mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-06-05 20:13:44 +02:00
Various cleanup...
This commit is contained in:
parent
d6969c41f0
commit
053452b4a0
2 changed files with 177 additions and 337 deletions
465
core/ECC384.cpp
465
core/ECC384.cpp
|
@ -15,7 +15,7 @@ namespace {
|
|||
#define ECC_CURVE secp384r1
|
||||
#define ECC_BYTES ECC_CURVE
|
||||
#define NUM_ECC_DIGITS (ECC_BYTES/8)
|
||||
#define MAX_TRIES 1024
|
||||
#define ECC_CREATE_KEY_MAX_ATTEMPTS 1024
|
||||
|
||||
#ifdef ZT_HAVE_UINT128
|
||||
#define SUPPORTS_INT128 1
|
||||
|
@ -45,144 +45,100 @@ const uint64_t curve_b[NUM_ECC_DIGITS] = CONCAT(Curve_B_, ECC_CURVE);
|
|||
const EccPoint curve_G = CONCAT(Curve_G_, ECC_CURVE);
|
||||
const uint64_t curve_n[NUM_ECC_DIGITS] = CONCAT(Curve_N_, ECC_CURVE);
|
||||
|
||||
// Use ZeroTier's secure PRNG
|
||||
ZT_INLINE int getRandomNumber(uint64_t *p_vli)
|
||||
{
|
||||
Utils::getSecureRandom(p_vli,ECC_BYTES);
|
||||
Utils::getSecureRandom(p_vli, ECC_BYTES);
|
||||
return 1;
|
||||
}
|
||||
|
||||
ZT_INLINE void vli_clear(uint64_t *p_vli)
|
||||
{
|
||||
uint i;
|
||||
for(i=0; i<NUM_ECC_DIGITS; ++i)
|
||||
{
|
||||
p_vli[i] = 0;
|
||||
}
|
||||
}
|
||||
{ Utils::zero< sizeof(uint64_t) * NUM_ECC_DIGITS >(p_vli); }
|
||||
|
||||
/* Returns 1 if p_vli == 0, 0 otherwise. */
|
||||
ZT_INLINE int vli_isZero(const uint64_t *p_vli)
|
||||
{
|
||||
uint i;
|
||||
for(i = 0; i < NUM_ECC_DIGITS; ++i)
|
||||
{
|
||||
if(p_vli[i])
|
||||
{
|
||||
for (i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
if (p_vli[i])
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* Returns nonzero if bit p_bit of p_vli is set. */
|
||||
ZT_INLINE uint64_t vli_testBit(const uint64_t *p_vli,uint p_bit)
|
||||
{
|
||||
return (p_vli[p_bit/64] & ((uint64_t)1 << (p_bit % 64)));
|
||||
}
|
||||
ZT_INLINE uint64_t vli_testBit(const uint64_t *p_vli, uint p_bit)
|
||||
{ return (p_vli[p_bit / 64] & ((uint64_t)1 << (p_bit % 64))); }
|
||||
|
||||
/* Counts the number of 64-bit "digits" in p_vli. */
|
||||
ZT_INLINE uint vli_numDigits(const uint64_t *p_vli)
|
||||
{
|
||||
int i;
|
||||
/* Search from the end until we find a non-zero digit.
|
||||
We do it in reverse because we expect that most digits will be nonzero. */
|
||||
for(i = NUM_ECC_DIGITS - 1; i >= 0 && p_vli[i] == 0; --i)
|
||||
{
|
||||
}
|
||||
|
||||
return (i + 1);
|
||||
for (i = NUM_ECC_DIGITS - 1; i >= 0 && p_vli[i] == 0; --i) {}
|
||||
return (uint)(i + 1);
|
||||
}
|
||||
|
||||
/* Counts the number of bits required for p_vli. */
|
||||
ZT_INLINE uint vli_numBits(const uint64_t *p_vli)
|
||||
{
|
||||
uint i;
|
||||
uint64_t l_digit;
|
||||
|
||||
uint l_numDigits = vli_numDigits(p_vli);
|
||||
if(l_numDigits == 0)
|
||||
{
|
||||
if (l_numDigits == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
l_digit = p_vli[l_numDigits - 1];
|
||||
for(i=0; l_digit; ++i)
|
||||
{
|
||||
for (i = 0; l_digit; ++i) {
|
||||
l_digit >>= 1;
|
||||
}
|
||||
|
||||
return ((l_numDigits - 1) * 64 + i);
|
||||
}
|
||||
|
||||
/* Sets p_dest = p_src. */
|
||||
ZT_INLINE void vli_set(uint64_t *p_dest,const uint64_t *p_src)
|
||||
ZT_INLINE void vli_set(uint64_t *p_dest, const uint64_t *p_src)
|
||||
{
|
||||
uint i;
|
||||
for(i=0; i<NUM_ECC_DIGITS; ++i)
|
||||
{
|
||||
for (uint i = 0; i < NUM_ECC_DIGITS; ++i)
|
||||
p_dest[i] = p_src[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* Returns sign of p_left - p_right. */
|
||||
ZT_INLINE int vli_cmp(const uint64_t *p_left,const uint64_t *p_right)
|
||||
ZT_INLINE int vli_cmp(const uint64_t *p_left, const uint64_t *p_right)
|
||||
{
|
||||
int i;
|
||||
for(i = NUM_ECC_DIGITS-1; i >= 0; --i)
|
||||
{
|
||||
if(p_left[i] > p_right[i])
|
||||
{
|
||||
for (int i = NUM_ECC_DIGITS - 1; i >= 0; --i) {
|
||||
if (p_left[i] > p_right[i]) {
|
||||
return 1;
|
||||
}
|
||||
else if(p_left[i] < p_right[i])
|
||||
{
|
||||
} else if (p_left[i] < p_right[i]) {
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Computes p_result = p_in << c, returning carry. Can modify in place (if p_result == p_in). 0 < p_shift < 64. */
|
||||
ZT_INLINE uint64_t vli_lshift(uint64_t *p_result,const uint64_t *p_in,uint p_shift)
|
||||
ZT_INLINE uint64_t vli_lshift(uint64_t *p_result, const uint64_t *p_in, uint p_shift)
|
||||
{
|
||||
uint64_t l_carry = 0;
|
||||
uint i;
|
||||
for(i = 0; i < NUM_ECC_DIGITS; ++i)
|
||||
{
|
||||
for (uint i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
uint64_t l_temp = p_in[i];
|
||||
p_result[i] = (l_temp << p_shift) | l_carry;
|
||||
l_carry = l_temp >> (64 - p_shift);
|
||||
}
|
||||
|
||||
return l_carry;
|
||||
}
|
||||
|
||||
/* Computes p_vli = p_vli >> 1. */
|
||||
ZT_INLINE void vli_rshift1(uint64_t *p_vli)
|
||||
{
|
||||
uint64_t *l_end = p_vli;
|
||||
uint64_t l_carry = 0;
|
||||
|
||||
p_vli += NUM_ECC_DIGITS;
|
||||
while(p_vli-- > l_end)
|
||||
{
|
||||
while (p_vli-- > l_end) {
|
||||
uint64_t l_temp = *p_vli;
|
||||
*p_vli = (l_temp >> 1) | l_carry;
|
||||
l_carry = l_temp << 63;
|
||||
}
|
||||
}
|
||||
|
||||
/* Computes p_result = p_left + p_right, returning carry. Can modify in place. */
|
||||
ZT_INLINE uint64_t vli_add(uint64_t *p_result,const uint64_t *p_left,const uint64_t *p_right)
|
||||
ZT_INLINE uint64_t vli_add(uint64_t *p_result, const uint64_t *p_left, const uint64_t *p_right)
|
||||
{
|
||||
uint64_t l_carry = 0;
|
||||
uint i;
|
||||
for(i=0; i<NUM_ECC_DIGITS; ++i)
|
||||
{
|
||||
for (uint i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
uint64_t l_sum = p_left[i] + p_right[i] + l_carry;
|
||||
if(l_sum != p_left[i])
|
||||
{
|
||||
if (l_sum != p_left[i]) {
|
||||
l_carry = (l_sum < p_left[i]);
|
||||
}
|
||||
p_result[i] = l_sum;
|
||||
|
@ -190,16 +146,12 @@ ZT_INLINE uint64_t vli_add(uint64_t *p_result,const uint64_t *p_left,const uint6
|
|||
return l_carry;
|
||||
}
|
||||
|
||||
/* Computes p_result = p_left - p_right, returning borrow. Can modify in place. */
|
||||
ZT_INLINE uint64_t vli_sub(uint64_t *p_result,const uint64_t *p_left,const uint64_t *p_right)
|
||||
ZT_INLINE uint64_t vli_sub(uint64_t *p_result, const uint64_t *p_left, const uint64_t *p_right)
|
||||
{
|
||||
uint64_t l_borrow = 0;
|
||||
uint i;
|
||||
for(i=0; i<NUM_ECC_DIGITS; ++i)
|
||||
{
|
||||
for (uint i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
uint64_t l_diff = p_left[i] - p_right[i] - l_borrow;
|
||||
if(l_diff != p_left[i])
|
||||
{
|
||||
if (l_diff != p_left[i]) {
|
||||
l_borrow = (l_diff > p_left[i]);
|
||||
}
|
||||
p_result[i] = l_diff;
|
||||
|
@ -209,7 +161,6 @@ ZT_INLINE uint64_t vli_sub(uint64_t *p_result,const uint64_t *p_left,const uint6
|
|||
|
||||
#if SUPPORTS_INT128 == 1
|
||||
|
||||
/* Computes p_result = p_left * p_right. */
|
||||
void vli_mult(uint64_t *p_result, const uint64_t *p_left, const uint64_t *p_right)
|
||||
{
|
||||
uint128_t r01 = 0;
|
||||
|
@ -217,13 +168,10 @@ void vli_mult(uint64_t *p_result, const uint64_t *p_left, const uint64_t *p_righ
|
|||
|
||||
uint i, k;
|
||||
|
||||
/* Compute each digit of p_result in sequence, maintaining the carries. */
|
||||
for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k)
|
||||
{
|
||||
for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; ++k) {
|
||||
uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
|
||||
for(i=l_min; i<=k && i<NUM_ECC_DIGITS; ++i)
|
||||
{
|
||||
uint128_t l_product = (uint128_t)p_left[i] * p_right[k-i];
|
||||
for (i = l_min; i <= k && i < NUM_ECC_DIGITS; ++i) {
|
||||
uint128_t l_product = (uint128_t)p_left[i] * p_right[k - i];
|
||||
r01 += l_product;
|
||||
r2 += (r01 < l_product);
|
||||
}
|
||||
|
@ -232,24 +180,20 @@ void vli_mult(uint64_t *p_result, const uint64_t *p_left, const uint64_t *p_righ
|
|||
r2 = 0;
|
||||
}
|
||||
|
||||
p_result[NUM_ECC_DIGITS*2 - 1] = (uint64_t)r01;
|
||||
p_result[NUM_ECC_DIGITS * 2 - 1] = (uint64_t)r01;
|
||||
}
|
||||
|
||||
/* Computes p_result = p_left^2. */
|
||||
void vli_square(uint64_t *p_result, const uint64_t *p_left)
|
||||
{
|
||||
uint128_t r01 = 0;
|
||||
uint64_t r2 = 0;
|
||||
|
||||
uint i, k;
|
||||
for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k)
|
||||
{
|
||||
for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; ++k) {
|
||||
uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
|
||||
for(i=l_min; i<=k && i<=k-i; ++i)
|
||||
{
|
||||
uint128_t l_product = (uint128_t)p_left[i] * p_left[k-i];
|
||||
if(i < k-i)
|
||||
{
|
||||
for (i = l_min; i <= k && i <= k - i; ++i) {
|
||||
uint128_t l_product = (uint128_t)p_left[i] * p_left[k - i];
|
||||
if (i < k - i) {
|
||||
r2 += l_product >> 127;
|
||||
l_product *= 2;
|
||||
}
|
||||
|
@ -261,7 +205,7 @@ void vli_square(uint64_t *p_result, const uint64_t *p_left)
|
|||
r2 = 0;
|
||||
}
|
||||
|
||||
p_result[NUM_ECC_DIGITS*2 - 1] = (uint64_t)r01;
|
||||
p_result[NUM_ECC_DIGITS * 2 - 1] = (uint64_t)r01;
|
||||
}
|
||||
|
||||
#else /* #if SUPPORTS_INT128 */
|
||||
|
@ -282,8 +226,7 @@ uint128_t mul_64_64(uint64_t p_left, uint64_t p_right)
|
|||
|
||||
m2 += (m0 >> 32);
|
||||
m2 += m1;
|
||||
if(m2 < m1)
|
||||
{ // overflow
|
||||
if (m2 < m1) { // overflow
|
||||
m3 += 0x100000000ull;
|
||||
}
|
||||
|
||||
|
@ -309,12 +252,10 @@ void vli_mult(uint64_t *p_result, uint64_t *p_left, const uint64_t *p_right)
|
|||
uint i, k;
|
||||
|
||||
/* Compute each digit of p_result in sequence, maintaining the carries. */
|
||||
for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k)
|
||||
{
|
||||
for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; ++k) {
|
||||
uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
|
||||
for(i=l_min; i<=k && i<NUM_ECC_DIGITS; ++i)
|
||||
{
|
||||
uint128_t l_product = mul_64_64(p_left[i], p_right[k-i]);
|
||||
for (i = l_min; i <= k && i < NUM_ECC_DIGITS; ++i) {
|
||||
uint128_t l_product = mul_64_64(p_left[i], p_right[k - i]);
|
||||
r01 = add_128_128(r01, l_product);
|
||||
r2 += (r01.m_high < l_product.m_high);
|
||||
}
|
||||
|
@ -324,7 +265,7 @@ void vli_mult(uint64_t *p_result, uint64_t *p_left, const uint64_t *p_right)
|
|||
r2 = 0;
|
||||
}
|
||||
|
||||
p_result[NUM_ECC_DIGITS*2 - 1] = r01.m_low;
|
||||
p_result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
|
||||
}
|
||||
|
||||
void vli_square(uint64_t *p_result, uint64_t *p_left)
|
||||
|
@ -333,14 +274,11 @@ void vli_square(uint64_t *p_result, uint64_t *p_left)
|
|||
uint64_t r2 = 0;
|
||||
|
||||
uint i, k;
|
||||
for(k=0; k < NUM_ECC_DIGITS*2 - 1; ++k)
|
||||
{
|
||||
for (k = 0; k < NUM_ECC_DIGITS * 2 - 1; ++k) {
|
||||
uint l_min = (k < NUM_ECC_DIGITS ? 0 : (k + 1) - NUM_ECC_DIGITS);
|
||||
for(i=l_min; i<=k && i<=k-i; ++i)
|
||||
{
|
||||
uint128_t l_product = mul_64_64(p_left[i], p_left[k-i]);
|
||||
if(i < k-i)
|
||||
{
|
||||
for (i = l_min; i <= k && i <= k - i; ++i) {
|
||||
uint128_t l_product = mul_64_64(p_left[i], p_left[k - i]);
|
||||
if (i < k - i) {
|
||||
r2 += l_product.m_high >> 63;
|
||||
l_product.m_high = (l_product.m_high << 1) | (l_product.m_low >> 63);
|
||||
l_product.m_low <<= 1;
|
||||
|
@ -354,30 +292,23 @@ void vli_square(uint64_t *p_result, uint64_t *p_left)
|
|||
r2 = 0;
|
||||
}
|
||||
|
||||
p_result[NUM_ECC_DIGITS*2 - 1] = r01.m_low;
|
||||
p_result[NUM_ECC_DIGITS * 2 - 1] = r01.m_low;
|
||||
}
|
||||
|
||||
#endif /* SUPPORTS_INT128 */
|
||||
|
||||
/* Computes p_result = (p_left + p_right) % p_mod.
|
||||
Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */
|
||||
void vli_modAdd(uint64_t *p_result, uint64_t *p_left, const uint64_t *p_right, const uint64_t *p_mod)
|
||||
{
|
||||
uint64_t l_carry = vli_add(p_result, p_left, p_right);
|
||||
if(l_carry || vli_cmp(p_result, p_mod) >= 0)
|
||||
{ /* p_result > p_mod (p_result = p_mod + remainder), so subtract p_mod to get remainder. */
|
||||
if (l_carry || vli_cmp(p_result, p_mod) >= 0) {
|
||||
vli_sub(p_result, p_result, p_mod);
|
||||
}
|
||||
}
|
||||
|
||||
/* Computes p_result = (p_left - p_right) % p_mod.
|
||||
Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */
|
||||
void vli_modSub(uint64_t *p_result, uint64_t *p_left, const uint64_t *p_right, const uint64_t *p_mod)
|
||||
{
|
||||
uint64_t l_borrow = vli_sub(p_result, p_left, p_right);
|
||||
if(l_borrow)
|
||||
{ /* In this case, p_result == -diff == (max int) - diff.
|
||||
Since -x % d == d - x, we can get the correct result from p_result + p_mod (with overflow). */
|
||||
if (l_borrow) {
|
||||
vli_add(p_result, p_result, p_mod);
|
||||
}
|
||||
}
|
||||
|
@ -387,21 +318,17 @@ void omega_mult(uint64_t *p_result, uint64_t *p_right)
|
|||
uint64_t l_tmp[NUM_ECC_DIGITS];
|
||||
uint64_t l_carry, l_diff;
|
||||
|
||||
/* Multiply by (2^128 + 2^96 - 2^32 + 1). */
|
||||
vli_set(p_result, p_right); /* 1 */
|
||||
vli_set(p_result, p_right);
|
||||
l_carry = vli_lshift(l_tmp, p_right, 32);
|
||||
p_result[1 + NUM_ECC_DIGITS] = l_carry + vli_add(p_result + 1, p_result + 1, l_tmp); /* 2^96 + 1 */
|
||||
p_result[2 + NUM_ECC_DIGITS] = vli_add(p_result + 2, p_result + 2, p_right); /* 2^128 + 2^96 + 1 */
|
||||
l_carry += vli_sub(p_result, p_result, l_tmp); /* 2^128 + 2^96 - 2^32 + 1 */
|
||||
p_result[1 + NUM_ECC_DIGITS] = l_carry + vli_add(p_result + 1, p_result + 1, l_tmp);
|
||||
p_result[2 + NUM_ECC_DIGITS] = vli_add(p_result + 2, p_result + 2, p_right);
|
||||
l_carry += vli_sub(p_result, p_result, l_tmp);
|
||||
l_diff = p_result[NUM_ECC_DIGITS] - l_carry;
|
||||
if(l_diff > p_result[NUM_ECC_DIGITS])
|
||||
{ /* Propagate borrow if necessary. */
|
||||
if (l_diff > p_result[NUM_ECC_DIGITS]) {
|
||||
uint i;
|
||||
for(i = 1 + NUM_ECC_DIGITS; ; ++i)
|
||||
{
|
||||
for (i = 1 + NUM_ECC_DIGITS;; ++i) {
|
||||
--p_result[i];
|
||||
if(p_result[i] != (uint64_t)-1)
|
||||
{
|
||||
if (p_result[i] != (uint64_t)-1) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -409,59 +336,50 @@ void omega_mult(uint64_t *p_result, uint64_t *p_right)
|
|||
p_result[NUM_ECC_DIGITS] = l_diff;
|
||||
}
|
||||
|
||||
/* Computes p_result = p_product % curve_p
|
||||
see PDF "Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs"
|
||||
section "Curve-Specific Optimizations" */
|
||||
void vli_mmod_fast(uint64_t *p_result, uint64_t *p_product)
|
||||
{
|
||||
uint64_t l_tmp[2*NUM_ECC_DIGITS];
|
||||
uint64_t l_tmp[2 * NUM_ECC_DIGITS];
|
||||
|
||||
while(!vli_isZero(p_product + NUM_ECC_DIGITS)) /* While c1 != 0 */
|
||||
{
|
||||
while (!vli_isZero(p_product + NUM_ECC_DIGITS)) {
|
||||
uint64_t l_carry = 0;
|
||||
uint i;
|
||||
|
||||
vli_clear(l_tmp);
|
||||
vli_clear(l_tmp + NUM_ECC_DIGITS);
|
||||
omega_mult(l_tmp, p_product + NUM_ECC_DIGITS); /* tmp = w * c1 */
|
||||
vli_clear(p_product + NUM_ECC_DIGITS); /* p = c0 */
|
||||
omega_mult(l_tmp, p_product + NUM_ECC_DIGITS);
|
||||
vli_clear(p_product + NUM_ECC_DIGITS);
|
||||
|
||||
/* (c1, c0) = c0 + w * c1 */
|
||||
for(i=0; i<NUM_ECC_DIGITS+3; ++i)
|
||||
{
|
||||
for (i = 0; i < NUM_ECC_DIGITS + 3; ++i) {
|
||||
uint64_t l_sum = p_product[i] + l_tmp[i] + l_carry;
|
||||
if(l_sum != p_product[i])
|
||||
{
|
||||
if (l_sum != p_product[i]) {
|
||||
l_carry = (l_sum < p_product[i]);
|
||||
}
|
||||
p_product[i] = l_sum;
|
||||
}
|
||||
}
|
||||
|
||||
while(vli_cmp(p_product, curve_p) > 0)
|
||||
{
|
||||
while (vli_cmp(p_product, curve_p) > 0) {
|
||||
vli_sub(p_product, p_product, curve_p);
|
||||
}
|
||||
vli_set(p_result, p_product);
|
||||
}
|
||||
|
||||
/* Computes p_result = (p_left * p_right) % curve_p. */
|
||||
ZT_INLINE void vli_modMult_fast(uint64_t *p_result,uint64_t *p_left,const uint64_t *p_right)
|
||||
ZT_INLINE void vli_modMult_fast(uint64_t *p_result, uint64_t *p_left, const uint64_t *p_right)
|
||||
{
|
||||
uint64_t l_product[2 * NUM_ECC_DIGITS];
|
||||
vli_mult(l_product, p_left, p_right);
|
||||
vli_mmod_fast(p_result, l_product);
|
||||
}
|
||||
|
||||
/* Computes p_result = p_left^2 % curve_p. */
|
||||
ZT_INLINE void vli_modSquare_fast(uint64_t *p_result,uint64_t *p_left)
|
||||
ZT_INLINE void vli_modSquare_fast(uint64_t *p_result, uint64_t *p_left)
|
||||
{
|
||||
uint64_t l_product[2 * NUM_ECC_DIGITS];
|
||||
vli_square(l_product, p_left);
|
||||
vli_mmod_fast(p_result, l_product);
|
||||
}
|
||||
|
||||
#define EVEN(vli) (!(vli[0] & 1))
|
||||
#define vli_isEven(vli) (!(vli[0] & 1))
|
||||
|
||||
/* Computes p_result = (1 / p_input) % p_mod. All VLIs are the same size.
|
||||
See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
|
||||
https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf */
|
||||
|
@ -471,8 +389,7 @@ void vli_modInv(uint64_t *p_result, uint64_t *p_input, const uint64_t *p_mod)
|
|||
uint64_t l_carry;
|
||||
int l_cmpResult;
|
||||
|
||||
if(vli_isZero(p_input))
|
||||
{
|
||||
if (vli_isZero(p_input)) {
|
||||
vli_clear(p_result);
|
||||
return;
|
||||
}
|
||||
|
@ -483,71 +400,53 @@ void vli_modInv(uint64_t *p_result, uint64_t *p_input, const uint64_t *p_mod)
|
|||
u[0] = 1;
|
||||
vli_clear(v);
|
||||
|
||||
while((l_cmpResult = vli_cmp(a, b)) != 0)
|
||||
{
|
||||
while ((l_cmpResult = vli_cmp(a, b)) != 0) {
|
||||
l_carry = 0;
|
||||
if(EVEN(a))
|
||||
{
|
||||
if (vli_isEven(a)) {
|
||||
vli_rshift1(a);
|
||||
if(!EVEN(u))
|
||||
{
|
||||
if (!vli_isEven(u)) {
|
||||
l_carry = vli_add(u, u, p_mod);
|
||||
}
|
||||
vli_rshift1(u);
|
||||
if(l_carry)
|
||||
{
|
||||
u[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
|
||||
if (l_carry) {
|
||||
u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
|
||||
}
|
||||
}
|
||||
else if(EVEN(b))
|
||||
{
|
||||
} else if (vli_isEven(b)) {
|
||||
vli_rshift1(b);
|
||||
if(!EVEN(v))
|
||||
{
|
||||
if (!vli_isEven(v)) {
|
||||
l_carry = vli_add(v, v, p_mod);
|
||||
}
|
||||
vli_rshift1(v);
|
||||
if(l_carry)
|
||||
{
|
||||
v[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
|
||||
if (l_carry) {
|
||||
v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
|
||||
}
|
||||
}
|
||||
else if(l_cmpResult > 0)
|
||||
{
|
||||
} else if (l_cmpResult > 0) {
|
||||
vli_sub(a, a, b);
|
||||
vli_rshift1(a);
|
||||
if(vli_cmp(u, v) < 0)
|
||||
{
|
||||
if (vli_cmp(u, v) < 0) {
|
||||
vli_add(u, u, p_mod);
|
||||
}
|
||||
vli_sub(u, u, v);
|
||||
if(!EVEN(u))
|
||||
{
|
||||
if (!vli_isEven(u)) {
|
||||
l_carry = vli_add(u, u, p_mod);
|
||||
}
|
||||
vli_rshift1(u);
|
||||
if(l_carry)
|
||||
{
|
||||
u[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
|
||||
if (l_carry) {
|
||||
u[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
vli_sub(b, b, a);
|
||||
vli_rshift1(b);
|
||||
if(vli_cmp(v, u) < 0)
|
||||
{
|
||||
if (vli_cmp(v, u) < 0) {
|
||||
vli_add(v, v, p_mod);
|
||||
}
|
||||
vli_sub(v, v, u);
|
||||
if(!EVEN(v))
|
||||
{
|
||||
if (!vli_isEven(v)) {
|
||||
l_carry = vli_add(v, v, p_mod);
|
||||
}
|
||||
vli_rshift1(v);
|
||||
if(l_carry)
|
||||
{
|
||||
v[NUM_ECC_DIGITS-1] |= 0x8000000000000000ull;
|
||||
if (l_carry) {
|
||||
v[NUM_ECC_DIGITS - 1] |= 0x8000000000000000ull;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -555,27 +454,16 @@ void vli_modInv(uint64_t *p_result, uint64_t *p_input, const uint64_t *p_mod)
|
|||
vli_set(p_result, u);
|
||||
}
|
||||
|
||||
/* ------ Point operations ------ */
|
||||
|
||||
/* Returns 1 if p_point is the point at infinity, 0 otherwise. */
|
||||
ZT_INLINE int EccPoint_isZero(EccPoint *p_point)
|
||||
{
|
||||
return (vli_isZero(p_point->x) && vli_isZero(p_point->y));
|
||||
}
|
||||
{ return (vli_isZero(p_point->x) && vli_isZero(p_point->y)); }
|
||||
|
||||
/* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates.
|
||||
From http://eprint.iacr.org/2011/338.pdf
|
||||
*/
|
||||
|
||||
/* Double in place */
|
||||
void EccPoint_double_jacobian(uint64_t *X1, uint64_t *Y1, uint64_t *Z1)
|
||||
{
|
||||
/* t1 = X, t2 = Y, t3 = Z */
|
||||
uint64_t t4[NUM_ECC_DIGITS];
|
||||
uint64_t t5[NUM_ECC_DIGITS];
|
||||
|
||||
if(vli_isZero(Z1))
|
||||
{
|
||||
if (vli_isZero(Z1)) {
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -592,14 +480,11 @@ void EccPoint_double_jacobian(uint64_t *X1, uint64_t *Y1, uint64_t *Z1)
|
|||
|
||||
vli_modAdd(Z1, X1, X1, curve_p); /* t3 = 2*(x1^2 - z1^4) */
|
||||
vli_modAdd(X1, X1, Z1, curve_p); /* t1 = 3*(x1^2 - z1^4) */
|
||||
if(vli_testBit(X1, 0))
|
||||
{
|
||||
if (vli_testBit(X1, 0)) {
|
||||
uint64_t l_carry = vli_add(X1, X1, curve_p);
|
||||
vli_rshift1(X1);
|
||||
X1[NUM_ECC_DIGITS-1] |= l_carry << 63U;
|
||||
}
|
||||
else
|
||||
{
|
||||
X1[NUM_ECC_DIGITS - 1] |= l_carry << 63U;
|
||||
} else {
|
||||
vli_rshift1(X1);
|
||||
}
|
||||
/* t1 = 3/2*(x1^2 - z1^4) = B */
|
||||
|
@ -616,7 +501,6 @@ void EccPoint_double_jacobian(uint64_t *X1, uint64_t *Y1, uint64_t *Z1)
|
|||
vli_set(Y1, t4);
|
||||
}
|
||||
|
||||
/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
|
||||
void apply_z(uint64_t *X1, uint64_t *Y1, uint64_t *Z)
|
||||
{
|
||||
uint64_t t1[NUM_ECC_DIGITS];
|
||||
|
@ -627,7 +511,6 @@ void apply_z(uint64_t *X1, uint64_t *Y1, uint64_t *Z)
|
|||
vli_modMult_fast(Y1, Y1, t1); /* y1 * z^3 */
|
||||
}
|
||||
|
||||
/* P = (x1, y1) => 2P, (x2, y2) => P' */
|
||||
void XYcZ_initial_double(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2, uint64_t *p_initialZ)
|
||||
{
|
||||
uint64_t z[NUM_ECC_DIGITS];
|
||||
|
@ -637,8 +520,7 @@ void XYcZ_initial_double(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2,
|
|||
|
||||
vli_clear(z);
|
||||
z[0] = 1;
|
||||
if(p_initialZ)
|
||||
{
|
||||
if (p_initialZ) {
|
||||
vli_set(z, p_initialZ);
|
||||
}
|
||||
|
||||
|
@ -649,10 +531,6 @@ void XYcZ_initial_double(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2,
|
|||
apply_z(X2, Y2, z);
|
||||
}
|
||||
|
||||
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
|
||||
Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
|
||||
or P => P', Q => P + Q
|
||||
*/
|
||||
void XYcZ_add(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2)
|
||||
{
|
||||
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
|
||||
|
@ -676,10 +554,6 @@ void XYcZ_add(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2)
|
|||
vli_set(X2, t5);
|
||||
}
|
||||
|
||||
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
|
||||
Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
|
||||
or P => P - Q, Q => P + Q
|
||||
*/
|
||||
void XYcZ_addC(uint64_t *X1, uint64_t *Y1, uint64_t *X2, uint64_t *Y2)
|
||||
{
|
||||
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
|
||||
|
@ -727,26 +601,25 @@ void EccPoint_mult(EccPoint *p_result, const EccPoint *p_point, uint64_t *p_scal
|
|||
|
||||
XYcZ_initial_double(Rx[1], Ry[1], Rx[0], Ry[0], p_initialZ);
|
||||
|
||||
for(i = (int)vli_numBits(p_scalar) - 2; i > 0; --i)
|
||||
{
|
||||
for (i = (int)vli_numBits(p_scalar) - 2; i > 0; --i) {
|
||||
nb = !vli_testBit(p_scalar, i);
|
||||
XYcZ_addC(Rx[1-nb], Ry[1-nb], Rx[nb], Ry[nb]);
|
||||
XYcZ_add(Rx[nb], Ry[nb], Rx[1-nb], Ry[1-nb]);
|
||||
XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb]);
|
||||
XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb]);
|
||||
}
|
||||
|
||||
nb = !vli_testBit(p_scalar, 0);
|
||||
XYcZ_addC(Rx[1-nb], Ry[1-nb], Rx[nb], Ry[nb]);
|
||||
XYcZ_addC(Rx[1 - nb], Ry[1 - nb], Rx[nb], Ry[nb]);
|
||||
|
||||
/* Find final 1/Z value. */
|
||||
vli_modSub(z, Rx[1], Rx[0], curve_p); /* X1 - X0 */
|
||||
vli_modMult_fast(z, z, Ry[1-nb]); /* Yb * (X1 - X0) */
|
||||
vli_modMult_fast(z, z, Ry[1 - nb]); /* Yb * (X1 - X0) */
|
||||
vli_modMult_fast(z, z, p_point->x); /* xP * Yb * (X1 - X0) */
|
||||
vli_modInv(z, z, curve_p); /* 1 / (xP * Yb * (X1 - X0)) */
|
||||
vli_modMult_fast(z, z, p_point->y); /* yP / (xP * Yb * (X1 - X0)) */
|
||||
vli_modMult_fast(z, z, Rx[1-nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */
|
||||
vli_modMult_fast(z, z, Rx[1 - nb]); /* Xb * yP / (xP * Yb * (X1 - X0)) */
|
||||
/* End 1/Z calculation */
|
||||
|
||||
XYcZ_add(Rx[nb], Ry[nb], Rx[1-nb], Ry[1-nb]);
|
||||
XYcZ_add(Rx[nb], Ry[nb], Rx[1 - nb], Ry[1 - nb]);
|
||||
|
||||
apply_z(Rx[0], Ry[0], z);
|
||||
|
||||
|
@ -754,22 +627,18 @@ void EccPoint_mult(EccPoint *p_result, const EccPoint *p_point, uint64_t *p_scal
|
|||
vli_set(p_result->y, Ry[0]);
|
||||
}
|
||||
|
||||
ZT_INLINE void ecc_bytes2native(uint64_t p_native[NUM_ECC_DIGITS],const uint8_t p_bytes[ECC_BYTES])
|
||||
ZT_INLINE void ecc_bytes2native(uint64_t p_native[NUM_ECC_DIGITS], const uint8_t p_bytes[ECC_BYTES])
|
||||
{
|
||||
unsigned i;
|
||||
for(i=0; i<NUM_ECC_DIGITS; ++i)
|
||||
{
|
||||
for (uint i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
const uint8_t *p_digit = p_bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
|
||||
p_native[i] = ((uint64_t)p_digit[0] << 56) | ((uint64_t)p_digit[1] << 48) | ((uint64_t)p_digit[2] << 40) | ((uint64_t)p_digit[3] << 32) |
|
||||
((uint64_t)p_digit[4] << 24) | ((uint64_t)p_digit[5] << 16) | ((uint64_t)p_digit[6] << 8) | (uint64_t)p_digit[7];
|
||||
}
|
||||
}
|
||||
|
||||
ZT_INLINE void ecc_native2bytes(uint8_t p_bytes[ECC_BYTES],const uint64_t p_native[NUM_ECC_DIGITS])
|
||||
ZT_INLINE void ecc_native2bytes(uint8_t p_bytes[ECC_BYTES], const uint64_t p_native[NUM_ECC_DIGITS])
|
||||
{
|
||||
unsigned i;
|
||||
for(i=0; i<NUM_ECC_DIGITS; ++i)
|
||||
{
|
||||
for (uint i = 0; i < NUM_ECC_DIGITS; ++i) {
|
||||
uint8_t *p_digit = p_bytes + 8 * (NUM_ECC_DIGITS - 1 - i);
|
||||
p_digit[0] = p_native[i] >> 56;
|
||||
p_digit[1] = p_native[i] >> 48;
|
||||
|
@ -782,31 +651,25 @@ ZT_INLINE void ecc_native2bytes(uint8_t p_bytes[ECC_BYTES],const uint64_t p_nati
|
|||
}
|
||||
}
|
||||
|
||||
/* Compute a = sqrt(a) (mod curve_p). */
|
||||
void mod_sqrt(uint64_t a[NUM_ECC_DIGITS])
|
||||
{
|
||||
unsigned i;
|
||||
uint64_t p1[NUM_ECC_DIGITS] = {1};
|
||||
uint64_t l_result[NUM_ECC_DIGITS] = {1};
|
||||
|
||||
/* Since curve_p == 3 (mod 4) for all supported curves, we can
|
||||
compute sqrt(a) = a^((curve_p + 1) / 4) (mod curve_p). */
|
||||
vli_add(p1, curve_p, p1); /* p1 = curve_p + 1 */
|
||||
for(i = vli_numBits(p1) - 1; i > 1; --i)
|
||||
{
|
||||
for (uint i = vli_numBits(p1) - 1; i > 1; --i) {
|
||||
vli_modSquare_fast(l_result, l_result);
|
||||
if(vli_testBit(p1, i))
|
||||
{
|
||||
if (vli_testBit(p1, i)) {
|
||||
vli_modMult_fast(l_result, l_result, a);
|
||||
}
|
||||
}
|
||||
vli_set(a, l_result);
|
||||
}
|
||||
|
||||
void ecc_point_decompress(EccPoint *p_point, const uint8_t p_compressed[ECC_BYTES+1])
|
||||
void ecc_point_decompress(EccPoint *p_point, const uint8_t p_compressed[ECC_BYTES + 1])
|
||||
{
|
||||
uint64_t _3[NUM_ECC_DIGITS] = {3}; /* -a = 3 */
|
||||
ecc_bytes2native(p_point->x, p_compressed+1);
|
||||
ecc_bytes2native(p_point->x, p_compressed + 1);
|
||||
|
||||
vli_modSquare_fast(p_point->y, p_point->x); /* y = x^2 */
|
||||
vli_modSub(p_point->y, p_point->y, _3, curve_p); /* y = x^2 - 3 */
|
||||
|
@ -815,38 +678,31 @@ void ecc_point_decompress(EccPoint *p_point, const uint8_t p_compressed[ECC_BYTE
|
|||
|
||||
mod_sqrt(p_point->y);
|
||||
|
||||
if((p_point->y[0] & 0x01) != (p_compressed[0] & 0x01))
|
||||
{
|
||||
if ((p_point->y[0] & 0x01) != (p_compressed[0] & 0x01)) {
|
||||
vli_sub(p_point->y, curve_p, p_point->y);
|
||||
}
|
||||
}
|
||||
|
||||
ZT_INLINE int ecc_make_key(uint8_t p_publicKey[ECC_BYTES + 1],uint8_t p_privateKey[ECC_BYTES])
|
||||
ZT_INLINE int ecc_make_key(uint8_t p_publicKey[ECC_BYTES + 1], uint8_t p_privateKey[ECC_BYTES])
|
||||
{
|
||||
uint64_t l_private[NUM_ECC_DIGITS];
|
||||
EccPoint l_public;
|
||||
unsigned l_tries = 0;
|
||||
|
||||
do
|
||||
{
|
||||
if(!getRandomNumber(l_private) || (l_tries++ >= MAX_TRIES))
|
||||
{
|
||||
do {
|
||||
if (!getRandomNumber(l_private) || (l_tries++ >= ECC_CREATE_KEY_MAX_ATTEMPTS)) {
|
||||
return 0;
|
||||
}
|
||||
if(vli_isZero(l_private))
|
||||
{
|
||||
if (vli_isZero(l_private)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Make sure the private key is in the range [1, n-1].
|
||||
For the supported curves, n is always large enough that we only need to subtract once at most. */
|
||||
if(vli_cmp(curve_n, l_private) != 1)
|
||||
{
|
||||
if (vli_cmp(curve_n, l_private) != 1) {
|
||||
vli_sub(l_private, l_private, curve_n);
|
||||
}
|
||||
|
||||
EccPoint_mult(&l_public, &curve_G, l_private, NULL);
|
||||
} while(EccPoint_isZero(&l_public));
|
||||
} while (EccPoint_isZero(&l_public));
|
||||
|
||||
ecc_native2bytes(p_privateKey, l_private);
|
||||
ecc_native2bytes(p_publicKey + 1, l_public.x);
|
||||
|
@ -854,14 +710,13 @@ ZT_INLINE int ecc_make_key(uint8_t p_publicKey[ECC_BYTES + 1],uint8_t p_privateK
|
|||
return 1;
|
||||
}
|
||||
|
||||
ZT_INLINE int ecdh_shared_secret(const uint8_t p_publicKey[ECC_BYTES + 1],const uint8_t p_privateKey[ECC_BYTES],uint8_t p_secret[ECC_BYTES])
|
||||
ZT_INLINE int ecdh_shared_secret(const uint8_t p_publicKey[ECC_BYTES + 1], const uint8_t p_privateKey[ECC_BYTES], uint8_t p_secret[ECC_BYTES])
|
||||
{
|
||||
EccPoint l_public;
|
||||
uint64_t l_private[NUM_ECC_DIGITS];
|
||||
uint64_t l_random[NUM_ECC_DIGITS];
|
||||
|
||||
if(!getRandomNumber(l_random))
|
||||
{
|
||||
if (!getRandomNumber(l_random)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -876,8 +731,6 @@ ZT_INLINE int ecdh_shared_secret(const uint8_t p_publicKey[ECC_BYTES + 1],const
|
|||
return !EccPoint_isZero(&l_product);
|
||||
}
|
||||
|
||||
/* -------- ECDSA code -------- */
|
||||
|
||||
/* Computes p_result = (p_left * p_right) % p_mod. */
|
||||
void vli_modMult(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right, const uint64_t *p_mod)
|
||||
{
|
||||
|
@ -889,17 +742,13 @@ void vli_modMult(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right, const
|
|||
|
||||
vli_mult(l_product, p_left, p_right);
|
||||
l_productBits = vli_numBits(l_product + NUM_ECC_DIGITS);
|
||||
if(l_productBits)
|
||||
{
|
||||
if (l_productBits) {
|
||||
l_productBits += NUM_ECC_DIGITS * 64;
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
l_productBits = vli_numBits(l_product);
|
||||
}
|
||||
|
||||
if(l_productBits < l_modBits)
|
||||
{ /* l_product < p_mod. */
|
||||
if (l_productBits < l_modBits) { /* l_product < p_mod. */
|
||||
vli_set(p_result, l_product);
|
||||
return;
|
||||
}
|
||||
|
@ -910,25 +759,19 @@ void vli_modMult(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right, const
|
|||
vli_clear(l_modMultiple + NUM_ECC_DIGITS);
|
||||
l_digitShift = (l_productBits - l_modBits) / 64;
|
||||
l_bitShift = (l_productBits - l_modBits) % 64;
|
||||
if(l_bitShift)
|
||||
{
|
||||
if (l_bitShift) {
|
||||
l_modMultiple[l_digitShift + NUM_ECC_DIGITS] = vli_lshift(l_modMultiple + l_digitShift, p_mod, l_bitShift);
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
vli_set(l_modMultiple + l_digitShift, p_mod);
|
||||
}
|
||||
|
||||
/* Subtract all multiples of p_mod to get the remainder. */
|
||||
vli_clear(p_result);
|
||||
p_result[0] = 1; /* Use p_result as a temp var to store 1 (for subtraction) */
|
||||
while(l_productBits > NUM_ECC_DIGITS * 64 || vli_cmp(l_modMultiple, p_mod) >= 0)
|
||||
{
|
||||
while (l_productBits > NUM_ECC_DIGITS * 64 || vli_cmp(l_modMultiple, p_mod) >= 0) {
|
||||
int l_cmp = vli_cmp(l_modMultiple + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS);
|
||||
if(l_cmp < 0 || (l_cmp == 0 && vli_cmp(l_modMultiple, l_product) <= 0))
|
||||
{
|
||||
if(vli_sub(l_product, l_product, l_modMultiple))
|
||||
{ /* borrow */
|
||||
if (l_cmp < 0 || (l_cmp == 0 && vli_cmp(l_modMultiple, l_product) <= 0)) {
|
||||
if (vli_sub(l_product, l_product, l_modMultiple)) { /* borrow */
|
||||
vli_sub(l_product + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS, p_result);
|
||||
}
|
||||
vli_sub(l_product + NUM_ECC_DIGITS, l_product + NUM_ECC_DIGITS, l_modMultiple + NUM_ECC_DIGITS);
|
||||
|
@ -936,19 +779,19 @@ void vli_modMult(uint64_t *p_result, uint64_t *p_left, uint64_t *p_right, const
|
|||
uint64_t l_carry = (l_modMultiple[NUM_ECC_DIGITS] & 0x01) << 63;
|
||||
vli_rshift1(l_modMultiple + NUM_ECC_DIGITS);
|
||||
vli_rshift1(l_modMultiple);
|
||||
l_modMultiple[NUM_ECC_DIGITS-1] |= l_carry;
|
||||
l_modMultiple[NUM_ECC_DIGITS - 1] |= l_carry;
|
||||
|
||||
--l_productBits;
|
||||
}
|
||||
vli_set(p_result, l_product);
|
||||
}
|
||||
|
||||
ZT_INLINE uint umax(uint a,uint b)
|
||||
ZT_INLINE uint umax(uint a, uint b)
|
||||
{
|
||||
return (a > b ? a : b);
|
||||
}
|
||||
|
||||
ZT_INLINE int ecdsa_sign(const uint8_t p_privateKey[ECC_BYTES],const uint8_t p_hash[ECC_BYTES],uint8_t p_signature[ECC_BYTES * 2])
|
||||
ZT_INLINE int ecdsa_sign(const uint8_t p_privateKey[ECC_BYTES], const uint8_t p_hash[ECC_BYTES], uint8_t p_signature[ECC_BYTES * 2])
|
||||
{
|
||||
uint64_t k[NUM_ECC_DIGITS];
|
||||
uint64_t l_tmp[NUM_ECC_DIGITS];
|
||||
|
@ -956,19 +799,15 @@ ZT_INLINE int ecdsa_sign(const uint8_t p_privateKey[ECC_BYTES],const uint8_t p_h
|
|||
EccPoint p;
|
||||
unsigned l_tries = 0;
|
||||
|
||||
do
|
||||
{
|
||||
if(!getRandomNumber(k) || (l_tries++ >= MAX_TRIES))
|
||||
{
|
||||
do {
|
||||
if (!getRandomNumber(k) || (l_tries++ >= ECC_CREATE_KEY_MAX_ATTEMPTS)) {
|
||||
return 0;
|
||||
}
|
||||
if(vli_isZero(k))
|
||||
{
|
||||
if (vli_isZero(k)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if(vli_cmp(curve_n, k) != 1)
|
||||
{
|
||||
if (vli_cmp(curve_n, k) != 1) {
|
||||
vli_sub(k, k, curve_n);
|
||||
}
|
||||
|
||||
|
@ -976,11 +815,10 @@ ZT_INLINE int ecdsa_sign(const uint8_t p_privateKey[ECC_BYTES],const uint8_t p_h
|
|||
EccPoint_mult(&p, &curve_G, k, NULL);
|
||||
|
||||
/* r = x1 (mod n) */
|
||||
if(vli_cmp(curve_n, p.x) != 1)
|
||||
{
|
||||
if (vli_cmp(curve_n, p.x) != 1) {
|
||||
vli_sub(p.x, p.x, curve_n);
|
||||
}
|
||||
} while(vli_isZero(p.x));
|
||||
} while (vli_isZero(p.x));
|
||||
|
||||
ecc_native2bytes(p_signature, p.x);
|
||||
|
||||
|
@ -995,7 +833,7 @@ ZT_INLINE int ecdsa_sign(const uint8_t p_privateKey[ECC_BYTES],const uint8_t p_h
|
|||
return 1;
|
||||
}
|
||||
|
||||
ZT_INLINE int ecdsa_verify(const uint8_t p_publicKey[ECC_BYTES + 1],const uint8_t p_hash[ECC_BYTES],const uint8_t p_signature[ECC_BYTES * 2])
|
||||
ZT_INLINE int ecdsa_verify(const uint8_t p_publicKey[ECC_BYTES + 1], const uint8_t p_hash[ECC_BYTES], const uint8_t p_signature[ECC_BYTES * 2])
|
||||
{
|
||||
uint64_t u1[NUM_ECC_DIGITS], u2[NUM_ECC_DIGITS];
|
||||
uint64_t z[NUM_ECC_DIGITS];
|
||||
|
@ -1012,13 +850,11 @@ ZT_INLINE int ecdsa_verify(const uint8_t p_publicKey[ECC_BYTES + 1],const uint8_
|
|||
ecc_bytes2native(l_r, p_signature);
|
||||
ecc_bytes2native(l_s, p_signature + ECC_BYTES);
|
||||
|
||||
if(vli_isZero(l_r) || vli_isZero(l_s))
|
||||
{ /* r, s must not be 0. */
|
||||
if (vli_isZero(l_r) || vli_isZero(l_s)) { /* r, s must not be 0. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
if(vli_cmp(curve_n, l_r) != 1 || vli_cmp(curve_n, l_s) != 1)
|
||||
{ /* r, s must be < n. */
|
||||
if (vli_cmp(curve_n, l_r) != 1 || vli_cmp(curve_n, l_s) != 1) { /* r, s must be < n. */
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -1042,21 +878,19 @@ ZT_INLINE int ecdsa_verify(const uint8_t p_publicKey[ECC_BYTES + 1],const uint8_
|
|||
const EccPoint *l_points[4] = {NULL, &curve_G, &l_public, &l_sum};
|
||||
uint l_numBits = umax(vli_numBits(u1), vli_numBits(u2));
|
||||
|
||||
const EccPoint *l_point = l_points[(!!vli_testBit(u1, l_numBits-1)) | ((!!vli_testBit(u2, l_numBits-1)) << 1)];
|
||||
const EccPoint *l_point = l_points[(!!vli_testBit(u1, l_numBits - 1)) | ((!!vli_testBit(u2, l_numBits - 1)) << 1)];
|
||||
vli_set(rx, l_point->x);
|
||||
vli_set(ry, l_point->y);
|
||||
vli_clear(z);
|
||||
z[0] = 1;
|
||||
|
||||
int i;
|
||||
for(i = l_numBits - 2; i >= 0; --i)
|
||||
{
|
||||
for (i = l_numBits - 2; i >= 0; --i) {
|
||||
EccPoint_double_jacobian(rx, ry, z);
|
||||
|
||||
int l_index = (!!vli_testBit(u1, i)) | ((!!vli_testBit(u2, i)) << 1);
|
||||
const EccPoint *l_point = l_points[l_index];
|
||||
if(l_point)
|
||||
{
|
||||
if (l_point) {
|
||||
vli_set(tx, l_point->x);
|
||||
vli_set(ty, l_point->y);
|
||||
apply_z(tx, ty, z);
|
||||
|
@ -1070,8 +904,7 @@ ZT_INLINE int ecdsa_verify(const uint8_t p_publicKey[ECC_BYTES + 1],const uint8_
|
|||
apply_z(rx, ry, z);
|
||||
|
||||
/* v = x1 (mod n) */
|
||||
if(vli_cmp(curve_n, rx) != 1)
|
||||
{
|
||||
if (vli_cmp(curve_n, rx) != 1) {
|
||||
vli_sub(rx, rx, curve_n);
|
||||
}
|
||||
|
||||
|
@ -1081,30 +914,30 @@ ZT_INLINE int ecdsa_verify(const uint8_t p_publicKey[ECC_BYTES + 1],const uint8_
|
|||
|
||||
} // anonymous namespace
|
||||
|
||||
void ECC384GenerateKey(uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE],uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE])
|
||||
void ECC384GenerateKey(uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE], uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE])
|
||||
{
|
||||
if (!ecc_make_key(pub,priv)) {
|
||||
fprintf(stderr,"FATAL: ecdsa_make_key() failed!" ZT_EOL_S);
|
||||
if (!ecc_make_key(pub, priv)) {
|
||||
fprintf(stderr, "FATAL: ecdsa_make_key() failed!" ZT_EOL_S);
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
void ECC384ECDSASign(const uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE],const uint8_t hash[ZT_ECC384_SIGNATURE_HASH_SIZE],uint8_t sig[ZT_ECC384_SIGNATURE_SIZE])
|
||||
void ECC384ECDSASign(const uint8_t priv[ZT_ECC384_PRIVATE_KEY_SIZE], const uint8_t hash[ZT_ECC384_SIGNATURE_HASH_SIZE], uint8_t sig[ZT_ECC384_SIGNATURE_SIZE])
|
||||
{
|
||||
if (!ecdsa_sign(priv,hash,sig)) {
|
||||
fprintf(stderr,"FATAL: ecdsa_sign() failed!" ZT_EOL_S);
|
||||
if (!ecdsa_sign(priv, hash, sig)) {
|
||||
fprintf(stderr, "FATAL: ecdsa_sign() failed!" ZT_EOL_S);
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
bool ECC384ECDSAVerify(const uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE],const uint8_t hash[ZT_ECC384_SIGNATURE_HASH_SIZE],const uint8_t sig[ZT_ECC384_SIGNATURE_SIZE])
|
||||
bool ECC384ECDSAVerify(const uint8_t pub[ZT_ECC384_PUBLIC_KEY_SIZE], const uint8_t hash[ZT_ECC384_SIGNATURE_HASH_SIZE], const uint8_t sig[ZT_ECC384_SIGNATURE_SIZE])
|
||||
{
|
||||
return (ecdsa_verify(pub,hash,sig) != 0);
|
||||
return (ecdsa_verify(pub, hash, sig) != 0);
|
||||
}
|
||||
|
||||
bool ECC384ECDH(const uint8_t theirPub[ZT_ECC384_PUBLIC_KEY_SIZE],const uint8_t ourPriv[ZT_ECC384_PRIVATE_KEY_SIZE],uint8_t secret[ZT_ECC384_SHARED_SECRET_SIZE])
|
||||
bool ECC384ECDH(const uint8_t theirPub[ZT_ECC384_PUBLIC_KEY_SIZE], const uint8_t ourPriv[ZT_ECC384_PRIVATE_KEY_SIZE], uint8_t secret[ZT_ECC384_SHARED_SECRET_SIZE])
|
||||
{
|
||||
return (ecdh_shared_secret(theirPub,ourPriv,secret) != 0);
|
||||
return (ecdh_shared_secret(theirPub, ourPriv, secret) != 0);
|
||||
}
|
||||
|
||||
} // namespace ZeroTier
|
||||
|
|
|
@ -27,6 +27,8 @@ namespace ZeroTier {
|
|||
|
||||
namespace {
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// This is the memory-intensive hash function used to compute v0 identities from v0 public keys.
|
||||
#define ZT_V0_IDENTITY_GEN_MEMORY 2097152
|
||||
|
||||
|
@ -80,12 +82,15 @@ struct identityV0ProofOfWorkCriteria
|
|||
char *genmem;
|
||||
};
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#define ZT_IDENTITY_V1_POW_MEMORY_SIZE 131072
|
||||
|
||||
struct p_CompareLittleEndian
|
||||
{
|
||||
#if __BYTE_ORDER == __BIG_ENDIAN
|
||||
ZT_INLINE bool operator()(const uint64_t a,const uint64_t b) const noexcept { return Utils::swapBytes(a) < Utils::swapBytes(b); }
|
||||
ZT_INLINE bool operator()(const uint64_t a,const uint64_t b) const noexcept
|
||||
{ return Utils::swapBytes(a) < Utils::swapBytes(b); }
|
||||
#else
|
||||
ZT_INLINE bool operator()(const uint64_t a, const uint64_t b) const noexcept
|
||||
{ return a < b; }
|
||||
|
@ -136,6 +141,8 @@ bool identityV1ProofOfWorkCriteria(const void *in, const unsigned int len, uint6
|
|||
return (Utils::ntoh(w[0]) % 1000U) == 0;
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
} // anonymous namespace
|
||||
|
||||
const Identity Identity::NIL;
|
||||
|
|
Loading…
Add table
Reference in a new issue