Some small Go stuff, and break out AES-NI into its own .cpp file for easier management.

This commit is contained in:
Adam Ierymenko 2020-10-16 15:04:22 -04:00
parent 8e5f8140a2
commit 0e396526e4
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
6 changed files with 708 additions and 663 deletions

View file

@ -28,6 +28,14 @@ func Cert(basePath string, authTokenGenerator func() string, args []string, json
switch args[0] {
case "list":
case "show":
if len(args) != 1 {
Help()
return 1
}
case "newsid":
if len(args) > 2 {
Help()
@ -145,14 +153,6 @@ func Cert(basePath string, authTokenGenerator func() string, args []string, json
fmt.Println("OK")
}
case "list":
case "show":
if len(args) != 1 {
Help()
return 1
}
case "import":
case "restore":

View file

@ -103,13 +103,13 @@ Advanced Operations:
verify <cert> Verify certificate (not entire chain)
dump <cert> Verify and print certificate
· import <cert> [trust,[trust]] Import certificate into this node
rootca Certificate is a root CA (trust flag)
ztrootset ZeroTier root node set (trust flag)
trust flag: rootca Certificate is a root CA
trust flag: ztrootset ZeroTier root node set
· restore Re-import default certificates
· export <serial> [path] Export a certificate from this node
· delete <serial|ALL> Delete certificate from this node
· Command requires a running node and access to a local API token.
· Command requires a running node and access to a local API token.
An <address> may be specified as a 10-digit short ZeroTier address, a
fingerprint containing both an address and a SHA384 hash, or an identity.

View file

@ -141,36 +141,6 @@ void s_gfmul(const uint64_t hh, const uint64_t hl, uint64_t &y0, uint64_t &y1) n
} // anonymous namespace
#ifdef ZT_AES_AESNI
// SSE shuffle parameter to reverse bytes in a 128-bit vector.
static const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
static __m128i p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
{
y = _mm_shuffle_epi8(y, s_sseSwapBytes);
__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
t2 = _mm_xor_si128(t2, t3);
t3 = _mm_slli_si128(t2, 8);
t2 = _mm_srli_si128(t2, 8);
t1 = _mm_xor_si128(t1, t3);
t4 = _mm_xor_si128(t4, t2);
__m128i t5 = _mm_srli_epi32(t1, 31);
t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
return _mm_shuffle_epi8(t4, s_sseSwapBytes);
}
#endif
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
void AES::GMAC::update(const void *const data, unsigned int len) noexcept
{
const uint8_t *in = reinterpret_cast<const uint8_t *>(data);
@ -178,68 +148,7 @@ void AES::GMAC::update(const void *const data, unsigned int len) noexcept
#ifdef ZT_AES_AESNI
if (likely(Utils::CPUID.aes)) {
__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
// Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
if (_rp) {
for (;;) {
if (!len)
return;
--len;
_r[_rp++] = *(in++);
if (_rp == 16) {
y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
break;
}
}
}
if (likely(len >= 64)) {
const __m128i sb = s_sseSwapBytes;
const __m128i h = _aes._k.ni.h[0];
const __m128i hh = _aes._k.ni.h[1];
const __m128i hhh = _aes._k.ni.h[2];
const __m128i hhhh = _aes._k.ni.h[3];
const __m128i h2 = _aes._k.ni.h2[0];
const __m128i hh2 = _aes._k.ni.h2[1];
const __m128i hhh2 = _aes._k.ni.h2[2];
const __m128i hhhh2 = _aes._k.ni.h2[3];
const uint8_t *const end64 = in + (len & ~((unsigned int)63));
len &= 63;
do {
__m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))), sb);
__m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)), sb);
__m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)), sb);
__m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)), sb);
in += 64;
__m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
__m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
__m128i c = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))), _mm_xor_si128(a, b));
a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
c = _mm_srli_epi32(a, 31);
a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
y = _mm_shuffle_epi8(b, sb);
} while (likely(in != end64));
}
while (len >= 16) {
y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
in += 16;
len -= 16;
}
_mm_storeu_si128(reinterpret_cast<__m128i *>(_y), y);
// Any overflow is cached for a later run or finish().
for (unsigned int i = 0; i < len; ++i)
_r[i] = in[i];
_rp = len; // len is always less than 16 here
p_aesNIUpdate(in, len);
return;
}
#endif // ZT_AES_AESNI
@ -278,8 +187,8 @@ void AES::GMAC::update(const void *const data, unsigned int len) noexcept
}
#endif // ZT_AES_NEON
const uint64_t h0 = _aes._k.sw.h[0];
const uint64_t h1 = _aes._k.sw.h[1];
const uint64_t h0 = _aes.p_k.sw.h[0];
const uint64_t h1 = _aes.p_k.sw.h[1];
uint64_t y0 = _y[0];
uint64_t y1 = _y[1];
@ -324,78 +233,11 @@ void AES::GMAC::update(const void *const data, unsigned int len) noexcept
_rp = len; // len is always less than 16 here
}
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
void AES::GMAC::finish(uint8_t tag[16]) noexcept
{
#ifdef ZT_AES_AESNI
if (likely(Utils::CPUID.aes)) {
__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
// Handle any remaining bytes, padding the last block with zeroes.
if (_rp) {
while (_rp < 16)
_r[_rp++] = 0;
y = p_gmacPCLMUL128(_aes._k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
}
// Interleave encryption of IV with the final GHASH of y XOR (length * 8).
// Then XOR these together to get the final tag.
const __m128i *const k = _aes._k.ni.k;
const __m128i h = _aes._k.ni.h[0];
y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
y = _mm_shuffle_epi8(y, s_sseSwapBytes);
__m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i *>(_iv)), k[0]);
__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
encIV = _mm_aesenc_si128(encIV, k[1]);
t2 = _mm_xor_si128(t2, t3);
t3 = _mm_slli_si128(t2, 8);
encIV = _mm_aesenc_si128(encIV, k[2]);
t2 = _mm_srli_si128(t2, 8);
t1 = _mm_xor_si128(t1, t3);
encIV = _mm_aesenc_si128(encIV, k[3]);
t4 = _mm_xor_si128(t4, t2);
__m128i t5 = _mm_srli_epi32(t1, 31);
t1 = _mm_slli_epi32(t1, 1);
__m128i t6 = _mm_srli_epi32(t4, 31);
encIV = _mm_aesenc_si128(encIV, k[4]);
t4 = _mm_slli_epi32(t4, 1);
t3 = _mm_srli_si128(t5, 12);
encIV = _mm_aesenc_si128(encIV, k[5]);
t6 = _mm_slli_si128(t6, 4);
t5 = _mm_slli_si128(t5, 4);
encIV = _mm_aesenc_si128(encIV, k[6]);
t1 = _mm_or_si128(t1, t5);
t4 = _mm_or_si128(t4, t6);
encIV = _mm_aesenc_si128(encIV, k[7]);
t4 = _mm_or_si128(t4, t3);
t5 = _mm_slli_epi32(t1, 31);
encIV = _mm_aesenc_si128(encIV, k[8]);
t6 = _mm_slli_epi32(t1, 30);
t3 = _mm_slli_epi32(t1, 25);
encIV = _mm_aesenc_si128(encIV, k[9]);
t5 = _mm_xor_si128(t5, t6);
t5 = _mm_xor_si128(t5, t3);
encIV = _mm_aesenc_si128(encIV, k[10]);
t6 = _mm_srli_si128(t5, 4);
t4 = _mm_xor_si128(t4, t6);
encIV = _mm_aesenc_si128(encIV, k[11]);
t5 = _mm_slli_si128(t5, 12);
t1 = _mm_xor_si128(t1, t5);
t4 = _mm_xor_si128(t4, t1);
t5 = _mm_srli_epi32(t1, 1);
encIV = _mm_aesenc_si128(encIV, k[12]);
t2 = _mm_srli_epi32(t1, 2);
t3 = _mm_srli_epi32(t1, 7);
encIV = _mm_aesenc_si128(encIV, k[13]);
t4 = _mm_xor_si128(t4, t2);
t4 = _mm_xor_si128(t4, t3);
encIV = _mm_aesenclast_si128(encIV, k[14]);
t4 = _mm_xor_si128(t4, t5);
_mm_storeu_si128(reinterpret_cast<__m128i *>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
p_aesNIFinish(tag);
return;
}
#endif // ZT_AES_AESNI
@ -432,8 +274,8 @@ void AES::GMAC::finish(uint8_t tag[16]) noexcept
}
#endif // ZT_AES_NEON
const uint64_t h0 = _aes._k.sw.h[0];
const uint64_t h1 = _aes._k.sw.h[1];
const uint64_t h0 = _aes.p_k.sw.h[0];
const uint64_t h1 = _aes.p_k.sw.h[1];
uint64_t y0 = _y[0];
uint64_t y1 = _y[1];
@ -463,139 +305,6 @@ void AES::GMAC::finish(uint8_t tag[16]) noexcept
// AES-CTR ------------------------------------------------------------------------------------------------------------
#ifdef ZT_AES_AESNI
/* Disable VAES stuff on compilers too old to compile these intrinsics,
* and MinGW64 also seems not to support them so disable on Windows.
* The performance gain can be significant but regular SSE is already so
* fast it's highly unlikely to be a rate limiting factor except on massive
* servers and network infrastructure stuff. */
#if !defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
#define ZT_AES_VAES512 1
static
__attribute__((__target__("sse4,avx,avx2,vaes,avx512f,avx512bw")))
void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
{
const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
do {
__m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i *>(in));
__m512i d0 = _mm512_set_epi64(
(long long)Utils::hton(c1 + 3ULL), (long long)c0,
(long long)Utils::hton(c1 + 2ULL), (long long)c0,
(long long)Utils::hton(c1 + 1ULL), (long long)c0,
(long long)Utils::hton(c1), (long long)c0);
c1 += 4;
in += 64;
len -= 64;
d0 = _mm512_xor_si512(d0, kk0);
d0 = _mm512_aesenc_epi128(d0, kk1);
d0 = _mm512_aesenc_epi128(d0, kk2);
d0 = _mm512_aesenc_epi128(d0, kk3);
d0 = _mm512_aesenc_epi128(d0, kk4);
d0 = _mm512_aesenc_epi128(d0, kk5);
d0 = _mm512_aesenc_epi128(d0, kk6);
d0 = _mm512_aesenc_epi128(d0, kk7);
d0 = _mm512_aesenc_epi128(d0, kk8);
d0 = _mm512_aesenc_epi128(d0, kk9);
d0 = _mm512_aesenc_epi128(d0, kk10);
d0 = _mm512_aesenc_epi128(d0, kk11);
d0 = _mm512_aesenc_epi128(d0, kk12);
d0 = _mm512_aesenc_epi128(d0, kk13);
d0 = _mm512_aesenclast_epi128(d0, kk14);
_mm512_storeu_si512(reinterpret_cast<__m512i *>(out), _mm512_xor_si512(p0, d0));
out += 64;
} while (likely(len >= 64));
}
#define ZT_AES_VAES256 1
static
__attribute__((__target__("sse4,avx,avx2,vaes")))
void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
{
const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
do {
__m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in));
__m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in + 32));
__m256i d0 = _mm256_set_epi64x(
(long long)Utils::hton(c1 + 1ULL), (long long)c0,
(long long)Utils::hton(c1), (long long)c0);
__m256i d1 = _mm256_set_epi64x(
(long long)Utils::hton(c1 + 3ULL), (long long)c0,
(long long)Utils::hton(c1 + 2ULL), (long long)c0);
c1 += 4;
in += 64;
len -= 64;
d0 = _mm256_xor_si256(d0, kk0);
d1 = _mm256_xor_si256(d1, kk0);
d0 = _mm256_aesenc_epi128(d0, kk1);
d1 = _mm256_aesenc_epi128(d1, kk1);
d0 = _mm256_aesenc_epi128(d0, kk2);
d1 = _mm256_aesenc_epi128(d1, kk2);
d0 = _mm256_aesenc_epi128(d0, kk3);
d1 = _mm256_aesenc_epi128(d1, kk3);
d0 = _mm256_aesenc_epi128(d0, kk4);
d1 = _mm256_aesenc_epi128(d1, kk4);
d0 = _mm256_aesenc_epi128(d0, kk5);
d1 = _mm256_aesenc_epi128(d1, kk5);
d0 = _mm256_aesenc_epi128(d0, kk6);
d1 = _mm256_aesenc_epi128(d1, kk6);
d0 = _mm256_aesenc_epi128(d0, kk7);
d1 = _mm256_aesenc_epi128(d1, kk7);
d0 = _mm256_aesenc_epi128(d0, kk8);
d1 = _mm256_aesenc_epi128(d1, kk8);
d0 = _mm256_aesenc_epi128(d0, kk9);
d1 = _mm256_aesenc_epi128(d1, kk9);
d0 = _mm256_aesenc_epi128(d0, kk10);
d1 = _mm256_aesenc_epi128(d1, kk10);
d0 = _mm256_aesenc_epi128(d0, kk11);
d1 = _mm256_aesenc_epi128(d1, kk11);
d0 = _mm256_aesenc_epi128(d0, kk12);
d1 = _mm256_aesenc_epi128(d1, kk12);
d0 = _mm256_aesenc_epi128(d0, kk13);
d1 = _mm256_aesenc_epi128(d1, kk13);
d0 = _mm256_aesenclast_epi128(d0, kk14);
d1 = _mm256_aesenclast_epi128(d1, kk14);
_mm256_storeu_si256(reinterpret_cast<__m256i *>(out), _mm256_xor_si256(d0, p0));
_mm256_storeu_si256(reinterpret_cast<__m256i *>(out + 32), _mm256_xor_si256(d1, p1));
out += 64;
} while (likely(len >= 64));
}
#endif // does compiler support AVX2 and AVX512 AES intrinsics?
#endif // ZT_AES_AESNI
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
{
@ -604,198 +313,7 @@ void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
#ifdef ZT_AES_AESNI
if (likely(Utils::CPUID.aes)) {
const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
uint64_t c1 = Utils::ntoh(_ctr[1]);
const __m128i *const k = _aes._k.ni.k;
const __m128i k0 = k[0];
const __m128i k1 = k[1];
const __m128i k2 = k[2];
const __m128i k3 = k[3];
const __m128i k4 = k[4];
const __m128i k5 = k[5];
const __m128i k6 = k[6];
const __m128i k7 = k[7];
const __m128i k8 = k[8];
const __m128i k9 = k[9];
const __m128i k10 = k[10];
const __m128i k11 = k[11];
const __m128i k12 = k[12];
const __m128i k13 = k[13];
const __m128i k14 = k[14];
// Complete any unfinished blocks from previous calls to crypt().
unsigned int totalLen = _len;
if ((totalLen & 15U)) {
for (;;) {
if (unlikely(!len)) {
_ctr[1] = Utils::hton(c1);
_len = totalLen;
return;
}
--len;
out[totalLen++] = *(in++);
if (!(totalLen & 15U)) {
__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
d0 = _mm_xor_si128(d0, k0);
d0 = _mm_aesenc_si128(d0, k1);
d0 = _mm_aesenc_si128(d0, k2);
d0 = _mm_aesenc_si128(d0, k3);
d0 = _mm_aesenc_si128(d0, k4);
d0 = _mm_aesenc_si128(d0, k5);
d0 = _mm_aesenc_si128(d0, k6);
d0 = _mm_aesenc_si128(d0, k7);
d0 = _mm_aesenc_si128(d0, k8);
d0 = _mm_aesenc_si128(d0, k9);
d0 = _mm_aesenc_si128(d0, k10);
__m128i *const outblk = reinterpret_cast<__m128i *>(out + (totalLen - 16));
d0 = _mm_aesenc_si128(d0, k11);
const __m128i p0 = _mm_loadu_si128(outblk);
d0 = _mm_aesenc_si128(d0, k12);
d0 = _mm_aesenc_si128(d0, k13);
d0 = _mm_aesenclast_si128(d0, k14);
_mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
break;
}
}
}
out += totalLen;
_len = totalLen + len;
if (likely(len >= 64)) {
#if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
if (Utils::CPUID.vaes && (len >= 256)) {
if (Utils::CPUID.avx512f) {
p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
} else {
p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
}
goto skip_conventional_aesni_64;
}
#endif
#if !defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
if (Utils::CPUID.vaes && (len >= 256)) {
p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
goto skip_conventional_aesni_64;
}
#endif
const uint8_t *const eof64 = in + (len & ~((unsigned int)63));
len &= 63;
__m128i d0, d1, d2, d3;
do {
const uint64_t c10 = Utils::hton(c1);
const uint64_t c11 = Utils::hton(c1 + 1ULL);
const uint64_t c12 = Utils::hton(c1 + 2ULL);
const uint64_t c13 = Utils::hton(c1 + 3ULL);
d0 = _mm_insert_epi64(dd, (long long)c10, 1);
d1 = _mm_insert_epi64(dd, (long long)c11, 1);
d2 = _mm_insert_epi64(dd, (long long)c12, 1);
d3 = _mm_insert_epi64(dd, (long long)c13, 1);
c1 += 4;
d0 = _mm_xor_si128(d0, k0);
d1 = _mm_xor_si128(d1, k0);
d2 = _mm_xor_si128(d2, k0);
d3 = _mm_xor_si128(d3, k0);
d0 = _mm_aesenc_si128(d0, k1);
d1 = _mm_aesenc_si128(d1, k1);
d2 = _mm_aesenc_si128(d2, k1);
d3 = _mm_aesenc_si128(d3, k1);
d0 = _mm_aesenc_si128(d0, k2);
d1 = _mm_aesenc_si128(d1, k2);
d2 = _mm_aesenc_si128(d2, k2);
d3 = _mm_aesenc_si128(d3, k2);
d0 = _mm_aesenc_si128(d0, k3);
d1 = _mm_aesenc_si128(d1, k3);
d2 = _mm_aesenc_si128(d2, k3);
d3 = _mm_aesenc_si128(d3, k3);
d0 = _mm_aesenc_si128(d0, k4);
d1 = _mm_aesenc_si128(d1, k4);
d2 = _mm_aesenc_si128(d2, k4);
d3 = _mm_aesenc_si128(d3, k4);
d0 = _mm_aesenc_si128(d0, k5);
d1 = _mm_aesenc_si128(d1, k5);
d2 = _mm_aesenc_si128(d2, k5);
d3 = _mm_aesenc_si128(d3, k5);
d0 = _mm_aesenc_si128(d0, k6);
d1 = _mm_aesenc_si128(d1, k6);
d2 = _mm_aesenc_si128(d2, k6);
d3 = _mm_aesenc_si128(d3, k6);
d0 = _mm_aesenc_si128(d0, k7);
d1 = _mm_aesenc_si128(d1, k7);
d2 = _mm_aesenc_si128(d2, k7);
d3 = _mm_aesenc_si128(d3, k7);
d0 = _mm_aesenc_si128(d0, k8);
d1 = _mm_aesenc_si128(d1, k8);
d2 = _mm_aesenc_si128(d2, k8);
d3 = _mm_aesenc_si128(d3, k8);
d0 = _mm_aesenc_si128(d0, k9);
d1 = _mm_aesenc_si128(d1, k9);
d2 = _mm_aesenc_si128(d2, k9);
d3 = _mm_aesenc_si128(d3, k9);
d0 = _mm_aesenc_si128(d0, k10);
d1 = _mm_aesenc_si128(d1, k10);
d2 = _mm_aesenc_si128(d2, k10);
d3 = _mm_aesenc_si128(d3, k10);
d0 = _mm_aesenc_si128(d0, k11);
d1 = _mm_aesenc_si128(d1, k11);
d2 = _mm_aesenc_si128(d2, k11);
d3 = _mm_aesenc_si128(d3, k11);
d0 = _mm_aesenc_si128(d0, k12);
d1 = _mm_aesenc_si128(d1, k12);
d2 = _mm_aesenc_si128(d2, k12);
d3 = _mm_aesenc_si128(d3, k12);
d0 = _mm_aesenc_si128(d0, k13);
d1 = _mm_aesenc_si128(d1, k13);
d2 = _mm_aesenc_si128(d2, k13);
d3 = _mm_aesenc_si128(d3, k13);
d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in)));
d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)));
d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)));
d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)));
in += 64;
_mm_storeu_si128(reinterpret_cast<__m128i *>(out), d0);
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 16), d1);
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 32), d2);
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 48), d3);
out += 64;
} while (likely(in != eof64));
}
skip_conventional_aesni_64:
while (len >= 16) {
__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
d0 = _mm_xor_si128(d0, k0);
d0 = _mm_aesenc_si128(d0, k1);
d0 = _mm_aesenc_si128(d0, k2);
d0 = _mm_aesenc_si128(d0, k3);
d0 = _mm_aesenc_si128(d0, k4);
d0 = _mm_aesenc_si128(d0, k5);
d0 = _mm_aesenc_si128(d0, k6);
d0 = _mm_aesenc_si128(d0, k7);
d0 = _mm_aesenc_si128(d0, k8);
d0 = _mm_aesenc_si128(d0, k9);
d0 = _mm_aesenc_si128(d0, k10);
d0 = _mm_aesenc_si128(d0, k11);
d0 = _mm_aesenc_si128(d0, k12);
d0 = _mm_aesenc_si128(d0, k13);
_mm_storeu_si128(reinterpret_cast<__m128i *>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
in += 16;
len -= 16;
out += 16;
}
// Any remaining input is placed in _out. This will be picked up and crypted
// on subsequent calls to crypt() or finish() as it'll mean _len will not be
// an even multiple of 16.
for (unsigned int i = 0; i < len; ++i)
out[i] = in[i];
_ctr[1] = Utils::hton(c1);
p_aesNICrypt(in, out, len);
return;
}
#endif // ZT_AES_AESNI
@ -1003,7 +521,7 @@ void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
--len;
out[totalLen++] = *(in++);
if (!(totalLen & 15U)) {
_aes._encryptSW(reinterpret_cast<const uint8_t *>(_ctr), reinterpret_cast<uint8_t *>(keyStream));
_aes.p_encryptSW(reinterpret_cast<const uint8_t *>(_ctr), reinterpret_cast<uint8_t *>(keyStream));
reinterpret_cast<uint32_t *>(_ctr)[3] = Utils::hton(++ctr);
uint8_t *outblk = out + (totalLen - 16);
for (int i = 0; i < 16; ++i)
@ -1017,7 +535,7 @@ void AES::CTR::crypt(const void *const input, unsigned int len) noexcept
_len = (totalLen + len);
if (likely(len >= 16)) {
const uint32_t *const restrict rk = _aes._k.sw.ek;
const uint32_t *const restrict rk = _aes.p_k.sw.ek;
const uint32_t ctr0rk0 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[0]) ^rk[0];
const uint32_t ctr1rk1 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[1]) ^rk[1];
const uint32_t ctr2rk2 = Utils::ntoh(reinterpret_cast<const uint32_t *>(_ctr)[2]) ^rk[2];
@ -1238,9 +756,9 @@ const uint8_t AES::Td4[256] = {0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0
0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d};
const uint32_t AES::rcon[15] = {0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1B000000, 0x36000000, 0x6c000000, 0xd8000000, 0xab000000, 0x4d000000, 0x9a000000};
void AES::_initSW(const uint8_t key[32]) noexcept
void AES::p_initSW(const uint8_t *key) noexcept
{
uint32_t *rk = _k.sw.ek;
uint32_t *rk = p_k.sw.ek;
rk[0] = Utils::loadBigEndian< uint32_t >(key);
rk[1] = Utils::loadBigEndian< uint32_t >(key + 4);
@ -1266,13 +784,13 @@ void AES::_initSW(const uint8_t key[32]) noexcept
rk += 8;
}
_encryptSW((const uint8_t *)Utils::ZERO256, (uint8_t *)_k.sw.h);
_k.sw.h[0] = Utils::ntoh(_k.sw.h[0]);
_k.sw.h[1] = Utils::ntoh(_k.sw.h[1]);
p_encryptSW((const uint8_t *)Utils::ZERO256, (uint8_t *)p_k.sw.h);
p_k.sw.h[0] = Utils::ntoh(p_k.sw.h[0]);
p_k.sw.h[1] = Utils::ntoh(p_k.sw.h[1]);
for (int i = 0; i < 60; ++i)
_k.sw.dk[i] = _k.sw.ek[i];
rk = _k.sw.dk;
p_k.sw.dk[i] = p_k.sw.ek[i];
rk = p_k.sw.dk;
for (int i = 0, j = 56; i < j; i += 4, j -= 4) {
uint32_t temp = rk[i];
@ -1297,9 +815,9 @@ void AES::_initSW(const uint8_t key[32]) noexcept
}
}
void AES::_encryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
void AES::p_encryptSW(const uint8_t *in, uint8_t *out) const noexcept
{
const uint32_t *const restrict rk = _k.sw.ek;
const uint32_t *const restrict rk = p_k.sw.ek;
const uint32_t m8 = 0x000000ff;
const uint32_t m8_8 = 0x0000ff00;
const uint32_t m8_16 = 0x00ff0000;
@ -1373,9 +891,9 @@ void AES::_encryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
Utils::storeBigEndian< uint32_t >(out + 12, s3);
}
void AES::_decryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
void AES::p_decryptSW(const uint8_t *in, uint8_t *out) const noexcept
{
const uint32_t *restrict rk = _k.sw.dk;
const uint32_t *restrict rk = p_k.sw.dk;
const uint32_t m8 = 0x000000ff;
uint32_t s0 = Utils::loadBigEndian< uint32_t >(in) ^rk[0];
uint32_t s1 = Utils::loadBigEndian< uint32_t >(in + 4) ^rk[1];
@ -1446,141 +964,6 @@ void AES::_decryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept
Utils::storeBigEndian< uint32_t >(out + 12, s3);
}
#ifdef ZT_AES_AESNI
static __m128i _init256_1_aesni(__m128i a, __m128i b) noexcept
{
__m128i x, y;
b = _mm_shuffle_epi32(b, 0xff);
y = _mm_slli_si128(a, 0x04);
x = _mm_xor_si128(a, y);
y = _mm_slli_si128(y, 0x04);
x = _mm_xor_si128(x, y);
y = _mm_slli_si128(y, 0x04);
x = _mm_xor_si128(x, y);
x = _mm_xor_si128(x, b);
return x;
}
static __m128i _init256_2_aesni(__m128i a, __m128i b) noexcept
{
__m128i x, y, z;
y = _mm_aeskeygenassist_si128(a, 0x00);
z = _mm_shuffle_epi32(y, 0xaa);
y = _mm_slli_si128(b, 0x04);
x = _mm_xor_si128(b, y);
y = _mm_slli_si128(y, 0x04);
x = _mm_xor_si128(x, y);
y = _mm_slli_si128(y, 0x04);
x = _mm_xor_si128(x, y);
x = _mm_xor_si128(x, z);
return x;
}
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2")))
void AES::_init_aesni(const uint8_t key[32]) noexcept
{
__m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
_k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i *)(key + 16));
_k.ni.k[2] = k2 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
_k.ni.k[3] = k3 = t2 = _init256_2_aesni(t1, t2);
_k.ni.k[4] = k4 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
_k.ni.k[5] = k5 = t2 = _init256_2_aesni(t1, t2);
_k.ni.k[6] = k6 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
_k.ni.k[7] = k7 = t2 = _init256_2_aesni(t1, t2);
_k.ni.k[8] = k8 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
_k.ni.k[9] = k9 = t2 = _init256_2_aesni(t1, t2);
_k.ni.k[10] = k10 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
_k.ni.k[11] = k11 = t2 = _init256_2_aesni(t1, t2);
_k.ni.k[12] = k12 = t1 = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
_k.ni.k[13] = k13 = t2 = _init256_2_aesni(t1, t2);
_k.ni.k[14] = _init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
_k.ni.k[15] = _mm_aesimc_si128(k13);
_k.ni.k[16] = _mm_aesimc_si128(k12);
_k.ni.k[17] = _mm_aesimc_si128(k11);
_k.ni.k[18] = _mm_aesimc_si128(k10);
_k.ni.k[19] = _mm_aesimc_si128(k9);
_k.ni.k[20] = _mm_aesimc_si128(k8);
_k.ni.k[21] = _mm_aesimc_si128(k7);
_k.ni.k[22] = _mm_aesimc_si128(k6);
_k.ni.k[23] = _mm_aesimc_si128(k5);
_k.ni.k[24] = _mm_aesimc_si128(k4);
_k.ni.k[25] = _mm_aesimc_si128(k3);
_k.ni.k[26] = _mm_aesimc_si128(k2);
_k.ni.k[27] = _mm_aesimc_si128(k1);
__m128i h = _k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
h = _mm_aesenc_si128(h, k1);
h = _mm_aesenc_si128(h, k2);
h = _mm_aesenc_si128(h, k3);
h = _mm_aesenc_si128(h, k4);
h = _mm_aesenc_si128(h, k5);
h = _mm_aesenc_si128(h, k6);
h = _mm_aesenc_si128(h, k7);
h = _mm_aesenc_si128(h, k8);
h = _mm_aesenc_si128(h, k9);
h = _mm_aesenc_si128(h, k10);
h = _mm_aesenc_si128(h, k11);
h = _mm_aesenc_si128(h, k12);
h = _mm_aesenc_si128(h, k13);
h = _mm_aesenclast_si128(h, _k.ni.k[14]);
__m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
__m128i hh = p_gmacPCLMUL128(hswap, h);
__m128i hhh = p_gmacPCLMUL128(hswap, hh);
__m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
_k.ni.h[0] = hswap;
_k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
_k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
_k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
_k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
_k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
_k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
_k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
}
void AES::_encrypt_aesni(const void *const in, void *const out) const noexcept
{
__m128i tmp = _mm_loadu_si128((const __m128i *)in);
tmp = _mm_xor_si128(tmp, _k.ni.k[0]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[1]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[2]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[3]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[4]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[5]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[6]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[7]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[8]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[9]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[10]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[11]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[12]);
tmp = _mm_aesenc_si128(tmp, _k.ni.k[13]);
_mm_storeu_si128((__m128i *)out, _mm_aesenclast_si128(tmp, _k.ni.k[14]));
}
void AES::_decrypt_aesni(const void *in, void *out) const noexcept
{
__m128i tmp = _mm_loadu_si128((const __m128i *)in);
tmp = _mm_xor_si128(tmp, _k.ni.k[14]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[15]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[16]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[17]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[18]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[19]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[20]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[21]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[22]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[23]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[24]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[25]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[26]);
tmp = _mm_aesdec_si128(tmp, _k.ni.k[27]);
_mm_storeu_si128((__m128i *)out, _mm_aesdeclast_si128(tmp, _k.ni.k[0]));
}
#endif // ZT_AES_AESNI
#ifdef ZT_AES_NEON
#define ZT_INIT_ARMNEON_CRYPTO_SUBWORD(w) ((uint32_t)s_sbox[w & 0xffU] + ((uint32_t)s_sbox[(w >> 8U) & 0xffU] << 8U) + ((uint32_t)s_sbox[(w >> 16U) & 0xffU] << 16U) + ((uint32_t)s_sbox[(w >> 24U) & 0xffU] << 24U))

View file

@ -18,6 +18,7 @@
#include "Utils.hpp"
#include "SHA512.hpp"
// Uncomment to disable all hardware acceleration (usually for testing)
//#define ZT_AES_NO_ACCEL
#if !defined(ZT_AES_NO_ACCEL) && defined(ZT_ARCH_X64)
@ -73,7 +74,7 @@ public:
{ this->init(key); }
ZT_INLINE ~AES()
{ Utils::burn(&_k, sizeof(_k)); }
{ Utils::burn(&p_k, sizeof(p_k)); }
/**
* Set (or re-set) this AES256 cipher's key
@ -84,7 +85,7 @@ public:
{
#ifdef ZT_AES_AESNI
if (likely(Utils::CPUID.aes)) {
_init_aesni(reinterpret_cast<const uint8_t *>(key));
p_init_aesni(reinterpret_cast<const uint8_t *>(key));
return;
}
#endif
@ -94,7 +95,7 @@ public:
return;
}
#endif
_initSW(reinterpret_cast<const uint8_t *>(key));
p_initSW(reinterpret_cast<const uint8_t *>(key));
}
/**
@ -107,7 +108,7 @@ public:
{
#ifdef ZT_AES_AESNI
if (likely(Utils::CPUID.aes)) {
_encrypt_aesni(in, out);
p_encrypt_aesni(in, out);
return;
}
#endif
@ -117,7 +118,7 @@ public:
return;
}
#endif
_encryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
p_encryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
}
/**
@ -130,7 +131,7 @@ public:
{
#ifdef ZT_AES_AESNI
if (likely(Utils::CPUID.aes)) {
_decrypt_aesni(in, out);
p_decrypt_aesni(in, out);
return;
}
#endif
@ -140,7 +141,7 @@ public:
return;
}
#endif
_decryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
p_decryptSW(reinterpret_cast<const uint8_t *>(in), reinterpret_cast<uint8_t *>(out));
}
class GMACSIVEncryptor;
@ -225,6 +226,11 @@ public:
void finish(uint8_t tag[16]) noexcept;
private:
#ifdef ZT_AES_AESNI
void p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept;
void p_aesNIFinish(uint8_t tag[16]) noexcept;
#endif
const AES &_aes;
unsigned int _rp;
unsigned int _len;
@ -292,6 +298,10 @@ public:
void finish() noexcept;
private:
#ifdef ZT_AES_AESNI
void p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept;
#endif
const AES &_aes;
uint64_t _ctr[2];
uint8_t *_out;
@ -318,7 +328,7 @@ public:
* @param k0 First of two AES instances keyed with K0
* @param k1 Second of two AES instances keyed with K1
*/
ZT_INLINE GMACSIVEncryptor(const AES &k0, const AES &k1) noexcept:
ZT_INLINE GMACSIVEncryptor(const AES &k0, const AES &k1) noexcept :
_gmac(k0),
_ctr(k1)
{}
@ -528,9 +538,9 @@ private:
static const uint8_t Td4[256];
static const uint32_t rcon[15];
void _initSW(const uint8_t key[32]) noexcept;
void _encryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept;
void _decryptSW(const uint8_t in[16], uint8_t out[16]) const noexcept;
void p_initSW(const uint8_t *key) noexcept;
void p_encryptSW(const uint8_t *in, uint8_t *out) const noexcept;
void p_decryptSW(const uint8_t *in, uint8_t *out) const noexcept;
union
{
@ -559,12 +569,12 @@ private:
uint32_t ek[60];
uint32_t dk[60];
} sw;
} _k;
} p_k;
#ifdef ZT_AES_AESNI
void _init_aesni(const uint8_t key[32]) noexcept;
void _encrypt_aesni(const void *in, void *out) const noexcept;
void _decrypt_aesni(const void *in, void *out) const noexcept;
void p_init_aesni(const uint8_t *key) noexcept;
void p_encrypt_aesni(const void *in, void *out) const noexcept;
void p_decrypt_aesni(const void *in, void *out) const noexcept;
#endif
#ifdef ZT_AES_NEON

651
core/AES_aesni.cpp Normal file
View file

@ -0,0 +1,651 @@
/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2025-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Constants.hpp"
#include "AES.hpp"
#ifdef ZT_AES_AESNI
#ifdef __GNUC__
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
namespace ZeroTier {
namespace {
const __m128i s_sseSwapBytes = _mm_set_epi8(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15);
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
__m128i p_gmacPCLMUL128(const __m128i h, __m128i y) noexcept
{
y = _mm_shuffle_epi8(y, s_sseSwapBytes);
__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
t2 = _mm_xor_si128(t2, t3);
t3 = _mm_slli_si128(t2, 8);
t2 = _mm_srli_si128(t2, 8);
t1 = _mm_xor_si128(t1, t3);
t4 = _mm_xor_si128(t4, t2);
__m128i t5 = _mm_srli_epi32(t1, 31);
t1 = _mm_or_si128(_mm_slli_epi32(t1, 1), _mm_slli_si128(t5, 4));
t4 = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(t4, 1), _mm_slli_si128(_mm_srli_epi32(t4, 31), 4)), _mm_srli_si128(t5, 12));
t5 = _mm_xor_si128(_mm_xor_si128(_mm_slli_epi32(t1, 31), _mm_slli_epi32(t1, 30)), _mm_slli_epi32(t1, 25));
t1 = _mm_xor_si128(t1, _mm_slli_si128(t5, 12));
t4 = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(t4, _mm_srli_si128(t5, 4)), t1), _mm_srli_epi32(t1, 2)), _mm_srli_epi32(t1, 7)), _mm_srli_epi32(t1, 1));
return _mm_shuffle_epi8(t4, s_sseSwapBytes);
}
/* Disable VAES stuff on compilers too old to compile these intrinsics,
* and MinGW64 also seems not to support them so disable on Windows.
* The performance gain can be significant but regular SSE is already so
* fast it's highly unlikely to be a rate limiting factor except on massive
* servers and network infrastructure stuff. */
#if !defined(__WINDOWS__) && ((__GNUC__ >= 8) || (__clang_major__ >= 7))
#define ZT_AES_VAES512 1
__attribute__((__target__("sse4,aes,avx,avx2,vaes,avx512f,avx512bw")))
void p_aesCtrInnerVAES512(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
{
const __m512i kk0 = _mm512_broadcast_i32x4(k[0]);
const __m512i kk1 = _mm512_broadcast_i32x4(k[1]);
const __m512i kk2 = _mm512_broadcast_i32x4(k[2]);
const __m512i kk3 = _mm512_broadcast_i32x4(k[3]);
const __m512i kk4 = _mm512_broadcast_i32x4(k[4]);
const __m512i kk5 = _mm512_broadcast_i32x4(k[5]);
const __m512i kk6 = _mm512_broadcast_i32x4(k[6]);
const __m512i kk7 = _mm512_broadcast_i32x4(k[7]);
const __m512i kk8 = _mm512_broadcast_i32x4(k[8]);
const __m512i kk9 = _mm512_broadcast_i32x4(k[9]);
const __m512i kk10 = _mm512_broadcast_i32x4(k[10]);
const __m512i kk11 = _mm512_broadcast_i32x4(k[11]);
const __m512i kk12 = _mm512_broadcast_i32x4(k[12]);
const __m512i kk13 = _mm512_broadcast_i32x4(k[13]);
const __m512i kk14 = _mm512_broadcast_i32x4(k[14]);
do {
__m512i p0 = _mm512_loadu_si512(reinterpret_cast<const __m512i *>(in));
__m512i d0 = _mm512_set_epi64(
(long long)Utils::hton(c1 + 3ULL), (long long)c0,
(long long)Utils::hton(c1 + 2ULL), (long long)c0,
(long long)Utils::hton(c1 + 1ULL), (long long)c0,
(long long)Utils::hton(c1), (long long)c0);
c1 += 4;
in += 64;
len -= 64;
d0 = _mm512_xor_si512(d0, kk0);
d0 = _mm512_aesenc_epi128(d0, kk1);
d0 = _mm512_aesenc_epi128(d0, kk2);
d0 = _mm512_aesenc_epi128(d0, kk3);
d0 = _mm512_aesenc_epi128(d0, kk4);
d0 = _mm512_aesenc_epi128(d0, kk5);
d0 = _mm512_aesenc_epi128(d0, kk6);
d0 = _mm512_aesenc_epi128(d0, kk7);
d0 = _mm512_aesenc_epi128(d0, kk8);
d0 = _mm512_aesenc_epi128(d0, kk9);
d0 = _mm512_aesenc_epi128(d0, kk10);
d0 = _mm512_aesenc_epi128(d0, kk11);
d0 = _mm512_aesenc_epi128(d0, kk12);
d0 = _mm512_aesenc_epi128(d0, kk13);
d0 = _mm512_aesenclast_epi128(d0, kk14);
_mm512_storeu_si512(reinterpret_cast<__m512i *>(out), _mm512_xor_si512(p0, d0));
out += 64;
} while (likely(len >= 64));
}
#define ZT_AES_VAES256 1
__attribute__((__target__("sse4,aes,avx,avx2,vaes")))
void p_aesCtrInnerVAES256(unsigned int &len, const uint64_t c0, uint64_t &c1, const uint8_t *&in, uint8_t *&out, const __m128i *const k) noexcept
{
const __m256i kk0 = _mm256_broadcastsi128_si256(k[0]);
const __m256i kk1 = _mm256_broadcastsi128_si256(k[1]);
const __m256i kk2 = _mm256_broadcastsi128_si256(k[2]);
const __m256i kk3 = _mm256_broadcastsi128_si256(k[3]);
const __m256i kk4 = _mm256_broadcastsi128_si256(k[4]);
const __m256i kk5 = _mm256_broadcastsi128_si256(k[5]);
const __m256i kk6 = _mm256_broadcastsi128_si256(k[6]);
const __m256i kk7 = _mm256_broadcastsi128_si256(k[7]);
const __m256i kk8 = _mm256_broadcastsi128_si256(k[8]);
const __m256i kk9 = _mm256_broadcastsi128_si256(k[9]);
const __m256i kk10 = _mm256_broadcastsi128_si256(k[10]);
const __m256i kk11 = _mm256_broadcastsi128_si256(k[11]);
const __m256i kk12 = _mm256_broadcastsi128_si256(k[12]);
const __m256i kk13 = _mm256_broadcastsi128_si256(k[13]);
const __m256i kk14 = _mm256_broadcastsi128_si256(k[14]);
do {
__m256i p0 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in));
__m256i p1 = _mm256_loadu_si256(reinterpret_cast<const __m256i *>(in + 32));
__m256i d0 = _mm256_set_epi64x(
(long long)Utils::hton(c1 + 1ULL), (long long)c0,
(long long)Utils::hton(c1), (long long)c0);
__m256i d1 = _mm256_set_epi64x(
(long long)Utils::hton(c1 + 3ULL), (long long)c0,
(long long)Utils::hton(c1 + 2ULL), (long long)c0);
c1 += 4;
in += 64;
len -= 64;
d0 = _mm256_xor_si256(d0, kk0);
d1 = _mm256_xor_si256(d1, kk0);
d0 = _mm256_aesenc_epi128(d0, kk1);
d1 = _mm256_aesenc_epi128(d1, kk1);
d0 = _mm256_aesenc_epi128(d0, kk2);
d1 = _mm256_aesenc_epi128(d1, kk2);
d0 = _mm256_aesenc_epi128(d0, kk3);
d1 = _mm256_aesenc_epi128(d1, kk3);
d0 = _mm256_aesenc_epi128(d0, kk4);
d1 = _mm256_aesenc_epi128(d1, kk4);
d0 = _mm256_aesenc_epi128(d0, kk5);
d1 = _mm256_aesenc_epi128(d1, kk5);
d0 = _mm256_aesenc_epi128(d0, kk6);
d1 = _mm256_aesenc_epi128(d1, kk6);
d0 = _mm256_aesenc_epi128(d0, kk7);
d1 = _mm256_aesenc_epi128(d1, kk7);
d0 = _mm256_aesenc_epi128(d0, kk8);
d1 = _mm256_aesenc_epi128(d1, kk8);
d0 = _mm256_aesenc_epi128(d0, kk9);
d1 = _mm256_aesenc_epi128(d1, kk9);
d0 = _mm256_aesenc_epi128(d0, kk10);
d1 = _mm256_aesenc_epi128(d1, kk10);
d0 = _mm256_aesenc_epi128(d0, kk11);
d1 = _mm256_aesenc_epi128(d1, kk11);
d0 = _mm256_aesenc_epi128(d0, kk12);
d1 = _mm256_aesenc_epi128(d1, kk12);
d0 = _mm256_aesenc_epi128(d0, kk13);
d1 = _mm256_aesenc_epi128(d1, kk13);
d0 = _mm256_aesenclast_epi128(d0, kk14);
d1 = _mm256_aesenclast_epi128(d1, kk14);
_mm256_storeu_si256(reinterpret_cast<__m256i *>(out), _mm256_xor_si256(d0, p0));
_mm256_storeu_si256(reinterpret_cast<__m256i *>(out + 32), _mm256_xor_si256(d1, p1));
out += 64;
} while (likely(len >= 64));
}
#endif // does compiler support AVX2 and AVX512 AES intrinsics?
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
__m128i p_init256_1_aesni(__m128i a, __m128i b) noexcept
{
__m128i x, y;
b = _mm_shuffle_epi32(b, 0xff);
y = _mm_slli_si128(a, 0x04);
x = _mm_xor_si128(a, y);
y = _mm_slli_si128(y, 0x04);
x = _mm_xor_si128(x, y);
y = _mm_slli_si128(y, 0x04);
x = _mm_xor_si128(x, y);
x = _mm_xor_si128(x, b);
return x;
}
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
__m128i p_init256_2_aesni(__m128i a, __m128i b) noexcept
{
__m128i x, y, z;
y = _mm_aeskeygenassist_si128(a, 0x00);
z = _mm_shuffle_epi32(y, 0xaa);
y = _mm_slli_si128(b, 0x04);
x = _mm_xor_si128(b, y);
y = _mm_slli_si128(y, 0x04);
x = _mm_xor_si128(x, y);
y = _mm_slli_si128(y, 0x04);
x = _mm_xor_si128(x, y);
x = _mm_xor_si128(x, z);
return x;
}
} // anonymous namespace
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
void AES::GMAC::p_aesNIUpdate(const uint8_t *in, unsigned int len) noexcept
{
__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
// Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
if (_rp) {
for (;;) {
if (!len)
return;
--len;
_r[_rp++] = *(in++);
if (_rp == 16) {
y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
break;
}
}
}
if (likely(len >= 64)) {
const __m128i sb = s_sseSwapBytes;
const __m128i h = _aes.p_k.ni.h[0];
const __m128i hh = _aes.p_k.ni.h[1];
const __m128i hhh = _aes.p_k.ni.h[2];
const __m128i hhhh = _aes.p_k.ni.h[3];
const __m128i h2 = _aes.p_k.ni.h2[0];
const __m128i hh2 = _aes.p_k.ni.h2[1];
const __m128i hhh2 = _aes.p_k.ni.h2[2];
const __m128i hhhh2 = _aes.p_k.ni.h2[3];
const uint8_t *const end64 = in + (len & ~((unsigned int)63));
len &= 63U;
do {
__m128i d1 = _mm_shuffle_epi8(_mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))), sb);
__m128i d2 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)), sb);
__m128i d3 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)), sb);
__m128i d4 = _mm_shuffle_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)), sb);
in += 64;
__m128i a = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x00), _mm_clmulepi64_si128(hhh, d2, 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x00), _mm_clmulepi64_si128(h, d4, 0x00)));
__m128i b = _mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh, d1, 0x11), _mm_clmulepi64_si128(hhh, d2, 0x11)), _mm_xor_si128(_mm_clmulepi64_si128(hh, d3, 0x11), _mm_clmulepi64_si128(h, d4, 0x11)));
__m128i c = _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_clmulepi64_si128(hhhh2, _mm_xor_si128(_mm_shuffle_epi32(d1, 78), d1), 0x00), _mm_clmulepi64_si128(hhh2, _mm_xor_si128(_mm_shuffle_epi32(d2, 78), d2), 0x00)), _mm_xor_si128(_mm_clmulepi64_si128(hh2, _mm_xor_si128(_mm_shuffle_epi32(d3, 78), d3), 0x00), _mm_clmulepi64_si128(h2, _mm_xor_si128(_mm_shuffle_epi32(d4, 78), d4), 0x00))), _mm_xor_si128(a, b));
a = _mm_xor_si128(_mm_slli_si128(c, 8), a);
b = _mm_xor_si128(_mm_srli_si128(c, 8), b);
c = _mm_srli_epi32(a, 31);
a = _mm_or_si128(_mm_slli_epi32(a, 1), _mm_slli_si128(c, 4));
b = _mm_or_si128(_mm_or_si128(_mm_slli_epi32(b, 1), _mm_slli_si128(_mm_srli_epi32(b, 31), 4)), _mm_srli_si128(c, 12));
c = _mm_xor_si128(_mm_slli_epi32(a, 31), _mm_xor_si128(_mm_slli_epi32(a, 30), _mm_slli_epi32(a, 25)));
a = _mm_xor_si128(a, _mm_slli_si128(c, 12));
b = _mm_xor_si128(b, _mm_xor_si128(a, _mm_xor_si128(_mm_xor_si128(_mm_srli_epi32(a, 1), _mm_srli_si128(c, 4)), _mm_xor_si128(_mm_srli_epi32(a, 2), _mm_srli_epi32(a, 7)))));
y = _mm_shuffle_epi8(b, sb);
} while (likely(in != end64));
}
while (len >= 16) {
y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
in += 16;
len -= 16;
}
_mm_storeu_si128(reinterpret_cast<__m128i *>(_y), y);
// Any overflow is cached for a later run or finish().
for (unsigned int i = 0; i < len; ++i)
_r[i] = in[i];
_rp = len; // len is always less than 16 here
}
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,pclmul")))
void AES::GMAC::p_aesNIFinish(uint8_t tag[16]) noexcept
{
__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
// Handle any remaining bytes, padding the last block with zeroes.
if (_rp) {
while (_rp < 16)
_r[_rp++] = 0;
y = p_gmacPCLMUL128(_aes.p_k.ni.h[0], _mm_xor_si128(y, _mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
}
// Interleave encryption of IV with the final GHASH of y XOR (length * 8).
// Then XOR these together to get the final tag.
const __m128i *const k = _aes.p_k.ni.k;
const __m128i h = _aes.p_k.ni.h[0];
y = _mm_xor_si128(y, _mm_set_epi64x(0LL, (long long)Utils::hton((uint64_t)_len << 3U)));
y = _mm_shuffle_epi8(y, s_sseSwapBytes);
__m128i encIV = _mm_xor_si128(_mm_loadu_si128(reinterpret_cast<const __m128i *>(_iv)), k[0]);
__m128i t1 = _mm_clmulepi64_si128(h, y, 0x00);
__m128i t2 = _mm_clmulepi64_si128(h, y, 0x01);
__m128i t3 = _mm_clmulepi64_si128(h, y, 0x10);
__m128i t4 = _mm_clmulepi64_si128(h, y, 0x11);
encIV = _mm_aesenc_si128(encIV, k[1]);
t2 = _mm_xor_si128(t2, t3);
t3 = _mm_slli_si128(t2, 8);
encIV = _mm_aesenc_si128(encIV, k[2]);
t2 = _mm_srli_si128(t2, 8);
t1 = _mm_xor_si128(t1, t3);
encIV = _mm_aesenc_si128(encIV, k[3]);
t4 = _mm_xor_si128(t4, t2);
__m128i t5 = _mm_srli_epi32(t1, 31);
t1 = _mm_slli_epi32(t1, 1);
__m128i t6 = _mm_srli_epi32(t4, 31);
encIV = _mm_aesenc_si128(encIV, k[4]);
t4 = _mm_slli_epi32(t4, 1);
t3 = _mm_srli_si128(t5, 12);
encIV = _mm_aesenc_si128(encIV, k[5]);
t6 = _mm_slli_si128(t6, 4);
t5 = _mm_slli_si128(t5, 4);
encIV = _mm_aesenc_si128(encIV, k[6]);
t1 = _mm_or_si128(t1, t5);
t4 = _mm_or_si128(t4, t6);
encIV = _mm_aesenc_si128(encIV, k[7]);
t4 = _mm_or_si128(t4, t3);
t5 = _mm_slli_epi32(t1, 31);
encIV = _mm_aesenc_si128(encIV, k[8]);
t6 = _mm_slli_epi32(t1, 30);
t3 = _mm_slli_epi32(t1, 25);
encIV = _mm_aesenc_si128(encIV, k[9]);
t5 = _mm_xor_si128(t5, t6);
t5 = _mm_xor_si128(t5, t3);
encIV = _mm_aesenc_si128(encIV, k[10]);
t6 = _mm_srli_si128(t5, 4);
t4 = _mm_xor_si128(t4, t6);
encIV = _mm_aesenc_si128(encIV, k[11]);
t5 = _mm_slli_si128(t5, 12);
t1 = _mm_xor_si128(t1, t5);
t4 = _mm_xor_si128(t4, t1);
t5 = _mm_srli_epi32(t1, 1);
encIV = _mm_aesenc_si128(encIV, k[12]);
t2 = _mm_srli_epi32(t1, 2);
t3 = _mm_srli_epi32(t1, 7);
encIV = _mm_aesenc_si128(encIV, k[13]);
t4 = _mm_xor_si128(t4, t2);
t4 = _mm_xor_si128(t4, t3);
encIV = _mm_aesenclast_si128(encIV, k[14]);
t4 = _mm_xor_si128(t4, t5);
_mm_storeu_si128(reinterpret_cast<__m128i *>(tag), _mm_xor_si128(_mm_shuffle_epi8(t4, s_sseSwapBytes), encIV));
}
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes")))
void AES::CTR::p_aesNICrypt(const uint8_t *in, uint8_t *out, unsigned int len) noexcept
{
const __m128i dd = _mm_set_epi64x(0, (long long)_ctr[0]);
uint64_t c1 = Utils::ntoh(_ctr[1]);
const __m128i *const k = _aes.p_k.ni.k;
const __m128i k0 = k[0];
const __m128i k1 = k[1];
const __m128i k2 = k[2];
const __m128i k3 = k[3];
const __m128i k4 = k[4];
const __m128i k5 = k[5];
const __m128i k6 = k[6];
const __m128i k7 = k[7];
const __m128i k8 = k[8];
const __m128i k9 = k[9];
const __m128i k10 = k[10];
const __m128i k11 = k[11];
const __m128i k12 = k[12];
const __m128i k13 = k[13];
const __m128i k14 = k[14];
// Complete any unfinished blocks from previous calls to crypt().
unsigned int totalLen = _len;
if ((totalLen & 15U)) {
for (;;) {
if (unlikely(!len)) {
_ctr[1] = Utils::hton(c1);
_len = totalLen;
return;
}
--len;
out[totalLen++] = *(in++);
if (!(totalLen & 15U)) {
__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
d0 = _mm_xor_si128(d0, k0);
d0 = _mm_aesenc_si128(d0, k1);
d0 = _mm_aesenc_si128(d0, k2);
d0 = _mm_aesenc_si128(d0, k3);
d0 = _mm_aesenc_si128(d0, k4);
d0 = _mm_aesenc_si128(d0, k5);
d0 = _mm_aesenc_si128(d0, k6);
d0 = _mm_aesenc_si128(d0, k7);
d0 = _mm_aesenc_si128(d0, k8);
d0 = _mm_aesenc_si128(d0, k9);
d0 = _mm_aesenc_si128(d0, k10);
__m128i *const outblk = reinterpret_cast<__m128i *>(out + (totalLen - 16));
d0 = _mm_aesenc_si128(d0, k11);
const __m128i p0 = _mm_loadu_si128(outblk);
d0 = _mm_aesenc_si128(d0, k12);
d0 = _mm_aesenc_si128(d0, k13);
d0 = _mm_aesenclast_si128(d0, k14);
_mm_storeu_si128(outblk, _mm_xor_si128(p0, d0));
break;
}
}
}
out += totalLen;
_len = totalLen + len;
if (likely(len >= 64)) {
#if defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
if (Utils::CPUID.vaes && (len >= 256)) {
if (Utils::CPUID.avx512f) {
p_aesCtrInnerVAES512(len, _ctr[0], c1, in, out, k);
} else {
p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
}
goto skip_conventional_aesni_64;
}
#endif
#if !defined(ZT_AES_VAES512) && defined(ZT_AES_VAES256)
if (Utils::CPUID.vaes && (len >= 256)) {
p_aesCtrInnerVAES256(len, _ctr[0], c1, in, out, k);
goto skip_conventional_aesni_64;
}
#endif
const uint8_t *const eof64 = in + (len & ~((unsigned int)63));
len &= 63;
__m128i d0, d1, d2, d3;
do {
const uint64_t c10 = Utils::hton(c1);
const uint64_t c11 = Utils::hton(c1 + 1ULL);
const uint64_t c12 = Utils::hton(c1 + 2ULL);
const uint64_t c13 = Utils::hton(c1 + 3ULL);
d0 = _mm_insert_epi64(dd, (long long)c10, 1);
d1 = _mm_insert_epi64(dd, (long long)c11, 1);
d2 = _mm_insert_epi64(dd, (long long)c12, 1);
d3 = _mm_insert_epi64(dd, (long long)c13, 1);
c1 += 4;
d0 = _mm_xor_si128(d0, k0);
d1 = _mm_xor_si128(d1, k0);
d2 = _mm_xor_si128(d2, k0);
d3 = _mm_xor_si128(d3, k0);
d0 = _mm_aesenc_si128(d0, k1);
d1 = _mm_aesenc_si128(d1, k1);
d2 = _mm_aesenc_si128(d2, k1);
d3 = _mm_aesenc_si128(d3, k1);
d0 = _mm_aesenc_si128(d0, k2);
d1 = _mm_aesenc_si128(d1, k2);
d2 = _mm_aesenc_si128(d2, k2);
d3 = _mm_aesenc_si128(d3, k2);
d0 = _mm_aesenc_si128(d0, k3);
d1 = _mm_aesenc_si128(d1, k3);
d2 = _mm_aesenc_si128(d2, k3);
d3 = _mm_aesenc_si128(d3, k3);
d0 = _mm_aesenc_si128(d0, k4);
d1 = _mm_aesenc_si128(d1, k4);
d2 = _mm_aesenc_si128(d2, k4);
d3 = _mm_aesenc_si128(d3, k4);
d0 = _mm_aesenc_si128(d0, k5);
d1 = _mm_aesenc_si128(d1, k5);
d2 = _mm_aesenc_si128(d2, k5);
d3 = _mm_aesenc_si128(d3, k5);
d0 = _mm_aesenc_si128(d0, k6);
d1 = _mm_aesenc_si128(d1, k6);
d2 = _mm_aesenc_si128(d2, k6);
d3 = _mm_aesenc_si128(d3, k6);
d0 = _mm_aesenc_si128(d0, k7);
d1 = _mm_aesenc_si128(d1, k7);
d2 = _mm_aesenc_si128(d2, k7);
d3 = _mm_aesenc_si128(d3, k7);
d0 = _mm_aesenc_si128(d0, k8);
d1 = _mm_aesenc_si128(d1, k8);
d2 = _mm_aesenc_si128(d2, k8);
d3 = _mm_aesenc_si128(d3, k8);
d0 = _mm_aesenc_si128(d0, k9);
d1 = _mm_aesenc_si128(d1, k9);
d2 = _mm_aesenc_si128(d2, k9);
d3 = _mm_aesenc_si128(d3, k9);
d0 = _mm_aesenc_si128(d0, k10);
d1 = _mm_aesenc_si128(d1, k10);
d2 = _mm_aesenc_si128(d2, k10);
d3 = _mm_aesenc_si128(d3, k10);
d0 = _mm_aesenc_si128(d0, k11);
d1 = _mm_aesenc_si128(d1, k11);
d2 = _mm_aesenc_si128(d2, k11);
d3 = _mm_aesenc_si128(d3, k11);
d0 = _mm_aesenc_si128(d0, k12);
d1 = _mm_aesenc_si128(d1, k12);
d2 = _mm_aesenc_si128(d2, k12);
d3 = _mm_aesenc_si128(d3, k12);
d0 = _mm_aesenc_si128(d0, k13);
d1 = _mm_aesenc_si128(d1, k13);
d2 = _mm_aesenc_si128(d2, k13);
d3 = _mm_aesenc_si128(d3, k13);
d0 = _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in)));
d1 = _mm_xor_si128(_mm_aesenclast_si128(d1, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16)));
d2 = _mm_xor_si128(_mm_aesenclast_si128(d2, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32)));
d3 = _mm_xor_si128(_mm_aesenclast_si128(d3, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48)));
in += 64;
_mm_storeu_si128(reinterpret_cast<__m128i *>(out), d0);
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 16), d1);
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 32), d2);
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 48), d3);
out += 64;
} while (likely(in != eof64));
}
skip_conventional_aesni_64:
while (len >= 16) {
__m128i d0 = _mm_insert_epi64(dd, (long long)Utils::hton(c1++), 1);
d0 = _mm_xor_si128(d0, k0);
d0 = _mm_aesenc_si128(d0, k1);
d0 = _mm_aesenc_si128(d0, k2);
d0 = _mm_aesenc_si128(d0, k3);
d0 = _mm_aesenc_si128(d0, k4);
d0 = _mm_aesenc_si128(d0, k5);
d0 = _mm_aesenc_si128(d0, k6);
d0 = _mm_aesenc_si128(d0, k7);
d0 = _mm_aesenc_si128(d0, k8);
d0 = _mm_aesenc_si128(d0, k9);
d0 = _mm_aesenc_si128(d0, k10);
d0 = _mm_aesenc_si128(d0, k11);
d0 = _mm_aesenc_si128(d0, k12);
d0 = _mm_aesenc_si128(d0, k13);
_mm_storeu_si128(reinterpret_cast<__m128i *>(out), _mm_xor_si128(_mm_aesenclast_si128(d0, k14), _mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
in += 16;
len -= 16;
out += 16;
}
// Any remaining input is placed in _out. This will be picked up and crypted
// on subsequent calls to crypt() or finish() as it'll mean _len will not be
// an even multiple of 16.
for (unsigned int i = 0; i < len; ++i)
out[i] = in[i];
_ctr[1] = Utils::hton(c1);
}
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
void AES::p_init_aesni(const uint8_t *key) noexcept
{
__m128i t1, t2, k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13;
p_k.ni.k[0] = t1 = _mm_loadu_si128((const __m128i *)key);
p_k.ni.k[1] = k1 = t2 = _mm_loadu_si128((const __m128i *)(key + 16));
p_k.ni.k[2] = k2 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x01));
p_k.ni.k[3] = k3 = t2 = p_init256_2_aesni(t1, t2);
p_k.ni.k[4] = k4 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x02));
p_k.ni.k[5] = k5 = t2 = p_init256_2_aesni(t1, t2);
p_k.ni.k[6] = k6 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x04));
p_k.ni.k[7] = k7 = t2 = p_init256_2_aesni(t1, t2);
p_k.ni.k[8] = k8 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x08));
p_k.ni.k[9] = k9 = t2 = p_init256_2_aesni(t1, t2);
p_k.ni.k[10] = k10 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x10));
p_k.ni.k[11] = k11 = t2 = p_init256_2_aesni(t1, t2);
p_k.ni.k[12] = k12 = t1 = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x20));
p_k.ni.k[13] = k13 = t2 = p_init256_2_aesni(t1, t2);
p_k.ni.k[14] = p_init256_1_aesni(t1, _mm_aeskeygenassist_si128(t2, 0x40));
p_k.ni.k[15] = _mm_aesimc_si128(k13);
p_k.ni.k[16] = _mm_aesimc_si128(k12);
p_k.ni.k[17] = _mm_aesimc_si128(k11);
p_k.ni.k[18] = _mm_aesimc_si128(k10);
p_k.ni.k[19] = _mm_aesimc_si128(k9);
p_k.ni.k[20] = _mm_aesimc_si128(k8);
p_k.ni.k[21] = _mm_aesimc_si128(k7);
p_k.ni.k[22] = _mm_aesimc_si128(k6);
p_k.ni.k[23] = _mm_aesimc_si128(k5);
p_k.ni.k[24] = _mm_aesimc_si128(k4);
p_k.ni.k[25] = _mm_aesimc_si128(k3);
p_k.ni.k[26] = _mm_aesimc_si128(k2);
p_k.ni.k[27] = _mm_aesimc_si128(k1);
__m128i h = p_k.ni.k[0]; // _mm_xor_si128(_mm_setzero_si128(),_k.ni.k[0]);
h = _mm_aesenc_si128(h, k1);
h = _mm_aesenc_si128(h, k2);
h = _mm_aesenc_si128(h, k3);
h = _mm_aesenc_si128(h, k4);
h = _mm_aesenc_si128(h, k5);
h = _mm_aesenc_si128(h, k6);
h = _mm_aesenc_si128(h, k7);
h = _mm_aesenc_si128(h, k8);
h = _mm_aesenc_si128(h, k9);
h = _mm_aesenc_si128(h, k10);
h = _mm_aesenc_si128(h, k11);
h = _mm_aesenc_si128(h, k12);
h = _mm_aesenc_si128(h, k13);
h = _mm_aesenclast_si128(h, p_k.ni.k[14]);
__m128i hswap = _mm_shuffle_epi8(h, s_sseSwapBytes);
__m128i hh = p_gmacPCLMUL128(hswap, h);
__m128i hhh = p_gmacPCLMUL128(hswap, hh);
__m128i hhhh = p_gmacPCLMUL128(hswap, hhh);
p_k.ni.h[0] = hswap;
p_k.ni.h[1] = hh = _mm_shuffle_epi8(hh, s_sseSwapBytes);
p_k.ni.h[2] = hhh = _mm_shuffle_epi8(hhh, s_sseSwapBytes);
p_k.ni.h[3] = hhhh = _mm_shuffle_epi8(hhhh, s_sseSwapBytes);
p_k.ni.h2[0] = _mm_xor_si128(_mm_shuffle_epi32(hswap, 78), hswap);
p_k.ni.h2[1] = _mm_xor_si128(_mm_shuffle_epi32(hh, 78), hh);
p_k.ni.h2[2] = _mm_xor_si128(_mm_shuffle_epi32(hhh, 78), hhh);
p_k.ni.h2[3] = _mm_xor_si128(_mm_shuffle_epi32(hhhh, 78), hhhh);
}
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
void AES::p_encrypt_aesni(const void *const in, void *const out) const noexcept
{
__m128i tmp = _mm_loadu_si128((const __m128i *)in);
tmp = _mm_xor_si128(tmp, p_k.ni.k[0]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[1]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[2]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[3]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[4]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[5]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[6]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[7]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[8]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[9]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[10]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[11]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[12]);
tmp = _mm_aesenc_si128(tmp, p_k.ni.k[13]);
_mm_storeu_si128((__m128i *)out, _mm_aesenclast_si128(tmp, p_k.ni.k[14]));
}
__attribute__((__target__("ssse3,sse4,sse4.1,sse4.2,aes,pclmul")))
void AES::p_decrypt_aesni(const void *in, void *out) const noexcept
{
__m128i tmp = _mm_loadu_si128((const __m128i *)in);
tmp = _mm_xor_si128(tmp, p_k.ni.k[14]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[15]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[16]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[17]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[18]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[19]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[20]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[21]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[22]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[23]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[24]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[25]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[26]);
tmp = _mm_aesdec_si128(tmp, p_k.ni.k[27]);
_mm_storeu_si128((__m128i *)out, _mm_aesdeclast_si128(tmp, p_k.ni.k[0]));
}
} // namespace ZeroTier
#endif // ZT_AES_AESNI

View file

@ -61,6 +61,7 @@ set(core_headers
set(core_src
AES.cpp
AES_aesni.cpp
Buf.cpp
C25519.cpp
CAPI.cpp