|
|
#include "local_cache.h"
|
|
#include "options.h"
|
|
#include "release.h"
|
|
#include "report.h"
|
|
#include "stats.h"
|
|
#include "string_utils.h"
|
|
#include "thread_annotations.h"
|
|
|
|
namespace scudo {
|
|
|
|
// SizeClassAllocator32 is an allocator for 32 or 64-bit address space.
|
|
//
|
|
// It maps Regions of 2^RegionSizeLog bytes aligned on a 2^RegionSizeLog bytes
|
|
// boundary, and keeps a bytemap of the mappable address space to track the size
|
|
// class they are associated with.
|
|
//
|
|
// Mapped regions are split into equally sized Blocks according to the size
|
|
// class they belong to, and the associated pointers are shuffled to prevent any
|
|
// predictable address pattern (the predictability increases with the block
|
|
// size).
|
|
//
|
|
// Regions for size class 0 are special and used to hold TransferBatches, which
|
|
// allow to transfer arrays of pointers from the global size class freelist to
|
|
// the thread specific freelist for said class, and back.
|
|
//
|
|
// Memory used by this allocator is never unmapped but can be partially
|
|
// reclaimed if the platform allows for it.
|
|
|
|
template <typename Config> class SizeClassAllocator32 {
|
|
public:
|
|
typedef typename Config::Primary::CompactPtrT CompactPtrT;
|
|
typedef typename Config::Primary::SizeClassMap SizeClassMap;
|
|
static const uptr GroupSizeLog = Config::Primary::GroupSizeLog;
|
|
// The bytemap can only track UINT8_MAX - 1 classes.
|
|
static_assert(SizeClassMap::LargestClassId <= (UINT8_MAX - 1), "");
|
|
// Regions should be large enough to hold the largest Block.
|
|
static_assert((1UL << Config::Primary::RegionSizeLog) >=
|
|
SizeClassMap::MaxSize,
|
|
"");
|
|
typedef SizeClassAllocator32<Config> ThisT;
|
|
typedef SizeClassAllocatorLocalCache<ThisT> CacheT;
|
|
typedef typename CacheT::TransferBatch TransferBatch;
|
|
typedef typename CacheT::BatchGroup BatchGroup;
|
|
|
|
static uptr getSizeByClassId(uptr ClassId) {
|
|
return (ClassId == SizeClassMap::BatchClassId)
|
|
? sizeof(TransferBatch)
|
|
: SizeClassMap::getSizeByClassId(ClassId);
|
|
}
|
|
|
|
static bool canAllocate(uptr Size) { return Size <= SizeClassMap::MaxSize; }
|
|
|
|
void init(s32 ReleaseToOsInterval) NO_THREAD_SAFETY_ANALYSIS {
|
|
if (SCUDO_FUCHSIA)
|
|
reportError("SizeClassAllocator32 is not supported on Fuchsia");
|
|
|
|
if (SCUDO_TRUSTY)
|
|
reportError("SizeClassAllocator32 is not supported on Trusty");
|
|
|
|
DCHECK(isAligned(reinterpret_cast<uptr>(this), alignof(ThisT)));
|
|
PossibleRegions.init();
|
|
u32 Seed;
|
|
const u64 Time = getMonotonicTimeFast();
|
|
if (!getRandom(reinterpret_cast<void *>(&Seed), sizeof(Seed)))
|
|
Seed = static_cast<u32>(
|
|
Time ^ (reinterpret_cast<uptr>(SizeClassInfoArray) >> 6));
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
SizeClassInfo *Sci = getSizeClassInfo(I);
|
|
Sci->RandState = getRandomU32(&Seed);
|
|
// Sci->MaxRegionIndex is already initialized to 0.
|
|
Sci->MinRegionIndex = NumRegions;
|
|
Sci->ReleaseInfo.LastReleaseAtNs = Time;
|
|
}
|
|
setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
|
|
}
|
|
|
|
void unmapTestOnly() {
|
|
{
|
|
ScopedLock L(RegionsStashMutex);
|
|
while (NumberOfStashedRegions > 0) {
|
|
unmap(reinterpret_cast<void *>(RegionsStash[--NumberOfStashedRegions]),
|
|
RegionSize);
|
|
}
|
|
}
|
|
|
|
uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
SizeClassInfo *Sci = getSizeClassInfo(I);
|
|
ScopedLock L(Sci->Mutex);
|
|
if (Sci->MinRegionIndex < MinRegionIndex)
|
|
MinRegionIndex = Sci->MinRegionIndex;
|
|
if (Sci->MaxRegionIndex > MaxRegionIndex)
|
|
MaxRegionIndex = Sci->MaxRegionIndex;
|
|
*Sci = {};
|
|
}
|
|
|
|
ScopedLock L(ByteMapMutex);
|
|
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++)
|
|
if (PossibleRegions[I])
|
|
unmap(reinterpret_cast<void *>(I * RegionSize), RegionSize);
|
|
PossibleRegions.unmapTestOnly();
|
|
}
|
|
|
|
// When all blocks are freed, it has to be the same size as `AllocatedUser`.
|
|
void verifyAllBlocksAreReleasedTestOnly() {
|
|
// `BatchGroup` and `TransferBatch` also use the blocks from BatchClass.
|
|
uptr BatchClassUsedInFreeLists = 0;
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
// We have to count BatchClassUsedInFreeLists in other regions first.
|
|
if (I == SizeClassMap::BatchClassId)
|
|
continue;
|
|
SizeClassInfo *Sci = getSizeClassInfo(I);
|
|
ScopedLock L1(Sci->Mutex);
|
|
uptr TotalBlocks = 0;
|
|
for (BatchGroup &BG : Sci->FreeListInfo.BlockList) {
|
|
// `BG::Batches` are `TransferBatches`. +1 for `BatchGroup`.
|
|
BatchClassUsedInFreeLists += BG.Batches.size() + 1;
|
|
for (const auto &It : BG.Batches)
|
|
TotalBlocks += It.getCount();
|
|
}
|
|
|
|
const uptr BlockSize = getSizeByClassId(I);
|
|
DCHECK_EQ(TotalBlocks, Sci->AllocatedUser / BlockSize);
|
|
DCHECK_EQ(Sci->FreeListInfo.PushedBlocks, Sci->FreeListInfo.PoppedBlocks);
|
|
}
|
|
|
|
SizeClassInfo *Sci = getSizeClassInfo(SizeClassMap::BatchClassId);
|
|
ScopedLock L1(Sci->Mutex);
|
|
uptr TotalBlocks = 0;
|
|
for (BatchGroup &BG : Sci->FreeListInfo.BlockList) {
|
|
if (LIKELY(!BG.Batches.empty())) {
|
|
for (const auto &It : BG.Batches)
|
|
TotalBlocks += It.getCount();
|
|
} else {
|
|
// `BatchGroup` with empty freelist doesn't have `TransferBatch` record
|
|
// itself.
|
|
++TotalBlocks;
|
|
}
|
|
}
|
|
|
|
const uptr BlockSize = getSizeByClassId(SizeClassMap::BatchClassId);
|
|
DCHECK_EQ(TotalBlocks + BatchClassUsedInFreeLists,
|
|
Sci->AllocatedUser / BlockSize);
|
|
const uptr BlocksInUse =
|
|
Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
|
|
DCHECK_EQ(BlocksInUse, BatchClassUsedInFreeLists);
|
|
}
|
|
|
|
CompactPtrT compactPtr(UNUSED uptr ClassId, uptr Ptr) const {
|
|
return static_cast<CompactPtrT>(Ptr);
|
|
}
|
|
|
|
void *decompactPtr(UNUSED uptr ClassId, CompactPtrT CompactPtr) const {
|
|
return reinterpret_cast<void *>(static_cast<uptr>(CompactPtr));
|
|
}
|
|
|
|
uptr compactPtrGroupBase(CompactPtrT CompactPtr) {
|
|
const uptr Mask = (static_cast<uptr>(1) << GroupSizeLog) - 1;
|
|
return CompactPtr & ~Mask;
|
|
}
|
|
|
|
uptr decompactGroupBase(uptr CompactPtrGroupBase) {
|
|
return CompactPtrGroupBase;
|
|
}
|
|
|
|
ALWAYS_INLINE static bool isSmallBlock(uptr BlockSize) {
|
|
const uptr PageSize = getPageSizeCached();
|
|
return BlockSize < PageSize / 16U;
|
|
}
|
|
|
|
ALWAYS_INLINE static bool isLargeBlock(uptr BlockSize) {
|
|
const uptr PageSize = getPageSizeCached();
|
|
return BlockSize > PageSize;
|
|
}
|
|
|
|
TransferBatch *popBatch(CacheT *C, uptr ClassId) {
|
|
DCHECK_LT(ClassId, NumClasses);
|
|
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
|
|
ScopedLock L(Sci->Mutex);
|
|
TransferBatch *B = popBatchImpl(C, ClassId, Sci);
|
|
if (UNLIKELY(!B)) {
|
|
if (UNLIKELY(!populateFreeList(C, ClassId, Sci)))
|
|
return nullptr;
|
|
B = popBatchImpl(C, ClassId, Sci);
|
|
// if `populateFreeList` succeeded, we are supposed to get free blocks.
|
|
DCHECK_NE(B, nullptr);
|
|
}
|
|
return B;
|
|
}
|
|
|
|
// Push the array of free blocks to the designated batch group.
|
|
void pushBlocks(CacheT *C, uptr ClassId, CompactPtrT *Array, u32 Size) {
|
|
DCHECK_LT(ClassId, NumClasses);
|
|
DCHECK_GT(Size, 0);
|
|
|
|
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
|
|
if (ClassId == SizeClassMap::BatchClassId) {
|
|
ScopedLock L(Sci->Mutex);
|
|
pushBatchClassBlocks(Sci, Array, Size);
|
|
return;
|
|
}
|
|
|
|
// TODO(chiahungduan): Consider not doing grouping if the group size is not
|
|
// greater than the block size with a certain scale.
|
|
|
|
// Sort the blocks so that blocks belonging to the same group can be pushed
|
|
// together.
|
|
bool SameGroup = true;
|
|
for (u32 I = 1; I < Size; ++I) {
|
|
if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I]))
|
|
SameGroup = false;
|
|
CompactPtrT Cur = Array[I];
|
|
u32 J = I;
|
|
while (J > 0 &&
|
|
compactPtrGroupBase(Cur) < compactPtrGroupBase(Array[J - 1])) {
|
|
Array[J] = Array[J - 1];
|
|
--J;
|
|
}
|
|
Array[J] = Cur;
|
|
}
|
|
|
|
ScopedLock L(Sci->Mutex);
|
|
pushBlocksImpl(C, ClassId, Sci, Array, Size, SameGroup);
|
|
}
|
|
|
|
void disable() NO_THREAD_SAFETY_ANALYSIS {
|
|
// The BatchClassId must be locked last since other classes can use it.
|
|
for (sptr I = static_cast<sptr>(NumClasses) - 1; I >= 0; I--) {
|
|
if (static_cast<uptr>(I) == SizeClassMap::BatchClassId)
|
|
continue;
|
|
getSizeClassInfo(static_cast<uptr>(I))->Mutex.lock();
|
|
}
|
|
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.lock();
|
|
RegionsStashMutex.lock();
|
|
ByteMapMutex.lock();
|
|
}
|
|
|
|
void enable() NO_THREAD_SAFETY_ANALYSIS {
|
|
ByteMapMutex.unlock();
|
|
RegionsStashMutex.unlock();
|
|
getSizeClassInfo(SizeClassMap::BatchClassId)->Mutex.unlock();
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
if (I == SizeClassMap::BatchClassId)
|
|
continue;
|
|
getSizeClassInfo(I)->Mutex.unlock();
|
|
}
|
|
}
|
|
|
|
template <typename F> void iterateOverBlocks(F Callback) {
|
|
uptr MinRegionIndex = NumRegions, MaxRegionIndex = 0;
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
SizeClassInfo *Sci = getSizeClassInfo(I);
|
|
// TODO: The call of `iterateOverBlocks` requires disabling
|
|
// SizeClassAllocator32. We may consider locking each region on demand
|
|
// only.
|
|
Sci->Mutex.assertHeld();
|
|
if (Sci->MinRegionIndex < MinRegionIndex)
|
|
MinRegionIndex = Sci->MinRegionIndex;
|
|
if (Sci->MaxRegionIndex > MaxRegionIndex)
|
|
MaxRegionIndex = Sci->MaxRegionIndex;
|
|
}
|
|
|
|
// SizeClassAllocator32 is disabled, i.e., ByteMapMutex is held.
|
|
ByteMapMutex.assertHeld();
|
|
|
|
for (uptr I = MinRegionIndex; I <= MaxRegionIndex; I++) {
|
|
if (PossibleRegions[I] &&
|
|
(PossibleRegions[I] - 1U) != SizeClassMap::BatchClassId) {
|
|
const uptr BlockSize = getSizeByClassId(PossibleRegions[I] - 1U);
|
|
const uptr From = I * RegionSize;
|
|
const uptr To = From + (RegionSize / BlockSize) * BlockSize;
|
|
for (uptr Block = From; Block < To; Block += BlockSize)
|
|
Callback(Block);
|
|
}
|
|
}
|
|
}
|
|
|
|
void getStats(ScopedString *Str) {
|
|
// TODO(kostyak): get the RSS per region.
|
|
uptr TotalMapped = 0;
|
|
uptr PoppedBlocks = 0;
|
|
uptr PushedBlocks = 0;
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
SizeClassInfo *Sci = getSizeClassInfo(I);
|
|
ScopedLock L(Sci->Mutex);
|
|
TotalMapped += Sci->AllocatedUser;
|
|
PoppedBlocks += Sci->FreeListInfo.PoppedBlocks;
|
|
PushedBlocks += Sci->FreeListInfo.PushedBlocks;
|
|
}
|
|
Str->append("Stats: SizeClassAllocator32: %zuM mapped in %zu allocations; "
|
|
"remains %zu\n",
|
|
TotalMapped >> 20, PoppedBlocks, PoppedBlocks - PushedBlocks);
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
SizeClassInfo *Sci = getSizeClassInfo(I);
|
|
ScopedLock L(Sci->Mutex);
|
|
getStats(Str, I, Sci);
|
|
}
|
|
}
|
|
|
|
bool setOption(Option O, sptr Value) {
|
|
if (O == Option::ReleaseInterval) {
|
|
const s32 Interval = Max(Min(static_cast<s32>(Value),
|
|
Config::Primary::MaxReleaseToOsIntervalMs),
|
|
Config::Primary::MinReleaseToOsIntervalMs);
|
|
atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
|
|
return true;
|
|
}
|
|
// Not supported by the Primary, but not an error either.
|
|
return true;
|
|
}
|
|
|
|
uptr tryReleaseToOS(uptr ClassId, ReleaseToOS ReleaseType) {
|
|
SizeClassInfo *Sci = getSizeClassInfo(ClassId);
|
|
// TODO: Once we have separate locks like primary64, we may consider using
|
|
// tryLock() as well.
|
|
ScopedLock L(Sci->Mutex);
|
|
return releaseToOSMaybe(Sci, ClassId, ReleaseType);
|
|
}
|
|
|
|
uptr releaseToOS(ReleaseToOS ReleaseType) {
|
|
uptr TotalReleasedBytes = 0;
|
|
for (uptr I = 0; I < NumClasses; I++) {
|
|
if (I == SizeClassMap::BatchClassId)
|
|
continue;
|
|
SizeClassInfo *Sci = getSizeClassInfo(I);
|
|
ScopedLock L(Sci->Mutex);
|
|
TotalReleasedBytes += releaseToOSMaybe(Sci, I, ReleaseType);
|
|
}
|
|
return TotalReleasedBytes;
|
|
}
|
|
|
|
const char *getRegionInfoArrayAddress() const { return nullptr; }
|
|
static uptr getRegionInfoArraySize() { return 0; }
|
|
|
|
static BlockInfo findNearestBlock(UNUSED const char *RegionInfoData,
|
|
UNUSED uptr Ptr) {
|
|
return {};
|
|
}
|
|
|
|
AtomicOptions Options;
|
|
|
|
private:
|
|
static const uptr NumClasses = SizeClassMap::NumClasses;
|
|
static const uptr RegionSize = 1UL << Config::Primary::RegionSizeLog;
|
|
static const uptr NumRegions =
|
|
SCUDO_MMAP_RANGE_SIZE >> Config::Primary::RegionSizeLog;
|
|
static const u32 MaxNumBatches = SCUDO_ANDROID ? 4U : 8U;
|
|
typedef FlatByteMap<NumRegions> ByteMap;
|
|
|
|
struct ReleaseToOsInfo {
|
|
uptr BytesInFreeListAtLastCheckpoint;
|
|
uptr RangesReleased;
|
|
uptr LastReleasedBytes;
|
|
u64 LastReleaseAtNs;
|
|
};
|
|
|
|
struct BlocksInfo {
|
|
SinglyLinkedList<BatchGroup> BlockList = {};
|
|
uptr PoppedBlocks = 0;
|
|
uptr PushedBlocks = 0;
|
|
};
|
|
|
|
struct alignas(SCUDO_CACHE_LINE_SIZE) SizeClassInfo {
|
|
HybridMutex Mutex;
|
|
BlocksInfo FreeListInfo GUARDED_BY(Mutex);
|
|
uptr CurrentRegion GUARDED_BY(Mutex);
|
|
uptr CurrentRegionAllocated GUARDED_BY(Mutex);
|
|
u32 RandState;
|
|
uptr AllocatedUser GUARDED_BY(Mutex);
|
|
// Lowest & highest region index allocated for this size class, to avoid
|
|
// looping through the whole NumRegions.
|
|
uptr MinRegionIndex GUARDED_BY(Mutex);
|
|
uptr MaxRegionIndex GUARDED_BY(Mutex);
|
|
ReleaseToOsInfo ReleaseInfo GUARDED_BY(Mutex);
|
|
};
|
|
static_assert(sizeof(SizeClassInfo) % SCUDO_CACHE_LINE_SIZE == 0, "");
|
|
|
|
uptr computeRegionId(uptr Mem) {
|
|
const uptr Id = Mem >> Config::Primary::RegionSizeLog;
|
|
CHECK_LT(Id, NumRegions);
|
|
return Id;
|
|
}
|
|
|
|
uptr allocateRegionSlow() {
|
|
uptr MapSize = 2 * RegionSize;
|
|
const uptr MapBase = reinterpret_cast<uptr>(
|
|
map(nullptr, MapSize, "scudo:primary", MAP_ALLOWNOMEM));
|
|
if (!MapBase)
|
|
return 0;
|
|
const uptr MapEnd = MapBase + MapSize;
|
|
uptr Region = MapBase;
|
|
if (isAligned(Region, RegionSize)) {
|
|
ScopedLock L(RegionsStashMutex);
|
|
if (NumberOfStashedRegions < MaxStashedRegions)
|
|
RegionsStash[NumberOfStashedRegions++] = MapBase + RegionSize;
|
|
else
|
|
MapSize = RegionSize;
|
|
} else {
|
|
Region = roundUp(MapBase, RegionSize);
|
|
unmap(reinterpret_cast<void *>(MapBase), Region - MapBase);
|
|
MapSize = RegionSize;
|
|
}
|
|
const uptr End = Region + MapSize;
|
|
if (End != MapEnd)
|
|
unmap(reinterpret_cast<void *>(End), MapEnd - End);
|
|
|
|
DCHECK_EQ(Region % RegionSize, 0U);
|
|
static_assert(Config::Primary::RegionSizeLog == GroupSizeLog,
|
|
"Memory group should be the same size as Region");
|
|
|
|
return Region;
|
|
}
|
|
|
|
uptr allocateRegion(SizeClassInfo *Sci, uptr ClassId) REQUIRES(Sci->Mutex) {
|
|
DCHECK_LT(ClassId, NumClasses);
|
|
uptr Region = 0;
|
|
{
|
|
ScopedLock L(RegionsStashMutex);
|
|
if (NumberOfStashedRegions > 0)
|
|
Region = RegionsStash[--NumberOfStashedRegions];
|
|
}
|
|
if (!Region)
|
|
Region = allocateRegionSlow();
|
|
if (LIKELY(Region)) {
|
|
// Sci->Mutex is held by the caller, updating the Min/Max is safe.
|
|
const uptr RegionIndex = computeRegionId(Region);
|
|
if (RegionIndex < Sci->MinRegionIndex)
|
|
Sci->MinRegionIndex = RegionIndex;
|
|
if (RegionIndex > Sci->MaxRegionIndex)
|
|
Sci->MaxRegionIndex = RegionIndex;
|
|
ScopedLock L(ByteMapMutex);
|
|
PossibleRegions.set(RegionIndex, static_cast<u8>(ClassId + 1U));
|
|
}
|
|
return Region;
|
|
}
|
|
|
|
SizeClassInfo *getSizeClassInfo(uptr ClassId) {
|
|
DCHECK_LT(ClassId, NumClasses);
|
|
return &SizeClassInfoArray[ClassId];
|
|
}
|
|
|
|
void pushBatchClassBlocks(SizeClassInfo *Sci, CompactPtrT *Array, u32 Size)
|
|
REQUIRES(Sci->Mutex) {
|
|
DCHECK_EQ(Sci, getSizeClassInfo(SizeClassMap::BatchClassId));
|
|
|
|
// Free blocks are recorded by TransferBatch in freelist for all
|
|
// size-classes. In addition, TransferBatch is allocated from BatchClassId.
|
|
// In order not to use additional block to record the free blocks in
|
|
// BatchClassId, they are self-contained. I.e., A TransferBatch records the
|
|
// block address of itself. See the figure below:
|
|
//
|
|
// TransferBatch at 0xABCD
|
|
// +----------------------------+
|
|
// | Free blocks' addr |
|
|
// | +------+------+------+ |
|
|
// | |0xABCD|... |... | |
|
|
// | +------+------+------+ |
|
|
// +----------------------------+
|
|
//
|
|
// When we allocate all the free blocks in the TransferBatch, the block used
|
|
// by TransferBatch is also free for use. We don't need to recycle the
|
|
// TransferBatch. Note that the correctness is maintained by the invariant,
|
|
//
|
|
// The unit of each popBatch() request is entire TransferBatch. Return
|
|
// part of the blocks in a TransferBatch is invalid.
|
|
//
|
|
// This ensures that TransferBatch won't leak the address itself while it's
|
|
// still holding other valid data.
|
|
//
|
|
// Besides, BatchGroup is also allocated from BatchClassId and has its
|
|
// address recorded in the TransferBatch too. To maintain the correctness,
|
|
//
|
|
// The address of BatchGroup is always recorded in the last TransferBatch
|
|
// in the freelist (also imply that the freelist should only be
|
|
// updated with push_front). Once the last TransferBatch is popped,
|
|
// the block used by BatchGroup is also free for use.
|
|
//
|
|
// With this approach, the blocks used by BatchGroup and TransferBatch are
|
|
// reusable and don't need additional space for them.
|
|
|
|
Sci->FreeListInfo.PushedBlocks += Size;
|
|
BatchGroup *BG = Sci->FreeListInfo.BlockList.front();
|
|
|
|
if (BG == nullptr) {
|
|
// Construct `BatchGroup` on the last element.
|
|
BG = reinterpret_cast<BatchGroup *>(
|
|
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
|
|
--Size;
|
|
BG->Batches.clear();
|
|
// BatchClass hasn't enabled memory group. Use `0` to indicate there's no
|
|
// memory group here.
|
|
BG->CompactPtrGroupBase = 0;
|
|
// `BG` is also the block of BatchClassId. Note that this is different
|
|
// from `CreateGroup` in `pushBlocksImpl`
|
|
BG->PushedBlocks = 1;
|
|
BG->BytesInBGAtLastCheckpoint = 0;
|
|
BG->MaxCachedPerBatch = TransferBatch::getMaxCached(
|
|
getSizeByClassId(SizeClassMap::BatchClassId));
|
|
|
|
Sci->FreeListInfo.BlockList.push_front(BG);
|
|
}
|
|
|
|
if (UNLIKELY(Size == 0))
|
|
return;
|
|
|
|
// This happens under 2 cases.
|
|
// 1. just allocated a new `BatchGroup`.
|
|
// 2. Only 1 block is pushed when the freelist is empty.
|
|
if (BG->Batches.empty()) {
|
|
// Construct the `TransferBatch` on the last element.
|
|
TransferBatch *TB = reinterpret_cast<TransferBatch *>(
|
|
decompactPtr(SizeClassMap::BatchClassId, Array[Size - 1]));
|
|
TB->clear();
|
|
// As mentioned above, addresses of `TransferBatch` and `BatchGroup` are
|
|
// recorded in the TransferBatch.
|
|
TB->add(Array[Size - 1]);
|
|
TB->add(
|
|
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(BG)));
|
|
--Size;
|
|
DCHECK_EQ(BG->PushedBlocks, 1U);
|
|
// `TB` is also the block of BatchClassId.
|
|
BG->PushedBlocks += 1;
|
|
BG->Batches.push_front(TB);
|
|
}
|
|
|
|
TransferBatch *CurBatch = BG->Batches.front();
|
|
DCHECK_NE(CurBatch, nullptr);
|
|
|
|
for (u32 I = 0; I < Size;) {
|
|
u16 UnusedSlots =
|
|
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
|
|
if (UnusedSlots == 0) {
|
|
CurBatch = reinterpret_cast<TransferBatch *>(
|
|
decompactPtr(SizeClassMap::BatchClassId, Array[I]));
|
|
CurBatch->clear();
|
|
// Self-contained
|
|
CurBatch->add(Array[I]);
|
|
++I;
|
|
// TODO(chiahungduan): Avoid the use of push_back() in `Batches` of
|
|
// BatchClassId.
|
|
BG->Batches.push_front(CurBatch);
|
|
UnusedSlots = static_cast<u16>(BG->MaxCachedPerBatch - 1);
|
|
}
|
|
// `UnusedSlots` is u16 so the result will be also fit in u16.
|
|
const u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
|
|
CurBatch->appendFromArray(&Array[I], AppendSize);
|
|
I += AppendSize;
|
|
}
|
|
|
|
BG->PushedBlocks += Size;
|
|
}
|
|
// Push the blocks to their batch group. The layout will be like,
|
|
//
|
|
// FreeListInfo.BlockList - > BG -> BG -> BG
|
|
// | | |
|
|
// v v v
|
|
// TB TB TB
|
|
// |
|
|
// v
|
|
// TB
|
|
//
|
|
// Each BlockGroup(BG) will associate with unique group id and the free blocks
|
|
// are managed by a list of TransferBatch(TB). To reduce the time of inserting
|
|
// blocks, BGs are sorted and the input `Array` are supposed to be sorted so
|
|
// that we can get better performance of maintaining sorted property.
|
|
// Use `SameGroup=true` to indicate that all blocks in the array are from the
|
|
// same group then we will skip checking the group id of each block.
|
|
//
|
|
// The region mutex needs to be held while calling this method.
|
|
void pushBlocksImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci,
|
|
CompactPtrT *Array, u32 Size, bool SameGroup = false)
|
|
REQUIRES(Sci->Mutex) {
|
|
DCHECK_NE(ClassId, SizeClassMap::BatchClassId);
|
|
DCHECK_GT(Size, 0U);
|
|
|
|
auto CreateGroup = [&](uptr CompactPtrGroupBase) {
|
|
BatchGroup *BG = C->createGroup();
|
|
BG->Batches.clear();
|
|
TransferBatch *TB = C->createBatch(ClassId, nullptr);
|
|
TB->clear();
|
|
|
|
BG->CompactPtrGroupBase = CompactPtrGroupBase;
|
|
BG->Batches.push_front(TB);
|
|
BG->PushedBlocks = 0;
|
|
BG->BytesInBGAtLastCheckpoint = 0;
|
|
BG->MaxCachedPerBatch =
|
|
TransferBatch::getMaxCached(getSizeByClassId(ClassId));
|
|
|
|
return BG;
|
|
};
|
|
|
|
auto InsertBlocks = [&](BatchGroup *BG, CompactPtrT *Array, u32 Size) {
|
|
SinglyLinkedList<TransferBatch> &Batches = BG->Batches;
|
|
TransferBatch *CurBatch = Batches.front();
|
|
DCHECK_NE(CurBatch, nullptr);
|
|
|
|
for (u32 I = 0; I < Size;) {
|
|
DCHECK_GE(BG->MaxCachedPerBatch, CurBatch->getCount());
|
|
u16 UnusedSlots =
|
|
static_cast<u16>(BG->MaxCachedPerBatch - CurBatch->getCount());
|
|
if (UnusedSlots == 0) {
|
|
CurBatch = C->createBatch(
|
|
ClassId,
|
|
reinterpret_cast<void *>(decompactPtr(ClassId, Array[I])));
|
|
CurBatch->clear();
|
|
Batches.push_front(CurBatch);
|
|
UnusedSlots = BG->MaxCachedPerBatch;
|
|
}
|
|
// `UnusedSlots` is u16 so the result will be also fit in u16.
|
|
u16 AppendSize = static_cast<u16>(Min<u32>(UnusedSlots, Size - I));
|
|
CurBatch->appendFromArray(&Array[I], AppendSize);
|
|
I += AppendSize;
|
|
}
|
|
|
|
BG->PushedBlocks += Size;
|
|
};
|
|
|
|
Sci->FreeListInfo.PushedBlocks += Size;
|
|
BatchGroup *Cur = Sci->FreeListInfo.BlockList.front();
|
|
|
|
// In the following, `Cur` always points to the BatchGroup for blocks that
|
|
// will be pushed next. `Prev` is the element right before `Cur`.
|
|
BatchGroup *Prev = nullptr;
|
|
|
|
while (Cur != nullptr &&
|
|
compactPtrGroupBase(Array[0]) > Cur->CompactPtrGroupBase) {
|
|
Prev = Cur;
|
|
Cur = Cur->Next;
|
|
}
|
|
|
|
if (Cur == nullptr ||
|
|
compactPtrGroupBase(Array[0]) != Cur->CompactPtrGroupBase) {
|
|
Cur = CreateGroup(compactPtrGroupBase(Array[0]));
|
|
if (Prev == nullptr)
|
|
Sci->FreeListInfo.BlockList.push_front(Cur);
|
|
else
|
|
Sci->FreeListInfo.BlockList.insert(Prev, Cur);
|
|
}
|
|
|
|
// All the blocks are from the same group, just push without checking group
|
|
// id.
|
|
if (SameGroup) {
|
|
for (u32 I = 0; I < Size; ++I)
|
|
DCHECK_EQ(compactPtrGroupBase(Array[I]), Cur->CompactPtrGroupBase);
|
|
|
|
InsertBlocks(Cur, Array, Size);
|
|
return;
|
|
}
|
|
|
|
// The blocks are sorted by group id. Determine the segment of group and
|
|
// push them to their group together.
|
|
u32 Count = 1;
|
|
for (u32 I = 1; I < Size; ++I) {
|
|
if (compactPtrGroupBase(Array[I - 1]) != compactPtrGroupBase(Array[I])) {
|
|
DCHECK_EQ(compactPtrGroupBase(Array[I - 1]), Cur->CompactPtrGroupBase);
|
|
InsertBlocks(Cur, Array + I - Count, Count);
|
|
|
|
while (Cur != nullptr &&
|
|
compactPtrGroupBase(Array[I]) > Cur->CompactPtrGroupBase) {
|
|
Prev = Cur;
|
|
Cur = Cur->Next;
|
|
}
|
|
|
|
if (Cur == nullptr ||
|
|
compactPtrGroupBase(Array[I]) != Cur->CompactPtrGroupBase) {
|
|
Cur = CreateGroup(compactPtrGroupBase(Array[I]));
|
|
DCHECK_NE(Prev, nullptr);
|
|
Sci->FreeListInfo.BlockList.insert(Prev, Cur);
|
|
}
|
|
|
|
Count = 1;
|
|
} else {
|
|
++Count;
|
|
}
|
|
}
|
|
|
|
InsertBlocks(Cur, Array + Size - Count, Count);
|
|
}
|
|
|
|
// Pop one TransferBatch from a BatchGroup. The BatchGroup with the smallest
|
|
// group id will be considered first.
|
|
//
|
|
// The region mutex needs to be held while calling this method.
|
|
TransferBatch *popBatchImpl(CacheT *C, uptr ClassId, SizeClassInfo *Sci)
|
|
REQUIRES(Sci->Mutex) {
|
|
if (Sci->FreeListInfo.BlockList.empty())
|
|
return nullptr;
|
|
|
|
SinglyLinkedList<TransferBatch> &Batches =
|
|
Sci->FreeListInfo.BlockList.front()->Batches;
|
|
|
|
if (Batches.empty()) {
|
|
DCHECK_EQ(ClassId, SizeClassMap::BatchClassId);
|
|
BatchGroup *BG = Sci->FreeListInfo.BlockList.front();
|
|
Sci->FreeListInfo.BlockList.pop_front();
|
|
|
|
// Block used by `BatchGroup` is from BatchClassId. Turn the block into
|
|
// `TransferBatch` with single block.
|
|
TransferBatch *TB = reinterpret_cast<TransferBatch *>(BG);
|
|
TB->clear();
|
|
TB->add(
|
|
compactPtr(SizeClassMap::BatchClassId, reinterpret_cast<uptr>(TB)));
|
|
Sci->FreeListInfo.PoppedBlocks += 1;
|
|
return TB;
|
|
}
|
|
|
|
TransferBatch *B = Batches.front();
|
|
Batches.pop_front();
|
|
DCHECK_NE(B, nullptr);
|
|
DCHECK_GT(B->getCount(), 0U);
|
|
|
|
if (Batches.empty()) {
|
|
BatchGroup *BG = Sci->FreeListInfo.BlockList.front();
|
|
Sci->FreeListInfo.BlockList.pop_front();
|
|
|
|
// We don't keep BatchGroup with zero blocks to avoid empty-checking while
|
|
// allocating. Note that block used by constructing BatchGroup is recorded
|
|
// as free blocks in the last element of BatchGroup::Batches. Which means,
|
|
// once we pop the last TransferBatch, the block is implicitly
|
|
// deallocated.
|
|
if (ClassId != SizeClassMap::BatchClassId)
|
|
C->deallocate(SizeClassMap::BatchClassId, BG);
|
|
}
|
|
|
|
Sci->FreeListInfo.PoppedBlocks += B->getCount();
|
|
return B;
|
|
}
|
|
|
|
NOINLINE bool populateFreeList(CacheT *C, uptr ClassId, SizeClassInfo *Sci)
|
|
REQUIRES(Sci->Mutex) {
|
|
uptr Region;
|
|
uptr Offset;
|
|
// If the size-class currently has a region associated to it, use it. The
|
|
// newly created blocks will be located after the currently allocated memory
|
|
// for that region (up to RegionSize). Otherwise, create a new region, where
|
|
// the new blocks will be carved from the beginning.
|
|
if (Sci->CurrentRegion) {
|
|
Region = Sci->CurrentRegion;
|
|
DCHECK_GT(Sci->CurrentRegionAllocated, 0U);
|
|
Offset = Sci->CurrentRegionAllocated;
|
|
} else {
|
|
DCHECK_EQ(Sci->CurrentRegionAllocated, 0U);
|
|
Region = allocateRegion(Sci, ClassId);
|
|
if (UNLIKELY(!Region))
|
|
return false;
|
|
C->getStats().add(StatMapped, RegionSize);
|
|
Sci->CurrentRegion = Region;
|
|
Offset = 0;
|
|
}
|
|
|
|
const uptr Size = getSizeByClassId(ClassId);
|
|
const u16 MaxCount = TransferBatch::getMaxCached(Size);
|
|
DCHECK_GT(MaxCount, 0U);
|
|
// The maximum number of blocks we should carve in the region is dictated
|
|
// by the maximum number of batches we want to fill, and the amount of
|
|
// memory left in the current region (we use the lowest of the two). This
|
|
// will not be 0 as we ensure that a region can at least hold one block (via
|
|
// static_assert and at the end of this function).
|
|
const u32 NumberOfBlocks =
|
|
Min(MaxNumBatches * MaxCount,
|
|
static_cast<u32>((RegionSize - Offset) / Size));
|
|
DCHECK_GT(NumberOfBlocks, 0U);
|
|
|
|
constexpr u32 ShuffleArraySize =
|
|
MaxNumBatches * TransferBatch::MaxNumCached;
|
|
// Fill the transfer batches and put them in the size-class freelist. We
|
|
// need to randomize the blocks for security purposes, so we first fill a
|
|
// local array that we then shuffle before populating the batches.
|
|
CompactPtrT ShuffleArray[ShuffleArraySize];
|
|
DCHECK_LE(NumberOfBlocks, ShuffleArraySize);
|
|
|
|
uptr P = Region + Offset;
|
|
for (u32 I = 0; I < NumberOfBlocks; I++, P += Size)
|
|
ShuffleArray[I] = reinterpret_cast<CompactPtrT>(P);
|
|
|
|
if (ClassId != SizeClassMap::BatchClassId) {
|
|
u32 N = 1;
|
|
uptr CurGroup = compactPtrGroupBase(ShuffleArray[0]);
|
|
for (u32 I = 1; I < NumberOfBlocks; I++) {
|
|
if (UNLIKELY(compactPtrGroupBase(ShuffleArray[I]) != CurGroup)) {
|
|
shuffle(ShuffleArray + I - N, N, &Sci->RandState);
|
|
pushBlocksImpl(C, ClassId, Sci, ShuffleArray + I - N, N,
|
|
/*SameGroup=*/true);
|
|
N = 1;
|
|
CurGroup = compactPtrGroupBase(ShuffleArray[I]);
|
|
} else {
|
|
++N;
|
|
}
|
|
}
|
|
|
|
shuffle(ShuffleArray + NumberOfBlocks - N, N, &Sci->RandState);
|
|
pushBlocksImpl(C, ClassId, Sci, &ShuffleArray[NumberOfBlocks - N], N,
|
|
/*SameGroup=*/true);
|
|
} else {
|
|
pushBatchClassBlocks(Sci, ShuffleArray, NumberOfBlocks);
|
|
}
|
|
|
|
// Note that `PushedBlocks` and `PoppedBlocks` are supposed to only record
|
|
// the requests from `PushBlocks` and `PopBatch` which are external
|
|
// interfaces. `populateFreeList` is the internal interface so we should set
|
|
// the values back to avoid incorrectly setting the stats.
|
|
Sci->FreeListInfo.PushedBlocks -= NumberOfBlocks;
|
|
|
|
const uptr AllocatedUser = Size * NumberOfBlocks;
|
|
C->getStats().add(StatFree, AllocatedUser);
|
|
DCHECK_LE(Sci->CurrentRegionAllocated + AllocatedUser, RegionSize);
|
|
// If there is not enough room in the region currently associated to fit
|
|
// more blocks, we deassociate the region by resetting CurrentRegion and
|
|
// CurrentRegionAllocated. Otherwise, update the allocated amount.
|
|
if (RegionSize - (Sci->CurrentRegionAllocated + AllocatedUser) < Size) {
|
|
Sci->CurrentRegion = 0;
|
|
Sci->CurrentRegionAllocated = 0;
|
|
} else {
|
|
Sci->CurrentRegionAllocated += AllocatedUser;
|
|
}
|
|
Sci->AllocatedUser += AllocatedUser;
|
|
|
|
return true;
|
|
}
|
|
|
|
void getStats(ScopedString *Str, uptr ClassId, SizeClassInfo *Sci)
|
|
REQUIRES(Sci->Mutex) {
|
|
if (Sci->AllocatedUser == 0)
|
|
return;
|
|
const uptr BlockSize = getSizeByClassId(ClassId);
|
|
const uptr InUse =
|
|
Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks;
|
|
const uptr BytesInFreeList = Sci->AllocatedUser - InUse * BlockSize;
|
|
uptr PushedBytesDelta = 0;
|
|
if (BytesInFreeList >= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint) {
|
|
PushedBytesDelta =
|
|
BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
|
|
}
|
|
const uptr AvailableChunks = Sci->AllocatedUser / BlockSize;
|
|
Str->append(" %02zu (%6zu): mapped: %6zuK popped: %7zu pushed: %7zu "
|
|
"inuse: %6zu avail: %6zu releases: %6zu last released: %6zuK "
|
|
"latest pushed bytes: %6zuK\n",
|
|
ClassId, getSizeByClassId(ClassId), Sci->AllocatedUser >> 10,
|
|
Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks,
|
|
InUse, AvailableChunks, Sci->ReleaseInfo.RangesReleased,
|
|
Sci->ReleaseInfo.LastReleasedBytes >> 10,
|
|
PushedBytesDelta >> 10);
|
|
}
|
|
|
|
NOINLINE uptr releaseToOSMaybe(SizeClassInfo *Sci, uptr ClassId,
|
|
ReleaseToOS ReleaseType = ReleaseToOS::Normal)
|
|
REQUIRES(Sci->Mutex) {
|
|
const uptr BlockSize = getSizeByClassId(ClassId);
|
|
const uptr PageSize = getPageSizeCached();
|
|
|
|
DCHECK_GE(Sci->FreeListInfo.PoppedBlocks, Sci->FreeListInfo.PushedBlocks);
|
|
const uptr BytesInFreeList =
|
|
Sci->AllocatedUser -
|
|
(Sci->FreeListInfo.PoppedBlocks - Sci->FreeListInfo.PushedBlocks) *
|
|
BlockSize;
|
|
|
|
if (UNLIKELY(BytesInFreeList == 0))
|
|
return 0;
|
|
|
|
if (BytesInFreeList <= Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint)
|
|
Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
|
|
|
|
// Always update `BytesInFreeListAtLastCheckpoint` with the smallest value
|
|
// so that we won't underestimate the releasable pages. For example, the
|
|
// following is the region usage,
|
|
//
|
|
// BytesInFreeListAtLastCheckpoint AllocatedUser
|
|
// v v
|
|
// |--------------------------------------->
|
|
// ^ ^
|
|
// BytesInFreeList ReleaseThreshold
|
|
//
|
|
// In general, if we have collected enough bytes and the amount of free
|
|
// bytes meets the ReleaseThreshold, we will try to do page release. If we
|
|
// don't update `BytesInFreeListAtLastCheckpoint` when the current
|
|
// `BytesInFreeList` is smaller, we may take longer time to wait for enough
|
|
// freed blocks because we miss the bytes between
|
|
// (BytesInFreeListAtLastCheckpoint - BytesInFreeList).
|
|
const uptr PushedBytesDelta =
|
|
BytesInFreeList - Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint;
|
|
if (PushedBytesDelta < PageSize && ReleaseType != ReleaseToOS::ForceAll)
|
|
return 0;
|
|
|
|
const bool CheckDensity =
|
|
isSmallBlock(BlockSize) && ReleaseType != ReleaseToOS::ForceAll;
|
|
// Releasing smaller blocks is expensive, so we want to make sure that a
|
|
// significant amount of bytes are free, and that there has been a good
|
|
// amount of batches pushed to the freelist before attempting to release.
|
|
if (CheckDensity && ReleaseType == ReleaseToOS::Normal)
|
|
if (PushedBytesDelta < Sci->AllocatedUser / 16U)
|
|
return 0;
|
|
|
|
if (ReleaseType == ReleaseToOS::Normal) {
|
|
const s32 IntervalMs = atomic_load_relaxed(&ReleaseToOsIntervalMs);
|
|
if (IntervalMs < 0)
|
|
return 0;
|
|
|
|
// The constant 8 here is selected from profiling some apps and the number
|
|
// of unreleased pages in the large size classes is around 16 pages or
|
|
// more. Choose half of it as a heuristic and which also avoids page
|
|
// release every time for every pushBlocks() attempt by large blocks.
|
|
const bool ByPassReleaseInterval =
|
|
isLargeBlock(BlockSize) && PushedBytesDelta > 8 * PageSize;
|
|
if (!ByPassReleaseInterval) {
|
|
if (Sci->ReleaseInfo.LastReleaseAtNs +
|
|
static_cast<u64>(IntervalMs) * 1000000 >
|
|
getMonotonicTimeFast()) {
|
|
// Memory was returned recently.
|
|
return 0;
|
|
}
|
|
}
|
|
} // if (ReleaseType == ReleaseToOS::Normal)
|
|
|
|
const uptr First = Sci->MinRegionIndex;
|
|
const uptr Last = Sci->MaxRegionIndex;
|
|
DCHECK_NE(Last, 0U);
|
|
DCHECK_LE(First, Last);
|
|
uptr TotalReleasedBytes = 0;
|
|
const uptr Base = First * RegionSize;
|
|
const uptr NumberOfRegions = Last - First + 1U;
|
|
const uptr GroupSize = (1U << GroupSizeLog);
|
|
const uptr CurGroupBase =
|
|
compactPtrGroupBase(compactPtr(ClassId, Sci->CurrentRegion));
|
|
|
|
ReleaseRecorder Recorder(Base);
|
|
PageReleaseContext Context(BlockSize, NumberOfRegions,
|
|
/*ReleaseSize=*/RegionSize);
|
|
|
|
auto DecompactPtr = [](CompactPtrT CompactPtr) {
|
|
return reinterpret_cast<uptr>(CompactPtr);
|
|
};
|
|
for (BatchGroup &BG : Sci->FreeListInfo.BlockList) {
|
|
const uptr GroupBase = decompactGroupBase(BG.CompactPtrGroupBase);
|
|
// The `GroupSize` may not be divided by `BlockSize`, which means there is
|
|
// an unused space at the end of Region. Exclude that space to avoid
|
|
// unused page map entry.
|
|
uptr AllocatedGroupSize = GroupBase == CurGroupBase
|
|
? Sci->CurrentRegionAllocated
|
|
: roundDownSlow(GroupSize, BlockSize);
|
|
if (AllocatedGroupSize == 0)
|
|
continue;
|
|
|
|
// TransferBatches are pushed in front of BG.Batches. The first one may
|
|
// not have all caches used.
|
|
const uptr NumBlocks = (BG.Batches.size() - 1) * BG.MaxCachedPerBatch +
|
|
BG.Batches.front()->getCount();
|
|
const uptr BytesInBG = NumBlocks * BlockSize;
|
|
|
|
if (ReleaseType != ReleaseToOS::ForceAll &&
|
|
BytesInBG <= BG.BytesInBGAtLastCheckpoint) {
|
|
BG.BytesInBGAtLastCheckpoint = BytesInBG;
|
|
continue;
|
|
}
|
|
const uptr PushedBytesDelta = BytesInBG - BG.BytesInBGAtLastCheckpoint;
|
|
if (ReleaseType != ReleaseToOS::ForceAll && PushedBytesDelta < PageSize)
|
|
continue;
|
|
|
|
// Given the randomness property, we try to release the pages only if the
|
|
// bytes used by free blocks exceed certain proportion of allocated
|
|
// spaces.
|
|
if (CheckDensity && (BytesInBG * 100U) / AllocatedGroupSize <
|
|
(100U - 1U - BlockSize / 16U)) {
|
|
continue;
|
|
}
|
|
|
|
// TODO: Consider updating this after page release if `ReleaseRecorder`
|
|
// can tell the releasd bytes in each group.
|
|
BG.BytesInBGAtLastCheckpoint = BytesInBG;
|
|
|
|
const uptr MaxContainedBlocks = AllocatedGroupSize / BlockSize;
|
|
const uptr RegionIndex = (GroupBase - Base) / RegionSize;
|
|
|
|
if (NumBlocks == MaxContainedBlocks) {
|
|
for (const auto &It : BG.Batches)
|
|
for (u16 I = 0; I < It.getCount(); ++I)
|
|
DCHECK_EQ(compactPtrGroupBase(It.get(I)), BG.CompactPtrGroupBase);
|
|
|
|
const uptr To = GroupBase + AllocatedGroupSize;
|
|
Context.markRangeAsAllCounted(GroupBase, To, GroupBase, RegionIndex,
|
|
AllocatedGroupSize);
|
|
} else {
|
|
DCHECK_LT(NumBlocks, MaxContainedBlocks);
|
|
|
|
// Note that we don't always visit blocks in each BatchGroup so that we
|
|
// may miss the chance of releasing certain pages that cross
|
|
// BatchGroups.
|
|
Context.markFreeBlocksInRegion(BG.Batches, DecompactPtr, GroupBase,
|
|
RegionIndex, AllocatedGroupSize,
|
|
/*MayContainLastBlockInRegion=*/true);
|
|
}
|
|
|
|
// We may not be able to do the page release In a rare case that we may
|
|
// fail on PageMap allocation.
|
|
if (UNLIKELY(!Context.hasBlockMarked()))
|
|
return 0;
|
|
}
|
|
|
|
if (!Context.hasBlockMarked())
|
|
return 0;
|
|
|
|
auto SkipRegion = [this, First, ClassId](uptr RegionIndex) {
|
|
ScopedLock L(ByteMapMutex);
|
|
return (PossibleRegions[First + RegionIndex] - 1U) != ClassId;
|
|
};
|
|
releaseFreeMemoryToOS(Context, Recorder, SkipRegion);
|
|
|
|
if (Recorder.getReleasedRangesCount() > 0) {
|
|
Sci->ReleaseInfo.BytesInFreeListAtLastCheckpoint = BytesInFreeList;
|
|
Sci->ReleaseInfo.RangesReleased += Recorder.getReleasedRangesCount();
|
|
Sci->ReleaseInfo.LastReleasedBytes = Recorder.getReleasedBytes();
|
|
TotalReleasedBytes += Sci->ReleaseInfo.LastReleasedBytes;
|
|
}
|
|
Sci->ReleaseInfo.LastReleaseAtNs = getMonotonicTimeFast();
|
|
|
|
return TotalReleasedBytes;
|
|
}
|
|
|
|
SizeClassInfo SizeClassInfoArray[NumClasses] = {};
|
|
|
|
HybridMutex ByteMapMutex;
|
|
// Track the regions in use, 0 is unused, otherwise store ClassId + 1.
|
|
ByteMap PossibleRegions GUARDED_BY(ByteMapMutex) = {};
|
|
atomic_s32 ReleaseToOsIntervalMs = {};
|
|
// Unless several threads request regions simultaneously from different size
|
|
// classes, the stash rarely contains more than 1 entry.
|
|
static constexpr uptr MaxStashedRegions = 4;
|
|
HybridMutex RegionsStashMutex;
|
|
uptr NumberOfStashedRegions GUARDED_BY(RegionsStashMutex) = 0;
|
|
uptr RegionsStash[MaxStashedRegions] GUARDED_BY(RegionsStashMutex) = {};
|
|
};
|
|
|
|
} // namespace scudo
|
|
|
|
#endif // SCUDO_PRIMARY32_H_
|