This commit is contained in:
Adam Ierymenko 2020-01-06 18:14:35 -08:00
parent c1b2c7903c
commit 19899de5a6
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
13 changed files with 439 additions and 592 deletions

View file

@ -18,8 +18,11 @@
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <string>
#include <vector>
#include <algorithm>
#include "Constants.hpp"
#include "Utils.hpp"
@ -33,24 +36,24 @@ namespace ZeroTier {
class Address
{
public:
inline Address() : _a(0) {}
inline Address(const Address &a) : _a(a._a) {}
inline Address(uint64_t a) : _a(a & 0xffffffffffULL) {}
ZT_ALWAYS_INLINE Address() : _a(0) {}
ZT_ALWAYS_INLINE Address(const Address &a) : _a(a._a) {}
ZT_ALWAYS_INLINE Address(uint64_t a) : _a(a & 0xffffffffffULL) {}
/**
* @param bits Raw address -- 5 bytes, big-endian byte order
* @param len Length of array
*/
inline Address(const void *bits,unsigned int len) { setTo(bits,len); }
ZT_ALWAYS_INLINE Address(const void *bits,unsigned int len) { setTo(bits,len); }
inline Address &operator=(const Address &a) { _a = a._a; return *this; }
inline Address &operator=(const uint64_t a) { _a = (a & 0xffffffffffULL); return *this; }
ZT_ALWAYS_INLINE Address &operator=(const Address &a) { _a = a._a; return *this; }
ZT_ALWAYS_INLINE Address &operator=(const uint64_t a) { _a = (a & 0xffffffffffULL); return *this; }
/**
* @param bits Raw address -- 5 bytes, big-endian byte order
* @param len Length of array
*/
inline void setTo(const void *bits,const unsigned int len)
ZT_ALWAYS_INLINE void setTo(const void *bits,const unsigned int len)
{
if (len < ZT_ADDRESS_LENGTH) {
_a = 0;
@ -69,7 +72,7 @@ public:
* @param bits Buffer to hold 5-byte address in big-endian byte order
* @param len Length of array
*/
inline void copyTo(void *const bits,const unsigned int len) const
ZT_ALWAYS_INLINE void copyTo(void *const bits,const unsigned int len) const
{
if (len < ZT_ADDRESS_LENGTH)
return;
@ -87,7 +90,7 @@ public:
* @param b Buffer to append to
*/
template<unsigned int C>
inline void appendTo(Buffer<C> &b) const
ZT_ALWAYS_INLINE void appendTo(Buffer<C> &b) const
{
unsigned char *p = (unsigned char *)b.appendField(ZT_ADDRESS_LENGTH);
*(p++) = (unsigned char)((_a >> 32) & 0xff);
@ -100,22 +103,22 @@ public:
/**
* @return Integer containing address (0 to 2^40)
*/
inline uint64_t toInt() const { return _a; }
ZT_ALWAYS_INLINE uint64_t toInt() const { return _a; }
/**
* @return Hash code for use with Hashtable
*/
inline unsigned long hashCode() const { return (unsigned long)_a; }
ZT_ALWAYS_INLINE unsigned long hashCode() const { return (unsigned long)_a; }
/**
* @return Hexadecimal string
*/
inline char *toString(char buf[11]) const { return Utils::hex10(_a,buf); }
ZT_ALWAYS_INLINE char *toString(char buf[11]) const { return Utils::hex10(_a,buf); }
/**
* @return True if this address is not zero
*/
inline operator bool() const { return (_a != 0); }
ZT_ALWAYS_INLINE operator bool() const { return (_a != 0); }
/**
* Check if this address is reserved
@ -126,33 +129,115 @@ public:
*
* @return True if address is reserved and may not be used
*/
inline bool isReserved() const { return ((!_a)||((_a >> 32) == ZT_ADDRESS_RESERVED_PREFIX)); }
ZT_ALWAYS_INLINE bool isReserved() const { return ((!_a)||((_a >> 32) == ZT_ADDRESS_RESERVED_PREFIX)); }
/**
* @param i Value from 0 to 4 (inclusive)
* @return Byte at said position (address interpreted in big-endian order)
*/
inline uint8_t operator[](unsigned int i) const { return (uint8_t)(_a >> (32 - (i * 8))); }
ZT_ALWAYS_INLINE uint8_t operator[](unsigned int i) const { return (uint8_t)(_a >> (32 - (i * 8))); }
inline operator unsigned int() const { return (unsigned int)_a; }
inline operator unsigned long() const { return (unsigned long)_a; }
inline operator unsigned long long() const { return (unsigned long long)_a; }
ZT_ALWAYS_INLINE operator unsigned int() const { return (unsigned int)_a; }
ZT_ALWAYS_INLINE operator unsigned long() const { return (unsigned long)_a; }
ZT_ALWAYS_INLINE operator unsigned long long() const { return (unsigned long long)_a; }
inline void zero() { _a = 0; }
ZT_ALWAYS_INLINE void zero() { _a = 0; }
inline bool operator==(const uint64_t &a) const { return (_a == (a & 0xffffffffffULL)); }
inline bool operator!=(const uint64_t &a) const { return (_a != (a & 0xffffffffffULL)); }
inline bool operator>(const uint64_t &a) const { return (_a > (a & 0xffffffffffULL)); }
inline bool operator<(const uint64_t &a) const { return (_a < (a & 0xffffffffffULL)); }
inline bool operator>=(const uint64_t &a) const { return (_a >= (a & 0xffffffffffULL)); }
inline bool operator<=(const uint64_t &a) const { return (_a <= (a & 0xffffffffffULL)); }
ZT_ALWAYS_INLINE bool operator==(const uint64_t &a) const { return (_a == (a & 0xffffffffffULL)); }
ZT_ALWAYS_INLINE bool operator!=(const uint64_t &a) const { return (_a != (a & 0xffffffffffULL)); }
ZT_ALWAYS_INLINE bool operator>(const uint64_t &a) const { return (_a > (a & 0xffffffffffULL)); }
ZT_ALWAYS_INLINE bool operator<(const uint64_t &a) const { return (_a < (a & 0xffffffffffULL)); }
ZT_ALWAYS_INLINE bool operator>=(const uint64_t &a) const { return (_a >= (a & 0xffffffffffULL)); }
ZT_ALWAYS_INLINE bool operator<=(const uint64_t &a) const { return (_a <= (a & 0xffffffffffULL)); }
inline bool operator==(const Address &a) const { return (_a == a._a); }
inline bool operator!=(const Address &a) const { return (_a != a._a); }
inline bool operator>(const Address &a) const { return (_a > a._a); }
inline bool operator<(const Address &a) const { return (_a < a._a); }
inline bool operator>=(const Address &a) const { return (_a >= a._a); }
inline bool operator<=(const Address &a) const { return (_a <= a._a); }
ZT_ALWAYS_INLINE bool operator==(const Address &a) const { return (_a == a._a); }
ZT_ALWAYS_INLINE bool operator!=(const Address &a) const { return (_a != a._a); }
ZT_ALWAYS_INLINE bool operator>(const Address &a) const { return (_a > a._a); }
ZT_ALWAYS_INLINE bool operator<(const Address &a) const { return (_a < a._a); }
ZT_ALWAYS_INLINE bool operator>=(const Address &a) const { return (_a >= a._a); }
ZT_ALWAYS_INLINE bool operator<=(const Address &a) const { return (_a <= a._a); }
/**
* Create a list of the first N bits of a list of unique addresses with N as the minimum unique size
*
* The list is stored in a space-efficient packed bit format.
*
* @param start Starting Address iterator/pointer
* @param end Ending Address iterator/pointer
* @param list Pointer to location to write list
* @param listCapacityBytes Number of bytes available for list
* @return Number of bytes written or -1 on overflow or other error
* @tparam I Input iterator type
*/
template<typename I>
static inline int createMinPrefixList(I start,I end,uint8_t *list,const int listCapacityBytes)
{
std::vector<Address> sortedAddrs(start,end);
if (sortedAddrs.empty())
return 0;
if (listCapacityBytes == 0)
return -1;
std::sort(sortedAddrs.begin(),sortedAddrs.end());
unsigned int bits = (unsigned int)fmaxf(log2f((float)(sortedAddrs.size() * 2)),3.0F);
uint64_t mask;
try_additional_bits: {
mask = 0xffffffffffffffffULL >> (64 - bits);
std::vector<Address>::iterator a(sortedAddrs.begin());
uint64_t aa = *(a++) & mask;
aa |= (uint64_t)(aa == 0);
uint64_t lastMaskedAddress = aa;
while (a != sortedAddrs.end()) {
aa = *(a++) & mask;
aa |= (uint64_t)(aa == 0);
if (aa == lastMaskedAddress) {
++bits;
goto try_additional_bits;
}
lastMaskedAddress = aa;
}
}
int l = 0;
unsigned int bitPtr = 0;
for(I a(start);a!=end;) {
uint64_t aa = *(a++) & mask;
aa |= (uint64_t)(aa == 0);
unsigned int br = bits;
if (bitPtr > 0) {
unsigned int w = 8 - bitPtr;
if (w > br) w = br;
list[l] = (list[l] << w) | (((uint8_t)aa) & (0xff >> (8 - w)));
bitPtr += w;
if (bitPtr == 8) {
bitPtr = 0;
if (l >= listCapacityBytes)
return -1;
++l;
}
aa >>= w;
br -= w;
}
while (br >= 8) {
if (l >= listCapacityBytes)
return -1;
list[l++] = (uint8_t)aa;
br -= 8;
aa >>= 8;
}
if (br > 0) {
list[l] = (uint8_t)aa;
bitPtr = br;
}
}
if (bitPtr > 0) {
if (l >= listCapacityBytes)
return -1;
++l;
}
return l;
}
private:
uint64_t _a;

View file

@ -28,9 +28,9 @@ namespace ZeroTier {
class AtomicCounter
{
public:
inline AtomicCounter() { _v = 0; }
ZT_ALWAYS_INLINE AtomicCounter() { _v = 0; }
inline int load() const
ZT_ALWAYS_INLINE int load() const
{
#ifdef __GNUC__
return __sync_or_and_fetch(const_cast<int *>(&_v),0);
@ -39,7 +39,7 @@ public:
#endif
}
inline int operator++()
ZT_ALWAYS_INLINE int operator++()
{
#ifdef __GNUC__
return __sync_add_and_fetch(&_v,1);
@ -48,7 +48,7 @@ public:
#endif
}
inline int operator--()
ZT_ALWAYS_INLINE int operator--()
{
#ifdef __GNUC__
return __sync_sub_and_fetch(&_v,1);
@ -58,8 +58,8 @@ public:
}
private:
inline AtomicCounter(const AtomicCounter &) {}
inline const AtomicCounter &operator=(const AtomicCounter &) { return *this; }
ZT_ALWAYS_INLINE AtomicCounter(const AtomicCounter &) {}
ZT_ALWAYS_INLINE const AtomicCounter &operator=(const AtomicCounter &) { return *this; }
#ifdef __GNUC__
int _v;

View file

@ -29,6 +29,7 @@ set(core_headers
Network.hpp
NetworkConfig.hpp
Node.hpp
OS.hpp
Packet.hpp
Path.hpp
Peer.hpp

View file

@ -56,8 +56,8 @@ public:
P384 = ZT_CRYPTO_ALG_P384 // Type 1 -- NIST P-384 with linked Curve25519/Ed25519 secondaries (2.x+)
};
inline Identity() { memset(reinterpret_cast<void *>(this),0,sizeof(Identity)); }
inline ~Identity() { Utils::burn(reinterpret_cast<void *>(&this->_priv),sizeof(this->_priv)); }
ZT_ALWAYS_INLINE Identity() { memset(reinterpret_cast<void *>(this),0,sizeof(Identity)); }
ZT_ALWAYS_INLINE ~Identity() { Utils::burn(reinterpret_cast<void *>(&this->_priv),sizeof(this->_priv)); }
/**
* Construct identity from string
@ -67,20 +67,17 @@ public:
*
* @param str Identity in canonical string format
*/
inline Identity(const char *str) { fromString(str); }
template<unsigned int C>
inline Identity(const Buffer<C> &b,unsigned int startAt = 0) { deserialize(b,startAt); }
ZT_ALWAYS_INLINE Identity(const char *str) { fromString(str); }
/**
* Set identity to NIL value (all zero)
*/
inline void zero() { memset(reinterpret_cast<void *>(this),0,sizeof(Identity)); }
ZT_ALWAYS_INLINE void zero() { memset(reinterpret_cast<void *>(this),0,sizeof(Identity)); }
/**
* @return Identity type (undefined if identity is null or invalid)
*/
inline Type type() const { return _type; }
ZT_ALWAYS_INLINE Type type() const { return _type; }
/**
* Generate a new identity (address, key pair)
@ -101,7 +98,7 @@ public:
/**
* @return True if this identity contains a private key
*/
inline bool hasPrivate() const { return _hasPrivate; }
ZT_ALWAYS_INLINE bool hasPrivate() const { return _hasPrivate; }
/**
* This generates a SHA384 hash of this identity's keys.
@ -244,7 +241,7 @@ public:
/**
* @return This identity's address
*/
inline const Address &address() const { return _address; }
ZT_ALWAYS_INLINE const Address &address() const { return _address; }
/**
* Serialize this identity (binary)
@ -371,9 +368,9 @@ public:
/**
* @return True if this identity contains something
*/
inline operator bool() const { return (_address); }
ZT_ALWAYS_INLINE operator bool() const { return (_address); }
inline bool operator==(const Identity &id) const
ZT_ALWAYS_INLINE bool operator==(const Identity &id) const
{
if ((_address == id._address)&&(_type == id._type)) {
switch(_type) {
@ -384,7 +381,7 @@ public:
}
return false;
}
inline bool operator<(const Identity &id) const
ZT_ALWAYS_INLINE bool operator<(const Identity &id) const
{
if (_address < id._address)
return true;
@ -401,15 +398,15 @@ public:
}
return false;
}
inline bool operator!=(const Identity &id) const { return !(*this == id); }
inline bool operator>(const Identity &id) const { return (id < *this); }
inline bool operator<=(const Identity &id) const { return !(id < *this); }
inline bool operator>=(const Identity &id) const { return !(*this < id); }
ZT_ALWAYS_INLINE bool operator!=(const Identity &id) const { return !(*this == id); }
ZT_ALWAYS_INLINE bool operator>(const Identity &id) const { return (id < *this); }
ZT_ALWAYS_INLINE bool operator<=(const Identity &id) const { return !(id < *this); }
ZT_ALWAYS_INLINE bool operator>=(const Identity &id) const { return !(*this < id); }
inline unsigned long hashCode() const { return ((unsigned long)_address.toInt() + (unsigned long)_pub.c25519[0] + (unsigned long)_pub.c25519[1] + (unsigned long)_pub.c25519[2]); }
ZT_ALWAYS_INLINE unsigned long hashCode() const { return ((unsigned long)_address.toInt() + (unsigned long)_pub.c25519[0] + (unsigned long)_pub.c25519[1] + (unsigned long)_pub.c25519[2]); }
// Marshal interface ///////////////////////////////////////////////////////
static inline int marshalSizeMax() { return ZT_IDENTITY_MARSHAL_SIZE_MAX; }
static ZT_ALWAYS_INLINE int marshalSizeMax() { return ZT_IDENTITY_MARSHAL_SIZE_MAX; }
inline int marshal(uint8_t restrict data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate = false) const
{
_address.copyTo(data,ZT_ADDRESS_LENGTH);

View file

@ -31,40 +31,40 @@ namespace ZeroTier {
class MAC
{
public:
inline MAC() : _m(0ULL) {}
inline MAC(const MAC &m) : _m(m._m) {}
ZT_ALWAYS_INLINE MAC() : _m(0ULL) {}
ZT_ALWAYS_INLINE MAC(const MAC &m) : _m(m._m) {}
inline MAC(const unsigned char a,const unsigned char b,const unsigned char c,const unsigned char d,const unsigned char e,const unsigned char f) :
ZT_ALWAYS_INLINE MAC(const unsigned char a,const unsigned char b,const unsigned char c,const unsigned char d,const unsigned char e,const unsigned char f) :
_m( ((((uint64_t)a) & 0xffULL) << 40) |
((((uint64_t)b) & 0xffULL) << 32) |
((((uint64_t)c) & 0xffULL) << 24) |
((((uint64_t)d) & 0xffULL) << 16) |
((((uint64_t)e) & 0xffULL) << 8) |
(((uint64_t)f) & 0xffULL) ) {}
inline MAC(const void *bits,unsigned int len) { setTo(bits,len); }
inline MAC(const Address &ztaddr,uint64_t nwid) { fromAddress(ztaddr,nwid); }
inline MAC(const uint64_t m) : _m(m & 0xffffffffffffULL) {}
ZT_ALWAYS_INLINE MAC(const void *bits,unsigned int len) { setTo(bits,len); }
ZT_ALWAYS_INLINE MAC(const Address &ztaddr,uint64_t nwid) { fromAddress(ztaddr,nwid); }
ZT_ALWAYS_INLINE MAC(const uint64_t m) : _m(m & 0xffffffffffffULL) {}
/**
* @return MAC in 64-bit integer
*/
inline uint64_t toInt() const { return _m; }
ZT_ALWAYS_INLINE uint64_t toInt() const { return _m; }
/**
* Set MAC to zero
*/
inline void zero() { _m = 0ULL; }
ZT_ALWAYS_INLINE void zero() { _m = 0ULL; }
/**
* @return True if MAC is non-zero
*/
inline operator bool() const { return (_m != 0ULL); }
ZT_ALWAYS_INLINE operator bool() const { return (_m != 0ULL); }
/**
* @param bits Raw MAC in big-endian byte order
* @param len Length, must be >= 6 or result is zero
*/
inline void setTo(const void *bits,unsigned int len)
ZT_ALWAYS_INLINE void setTo(const void *bits,unsigned int len)
{
if (len < 6) {
_m = 0ULL;
@ -83,7 +83,7 @@ public:
* @param buf Destination buffer for MAC in big-endian byte order
* @param len Length of buffer, must be >= 6 or nothing is copied
*/
inline void copyTo(void *buf,unsigned int len) const
ZT_ALWAYS_INLINE void copyTo(void *buf,unsigned int len) const
{
if (len < 6)
return;
@ -102,7 +102,7 @@ public:
* @param b Buffer to append to
*/
template<unsigned int C>
inline void appendTo(Buffer<C> &b) const
ZT_ALWAYS_INLINE void appendTo(Buffer<C> &b) const
{
unsigned char *p = (unsigned char *)b.appendField(6);
*(p++) = (unsigned char)((_m >> 40) & 0xff);
@ -116,17 +116,17 @@ public:
/**
* @return True if this is broadcast (all 0xff)
*/
inline bool isBroadcast() const { return (_m == 0xffffffffffffULL); }
ZT_ALWAYS_INLINE bool isBroadcast() const { return (_m == 0xffffffffffffULL); }
/**
* @return True if this is a multicast MAC
*/
inline bool isMulticast() const { return ((_m & 0x010000000000ULL) != 0ULL); }
ZT_ALWAYS_INLINE bool isMulticast() const { return ((_m & 0x010000000000ULL) != 0ULL); }
/**
* @param True if this is a locally-administered MAC
*/
inline bool isLocallyAdministered() const { return ((_m & 0x020000000000ULL) != 0ULL); }
ZT_ALWAYS_INLINE bool isLocallyAdministered() const { return ((_m & 0x020000000000ULL) != 0ULL); }
/**
* Set this MAC to a MAC derived from an address and a network ID
@ -134,7 +134,7 @@ public:
* @param ztaddr ZeroTier address
* @param nwid 64-bit network ID
*/
inline void fromAddress(const Address &ztaddr,uint64_t nwid)
ZT_ALWAYS_INLINE void fromAddress(const Address &ztaddr,uint64_t nwid)
{
uint64_t m = ((uint64_t)firstOctetForNetwork(nwid)) << 40;
m |= ztaddr.toInt(); // a is 40 bits
@ -153,7 +153,7 @@ public:
*
* @param nwid Network ID
*/
inline Address toAddress(uint64_t nwid) const
ZT_ALWAYS_INLINE Address toAddress(uint64_t nwid) const
{
uint64_t a = _m & 0xffffffffffULL; // least significant 40 bits of MAC are formed from address
a ^= ((nwid >> 8) & 0xff) << 32; // ... XORed with bits 8-48 of the nwid in little-endian byte order, so unmask it
@ -168,7 +168,7 @@ public:
* @param nwid Network ID
* @return First octet of MAC for this network
*/
static inline unsigned char firstOctetForNetwork(uint64_t nwid)
static ZT_ALWAYS_INLINE unsigned char firstOctetForNetwork(uint64_t nwid)
{
unsigned char a = ((unsigned char)(nwid & 0xfe) | 0x02); // locally administered, not multicast, from LSB of network ID
return ((a == 0x52) ? 0x32 : a); // blacklist 0x52 since it's used by KVM, libvirt, and other popular virtualization engines... seems de-facto standard on Linux
@ -178,16 +178,16 @@ public:
* @param i Value from 0 to 5 (inclusive)
* @return Byte at said position (address interpreted in big-endian order)
*/
inline uint8_t operator[](unsigned int i) const { return (uint8_t)(_m >> (40 - (i * 8))); }
ZT_ALWAYS_INLINE uint8_t operator[](unsigned int i) const { return (uint8_t)(_m >> (40 - (i * 8))); }
/**
* @return 6, which is the number of bytes in a MAC, for container compliance
*/
inline unsigned int size() const { return 6; }
ZT_ALWAYS_INLINE unsigned int size() const { return 6; }
inline unsigned long hashCode() const { return (unsigned long)_m; }
ZT_ALWAYS_INLINE unsigned long hashCode() const { return (unsigned long)_m; }
inline char *toString(char buf[18]) const
ZT_ALWAYS_INLINE char *toString(char buf[18]) const
{
buf[0] = Utils::HEXCHARS[(_m >> 44) & 0xf];
buf[1] = Utils::HEXCHARS[(_m >> 40) & 0xf];
@ -210,23 +210,23 @@ public:
return buf;
}
inline MAC &operator=(const MAC &m)
ZT_ALWAYS_INLINE MAC &operator=(const MAC &m)
{
_m = m._m;
return *this;
}
inline MAC &operator=(const uint64_t m)
ZT_ALWAYS_INLINE MAC &operator=(const uint64_t m)
{
_m = m & 0xffffffffffffULL;
return *this;
}
inline bool operator==(const MAC &m) const { return (_m == m._m); }
inline bool operator!=(const MAC &m) const { return (_m != m._m); }
inline bool operator<(const MAC &m) const { return (_m < m._m); }
inline bool operator<=(const MAC &m) const { return (_m <= m._m); }
inline bool operator>(const MAC &m) const { return (_m > m._m); }
inline bool operator>=(const MAC &m) const { return (_m >= m._m); }
ZT_ALWAYS_INLINE bool operator==(const MAC &m) const { return (_m == m._m); }
ZT_ALWAYS_INLINE bool operator!=(const MAC &m) const { return (_m != m._m); }
ZT_ALWAYS_INLINE bool operator<(const MAC &m) const { return (_m < m._m); }
ZT_ALWAYS_INLINE bool operator<=(const MAC &m) const { return (_m <= m._m); }
ZT_ALWAYS_INLINE bool operator>(const MAC &m) const { return (_m > m._m); }
ZT_ALWAYS_INLINE bool operator>=(const MAC &m) const { return (_m >= m._m); }
private:
uint64_t _m;

View file

@ -426,25 +426,27 @@ public:
* <[...] physical destination address of packet>
* [... begin encrypted region ...]
* <[2] 16-bit reserved (legacy) field, always 0>
* <[2] 16-bit length of locator>
* <[...] locator for this node>
* <[2] 16-bit length of meta-data dictionary>
* <[...] meta-data dictionary>
* [... end encrypted region ...]
* <[48] HMAC-SHA384 of all fields to this point (as plaintext)>
*
* HELLO is sent in the clear as it is how peers share their identity
* public keys.
* HELLO is sent with authentication but without the usual encryption so
* that peers can exchange identities.
*
* Destination address is the actual wire address to which the packet
* was sent. See InetAddress::serialize() for format.
*
* Starting at "begin encrypted section" the reset of the packet is
* encrypted with Salsa20/12. This encryption is technically not
* absolutely required for security as nothing in this packet is
* very sensitive, but hiding the locator and other meta-data slightly
* improves privacy.
* encrypted with Salsa20/12. This is not the normal packet encryption
* and is technically not necessary as nothing in HELLO is secret. It
* exists merely to shield meta-data info from passive listeners to
* slightly improve privacy, and for backward compatibility with older
* nodes that required it.
*
* The 16-bit zero after encryption starts is for backward compatibility
* with pre-2.0 nodes.
* HELLO (and its OK response) ends with a large 384-bit HMAC to allow
* identity exchanges to be authenticated with additional strength beyond
* ordinary packet authentication.
*
* OK payload:
* <[8] HELLO timestamp field echo>
@ -453,7 +455,10 @@ public:
* <[1] software minor version>
* <[2] software revision>
* <[...] physical destination address of packet>
* <[2] 16-bit reserved field, always 0>
* <[2] 16-bit reserved (legacy) field, always 0>
* <[2] 16-bit length of meta-data dictionary>
* <[...] meta-data dictionary>
* <[48] HMAC-SHA384 of all fields to this point (as plaintext)>
*
* With the exception of the timestamp, the other fields pertain to the
* respondent who is sending OK and are not echoes.
@ -858,57 +863,20 @@ public:
VERB_USER_MESSAGE = 0x14,
/**
* Peer-to-peer propagated multicast packet:
* <[128] 1024-bit bloom filter>
* <[2] 16-bit perturbation coefficient to minimize bloom collisions>
* <[5] 40-bit start of range of recipient addresses>
* <[5] 40-bit end of range of recipient addresses>
* Encapsulate a ZeroTier packet for multicast distribution:
* [... begin signed portion ...]
* <[1] 8-bit flags>
* <[5] 40-bit ZeroTier address of sender>
* <[8] 64-bit network ID>
* <[6] MAC address of multicast group>
* <[4] 32-bit ADI for multicast group>
* <[6] MAC address of sender>
* <[2] 16-bit ethertype>
* <[2] 16-bit length of ethernet payload>
* <[...] ethernet payload>
* <[2] 16-bit length of inner payload>
* <[1] inner payload verb>
* <[...] inner payload data>
* [... end signed portion ...]
* <[2] 16-bit length of signature or 0 if unsigned>
* <[2] 16-bit length of signature or 0 if un-signed>
* [<[...] optional signature of multicast>]
*
* This packet contains a multicast that is to be peer-to-peer replicated.
* The range of recipient addresses is a subset of the global list of
* subscribers to this multicast group. As the packet is propagated bits
* in the bloom filter will be set. The sender may attempt to select a
* perturbation coefficient to prevent collisions within the selected
* recipient range.
* <[...] address (min prefix) list>
*/
VERB_MULTICAST = 0x16,
/**
* Negotiate a new ephemeral key:
* <[48] SHA384 of ephemeral key we currently have for recipient>
* [<[...] sender's ephemeral key>]
*
* REKEY is used to negotiate ephemeral keys. The first byte is a step
* number from 0 to 2. Here's a new session initiated by Alice:
*
* Alice: REKEY[0x000...,AliceKey] -> Bob
* Bob: REKEY[SHA384(AliceKey),BobKey] -> Alice
* Alice: REKEY[SHA384(BobKey),(omitted)] -> Bob
*
* REKEY messages will continue until both sides have acknowledged each
* others' keys. Either Alice or Bob can send REKEY to negotiate a new
* ephemeral key pair at any time.
*
* OK isn't used because this is an ongoing handshake until both sides
* agree on a key. REKEY triggers a REKEY in reply if the hash for the
* recipient's ephemeral public key doesn't match the ephemeral key it
* wants to use.
*/
VERB_REKEY = 0x17,
/**
* Encapsulate a full ZeroTier packet in another:
* <[...] raw encapsulated packet>
@ -918,7 +886,7 @@ public:
* where endpoint privacy is desired. Multiply nested ENCAP packets
* could allow ZeroTier to act as an onion router.
*/
VERB_ENCAP = 0x18
VERB_ENCAP = 0x17
// protocol max: 0x1f
};

View file

@ -42,21 +42,21 @@ namespace ZeroTier {
#ifdef __APPLE__
#define ZT_HAVE_NATIVE_SHA512 1
static inline void SHA512(void *digest,const void *data,unsigned int len)
static ZT_ALWAYS_INLINE void SHA512(void *digest,const void *data,unsigned int len)
{
CC_SHA512_CTX ctx;
CC_SHA512_Init(&ctx);
CC_SHA512_Update(&ctx,data,len);
CC_SHA512_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
}
static inline void SHA384(void *digest,const void *data,unsigned int len)
static ZT_ALWAYS_INLINE void SHA384(void *digest,const void *data,unsigned int len)
{
CC_SHA512_CTX ctx;
CC_SHA384_Init(&ctx);
CC_SHA384_Update(&ctx,data,len);
CC_SHA384_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
}
static inline void SHA384(void *digest,const void *data0,unsigned int len0,const void *data1,unsigned int len1)
static ZT_ALWAYS_INLINE void SHA384(void *digest,const void *data0,unsigned int len0,const void *data1,unsigned int len1)
{
CC_SHA512_CTX ctx;
CC_SHA384_Init(&ctx);
@ -69,21 +69,21 @@ static inline void SHA384(void *digest,const void *data0,unsigned int len0,const
#ifndef ZT_HAVE_NATIVE_SHA512
#ifdef ZT_USE_LIBCRYPTO
#define ZT_HAVE_NATIVE_SHA512 1
static inline void SHA512(void *digest,const void *data,unsigned int len)
static ZT_ALWAYS_INLINE void SHA512(void *digest,const void *data,unsigned int len)
{
SHA512_CTX ctx;
SHA512_Init(&ctx);
SHA512_Update(&ctx,data,len);
SHA512_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
}
static inline void SHA384(void *digest,const void *data,unsigned int len)
static ZT_ALWAYS_INLINE void SHA384(void *digest,const void *data,unsigned int len)
{
SHA512_CTX ctx;
SHA384_Init(&ctx);
SHA384_Update(&ctx,data,len);
SHA384_Final(reinterpret_cast<unsigned char *>(digest),&ctx);
}
static inline void SHA384(void *digest,const void *data0,unsigned int len0,const void *data1,unsigned int len1)
static ZT_ALWAYS_INLINE void SHA384(void *digest,const void *data0,unsigned int len0,const void *data1,unsigned int len1)
{
SHA512_CTX ctx;
SHA384_Init(&ctx);

View file

@ -27,21 +27,23 @@ template<typename T>
class ScopedPtr
{
public:
inline ScopedPtr(T *const p) : _p(p) {}
inline ~ScopedPtr() { delete _p; }
ZT_ALWAYS_INLINE ScopedPtr(T *const p) : _p(p) {}
ZT_ALWAYS_INLINE ~ScopedPtr() { delete _p; }
inline T *operator->() const { return _p; }
inline T &operator*() const { return *_p; }
inline operator bool() const { return (_p != (T *)0); }
inline T *ptr() const { return _p; }
ZT_ALWAYS_INLINE T *operator->() const { return _p; }
ZT_ALWAYS_INLINE T &operator*() const { return *_p; }
ZT_ALWAYS_INLINE operator bool() const { return (_p != (T *)0); }
ZT_ALWAYS_INLINE T *ptr() const { return _p; }
inline bool operator==(const ScopedPtr &p) const { return (_p == p._p); }
inline bool operator!=(const ScopedPtr &p) const { return (_p != p._p); }
inline bool operator==(T *const p) const { return (_p == p); }
inline bool operator!=(T *const p) const { return (_p != p); }
ZT_ALWAYS_INLINE bool operator==(const ScopedPtr &p) const { return (_p == p._p); }
ZT_ALWAYS_INLINE bool operator!=(const ScopedPtr &p) const { return (_p != p._p); }
ZT_ALWAYS_INLINE bool operator==(T *const p) const { return (_p == p); }
ZT_ALWAYS_INLINE bool operator!=(T *const p) const { return (_p != p); }
private:
inline ScopedPtr() {}
ZT_ALWAYS_INLINE ScopedPtr() {}
ZT_ALWAYS_INLINE ScopedPtr(const ScopedPtr &p) : _p(nullptr) {}
ZT_ALWAYS_INLINE ScopedPtr &operator=(const ScopedPtr &p) { return *this; }
T *const _p;
};

View file

@ -30,11 +30,11 @@ template<typename T>
class SharedPtr
{
public:
inline SharedPtr() : _ptr((T *)0) {}
inline SharedPtr(T *obj) : _ptr(obj) { ++obj->__refCount; }
inline SharedPtr(const SharedPtr &sp) : _ptr(sp._getAndInc()) {}
ZT_ALWAYS_INLINE SharedPtr() : _ptr((T *)0) {}
ZT_ALWAYS_INLINE SharedPtr(T *obj) : _ptr(obj) { ++obj->__refCount; }
ZT_ALWAYS_INLINE SharedPtr(const SharedPtr &sp) : _ptr(sp._getAndInc()) {}
inline ~SharedPtr()
ZT_ALWAYS_INLINE ~SharedPtr()
{
if (_ptr) {
if (--_ptr->__refCount <= 0)
@ -42,7 +42,7 @@ public:
}
}
inline SharedPtr &operator=(const SharedPtr &sp)
ZT_ALWAYS_INLINE SharedPtr &operator=(const SharedPtr &sp)
{
if (_ptr != sp._ptr) {
T *p = sp._getAndInc();
@ -63,7 +63,7 @@ public:
*
* @param ptr Naked pointer to assign
*/
inline void set(T *ptr)
ZT_ALWAYS_INLINE void set(T *ptr)
{
zero();
++ptr->__refCount;
@ -75,26 +75,26 @@ public:
*
* @param with Pointer to swap with
*/
inline void swap(SharedPtr &with)
ZT_ALWAYS_INLINE void swap(SharedPtr &with)
{
T *tmp = _ptr;
_ptr = with._ptr;
with._ptr = tmp;
}
inline operator bool() const { return (_ptr != (T *)0); }
inline T &operator*() const { return *_ptr; }
inline T *operator->() const { return _ptr; }
ZT_ALWAYS_INLINE operator bool() const { return (_ptr != (T *)0); }
ZT_ALWAYS_INLINE T &operator*() const { return *_ptr; }
ZT_ALWAYS_INLINE T *operator->() const { return _ptr; }
/**
* @return Raw pointer to held object
*/
inline T *ptr() const { return _ptr; }
ZT_ALWAYS_INLINE T *ptr() const { return _ptr; }
/**
* Set this pointer to NULL
*/
inline void zero()
ZT_ALWAYS_INLINE void zero()
{
if (_ptr) {
if (--_ptr->__refCount <= 0)
@ -106,22 +106,22 @@ public:
/**
* @return Number of references according to this object's ref count or 0 if NULL
*/
inline int references()
ZT_ALWAYS_INLINE int references()
{
if (_ptr)
return _ptr->__refCount.load();
return 0;
}
inline bool operator==(const SharedPtr &sp) const { return (_ptr == sp._ptr); }
inline bool operator!=(const SharedPtr &sp) const { return (_ptr != sp._ptr); }
inline bool operator>(const SharedPtr &sp) const { return (_ptr > sp._ptr); }
inline bool operator<(const SharedPtr &sp) const { return (_ptr < sp._ptr); }
inline bool operator>=(const SharedPtr &sp) const { return (_ptr >= sp._ptr); }
inline bool operator<=(const SharedPtr &sp) const { return (_ptr <= sp._ptr); }
ZT_ALWAYS_INLINE bool operator==(const SharedPtr &sp) const { return (_ptr == sp._ptr); }
ZT_ALWAYS_INLINE bool operator!=(const SharedPtr &sp) const { return (_ptr != sp._ptr); }
ZT_ALWAYS_INLINE bool operator>(const SharedPtr &sp) const { return (_ptr > sp._ptr); }
ZT_ALWAYS_INLINE bool operator<(const SharedPtr &sp) const { return (_ptr < sp._ptr); }
ZT_ALWAYS_INLINE bool operator>=(const SharedPtr &sp) const { return (_ptr >= sp._ptr); }
ZT_ALWAYS_INLINE bool operator<=(const SharedPtr &sp) const { return (_ptr <= sp._ptr); }
private:
inline T *_getAndInc() const
ZT_ALWAYS_INLINE T *_getAndInc() const
{
if (_ptr)
++_ptr->__refCount;

View file

@ -35,36 +35,36 @@ public:
typedef char * iterator;
typedef const char * const_iterator;
inline Str() { _l = 0; _s[0] = 0; }
inline Str(const Str &s)
ZT_ALWAYS_INLINE Str() { _l = 0; _s[0] = 0; }
ZT_ALWAYS_INLINE Str(const Str &s)
{
_l = s._l;
memcpy(_s,s._s,_l+1);
}
inline Str(const char *s)
ZT_ALWAYS_INLINE Str(const char *s)
{
_l = 0;
_s[0] = 0;
(*this) << s;
}
inline Str(const std::string &s)
ZT_ALWAYS_INLINE Str(const std::string &s)
{
*this = s;
}
inline Str &operator=(const Str &s)
ZT_ALWAYS_INLINE Str &operator=(const Str &s)
{
_l = s._l;
memcpy(_s,s._s,_l+1);
return *this;
}
inline Str &operator=(const char *s)
ZT_ALWAYS_INLINE Str &operator=(const char *s)
{
_l = 0;
_s[0] = 0;
return ((*this) << s);
}
inline Str &operator=(const std::string &s)
ZT_ALWAYS_INLINE Str &operator=(const std::string &s)
{
if (s.length() > ZT_STR_CAPACITY) {
_l = 0;
@ -78,23 +78,23 @@ public:
return *this;
}
inline char operator[](const unsigned int i) const
ZT_ALWAYS_INLINE char operator[](const unsigned int i) const
{
if (unlikely(i >= (unsigned int)_l))
throw ZT_EXCEPTION_OUT_OF_BOUNDS;
return _s[i];
}
inline void clear() { _l = 0; _s[0] = 0; }
inline const char *c_str() const { return _s; }
inline unsigned int length() const { return (unsigned int)_l; }
inline bool empty() const { return (_l == 0); }
inline iterator begin() { return (iterator)_s; }
inline iterator end() { return (iterator)(_s + (unsigned long)_l); }
inline const_iterator begin() const { return (const_iterator)_s; }
inline const_iterator end() const { return (const_iterator)(_s + (unsigned long)_l); }
ZT_ALWAYS_INLINE void clear() { _l = 0; _s[0] = 0; }
ZT_ALWAYS_INLINE const char *c_str() const { return _s; }
ZT_ALWAYS_INLINE unsigned int length() const { return (unsigned int)_l; }
ZT_ALWAYS_INLINE bool empty() const { return (_l == 0); }
ZT_ALWAYS_INLINE iterator begin() { return (iterator)_s; }
ZT_ALWAYS_INLINE iterator end() { return (iterator)(_s + (unsigned long)_l); }
ZT_ALWAYS_INLINE const_iterator begin() const { return (const_iterator)_s; }
ZT_ALWAYS_INLINE const_iterator end() const { return (const_iterator)(_s + (unsigned long)_l); }
inline Str &operator<<(const char *s)
ZT_ALWAYS_INLINE Str &operator<<(const char *s)
{
if (likely(s != (const char *)0)) {
unsigned long l = _l;
@ -111,8 +111,8 @@ public:
}
return *this;
}
inline Str &operator<<(const Str &s) { return ((*this) << s._s); }
inline Str &operator<<(const char c)
ZT_ALWAYS_INLINE Str &operator<<(const Str &s) { return ((*this) << s._s); }
ZT_ALWAYS_INLINE Str &operator<<(const char c)
{
if (unlikely(_l >= ZT_STR_CAPACITY)) {
_s[ZT_STR_CAPACITY] = 0;
@ -122,29 +122,29 @@ public:
_s[(unsigned long)_l] = 0;
return *this;
}
inline Str &operator<<(const unsigned long n)
ZT_ALWAYS_INLINE Str &operator<<(const unsigned long n)
{
char tmp[32];
Utils::decimal(n,tmp);
return ((*this) << tmp);
}
inline Str &operator<<(const unsigned int n)
ZT_ALWAYS_INLINE Str &operator<<(const unsigned int n)
{
char tmp[32];
Utils::decimal((unsigned long)n,tmp);
return ((*this) << tmp);
}
inline Str &operator<<(const Address &a)
ZT_ALWAYS_INLINE Str &operator<<(const Address &a)
{
char tmp[32];
return ((*this) << a.toString(tmp));
}
inline Str &operator<<(const InetAddress &a)
ZT_ALWAYS_INLINE Str &operator<<(const InetAddress &a)
{
char tmp[128];
return ((*this) << a.toString(tmp));
}
inline Str &operator<<(const MAC &a)
ZT_ALWAYS_INLINE Str &operator<<(const MAC &a)
{
char tmp[64];
return ((*this) << a.toString(tmp));
@ -171,31 +171,23 @@ public:
return *this;
}
inline operator bool() const { return (_l != 0); }
ZT_ALWAYS_INLINE operator bool() const { return (_l != 0); }
inline bool operator==(const Str &s) const { return ((_l == s._l)&&(memcmp(_s,s._s,_l) == 0)); }
inline bool operator!=(const Str &s) const { return ((_l != s._l)||(memcmp(_s,s._s,_l) != 0)); }
inline bool operator<(const Str &s) const { return ( (_l < s._l) ? true : ((_l == s._l) ? (memcmp(_s,s._s,_l) < 0) : false) ); }
inline bool operator>(const Str &s) const { return (s < *this); }
inline bool operator<=(const Str &s) const { return !(s < *this); }
inline bool operator>=(const Str &s) const { return !(*this < s); }
ZT_ALWAYS_INLINE bool operator==(const Str &s) const { return ((_l == s._l)&&(memcmp(_s,s._s,_l) == 0)); }
ZT_ALWAYS_INLINE bool operator!=(const Str &s) const { return ((_l != s._l)||(memcmp(_s,s._s,_l) != 0)); }
ZT_ALWAYS_INLINE bool operator<(const Str &s) const { return ( (_l < s._l) ? true : ((_l == s._l) ? (memcmp(_s,s._s,_l) < 0) : false) ); }
ZT_ALWAYS_INLINE bool operator>(const Str &s) const { return (s < *this); }
ZT_ALWAYS_INLINE bool operator<=(const Str &s) const { return !(s < *this); }
ZT_ALWAYS_INLINE bool operator>=(const Str &s) const { return !(*this < s); }
inline bool operator==(const char *s) const { return (strcmp(_s,s) == 0); }
inline bool operator!=(const char *s) const { return (strcmp(_s,s) != 0); }
inline bool operator<(const char *s) const { return (strcmp(_s,s) < 0); }
inline bool operator>(const char *s) const { return (strcmp(_s,s) > 0); }
inline bool operator<=(const char *s) const { return (strcmp(_s,s) <= 0); }
inline bool operator>=(const char *s) const { return (strcmp(_s,s) >= 0); }
ZT_ALWAYS_INLINE bool operator==(const char *s) const { return (strcmp(_s,s) == 0); }
ZT_ALWAYS_INLINE bool operator!=(const char *s) const { return (strcmp(_s,s) != 0); }
ZT_ALWAYS_INLINE bool operator<(const char *s) const { return (strcmp(_s,s) < 0); }
ZT_ALWAYS_INLINE bool operator>(const char *s) const { return (strcmp(_s,s) > 0); }
ZT_ALWAYS_INLINE bool operator<=(const char *s) const { return (strcmp(_s,s) <= 0); }
ZT_ALWAYS_INLINE bool operator>=(const char *s) const { return (strcmp(_s,s) >= 0); }
inline unsigned long hashCode() const
{
const char *p = _s;
unsigned long h = 0;
char c;
while ((c = *(p++)))
h = (31 * h) + (unsigned long)c;
return h;
}
ZT_ALWAYS_INLINE unsigned long hashCode() const { return Utils::hashString(_s,_l); }
private:
uint16_t _l;

View file

@ -18,7 +18,6 @@
#include <string.h>
#include <vector>
#include <stdexcept>
#include <algorithm>
#include <utility>
#include <set>
@ -33,9 +32,9 @@
#include "Mutex.hpp"
#include "InetAddress.hpp"
#include "Hashtable.hpp"
#include "Locator.hpp"
#include "SharedPtr.hpp"
#include "ScopedPtr.hpp"
#include "Str.hpp"
namespace ZeroTier {
@ -46,48 +45,17 @@ class RuntimeEnvironment;
*/
class Topology
{
private:
struct _RootRankingFunction
{
inline _RootRankingFunction() : bestRoot(),bestRootLatency(0xffff) {}
inline bool operator()(const SharedPtr<Peer> &peer,const std::vector<InetAddress> &phy)
{
const unsigned int lat = peer->latency(now);
if ((!bestRoot)||((lat <= bestRootLatency)&&(peer->getAppropriatePath(now,false)))) {
bestRoot = peer;
bestRootLatency = lat;
}
return true;
}
int64_t now;
SharedPtr<Peer> bestRoot;
unsigned int bestRootLatency;
};
inline void _updateRoots()
{
// assumes _roots_l is locked
_rootIdentities.clear();
Hashtable< Str,SharedPtr<const Locator> >::Iterator i(_roots);
Str *k = (Str *)0;
SharedPtr< const Locator > *v = (SharedPtr< const Locator > *)0;
while (i.next(k,v)) {
if (*v)
_rootIdentities.set((*v)->id(),true);
}
}
public:
inline Topology(const RuntimeEnvironment *renv,const Identity &myId) :
ZT_ALWAYS_INLINE Topology(const RuntimeEnvironment *renv,const Identity &myId) :
RR(renv),
_myIdentity(myId),
_numConfiguredPhysicalPaths(0),
_peers(64),
_paths(128),
_roots(8),
_rootIdentities(8),
_lastUpdatedBestRoot(0) {}
inline ~Topology() {}
_peers(128),
_paths(256)
{
}
ZT_ALWAYS_INLINE ~Topology() {}
/**
* Add a peer to database
@ -95,21 +63,16 @@ public:
* This will not replace existing peers. In that case the existing peer
* record is returned.
*
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param peer Peer to add
* @return New or existing peer (should replace 'peer')
*/
inline SharedPtr<Peer> add(const SharedPtr<Peer> &peer)
ZT_ALWAYS_INLINE SharedPtr<Peer> add(const SharedPtr<Peer> &peer)
{
SharedPtr<Peer> np;
{
Mutex::Lock _l(_peers_l);
SharedPtr<Peer> &hp = _peers[peer->address()];
if (!hp)
hp = peer;
np = hp;
}
return np;
Mutex::Lock _l(_peers_l);
SharedPtr<Peer> &hp = _peers[peer->address()];
if (!hp)
hp = peer;
return hp;
}
/**
@ -119,15 +82,11 @@ public:
* @param zta ZeroTier address of peer
* @return Peer or NULL if not found
*/
inline SharedPtr<Peer> get(const Address &zta)
ZT_ALWAYS_INLINE SharedPtr<Peer> get(const Address &zta)
{
if (zta == _myIdentity.address())
return SharedPtr<Peer>();
Mutex::Lock l1(_peers_l);
const SharedPtr<Peer> *const ap = _peers.get(zta);
if (ap)
return *ap;
return SharedPtr<Peer>();
return (ap) ? *ap : SharedPtr<Peer>();
}
/**
@ -135,7 +94,7 @@ public:
* @param zta ZeroTier address of peer
* @return Identity or NULL identity if not found
*/
inline Identity getIdentity(void *tPtr,const Address &zta)
ZT_ALWAYS_INLINE Identity getIdentity(void *tPtr,const Address &zta)
{
if (zta == _myIdentity.address()) {
return _myIdentity;
@ -155,7 +114,7 @@ public:
* @param r Remote address
* @return Pointer to canonicalized Path object
*/
inline SharedPtr<Path> getPath(const int64_t l,const InetAddress &r)
ZT_ALWAYS_INLINE SharedPtr<Path> getPath(const int64_t l,const InetAddress &r)
{
Mutex::Lock _l(_paths_l);
SharedPtr<Path> &p = _paths[Path::HashKey(l,r)];
@ -168,45 +127,17 @@ public:
* @param id Identity to check
* @return True if this identity corresponds to a root
*/
inline bool isRoot(const Identity &id) const
ZT_ALWAYS_INLINE bool isRoot(const Identity &id) const
{
Mutex::Lock l(_roots_l);
return _rootIdentities.contains(id);
}
/**
* Do periodic tasks such as database cleanup
*/
inline void doPeriodicTasks(int64_t now)
{
{
Mutex::Lock _l1(_peers_l);
Hashtable< Address,SharedPtr<Peer> >::Iterator i(_peers);
Address *a = (Address *)0;
SharedPtr<Peer> *p = (SharedPtr<Peer> *)0;
while (i.next(a,p)) {
if (!(*p)->alive(now)) {
_peers.erase(*a);
}
}
}
{
Mutex::Lock _l(_paths_l);
Hashtable< Path::HashKey,SharedPtr<Path> >::Iterator i(_paths);
Path::HashKey *k = (Path::HashKey *)0;
SharedPtr<Path> *p = (SharedPtr<Path> *)0;
while (i.next(k,p)) {
if (p->references() <= 1)
_paths.erase(*k);
}
}
Mutex::Lock l(_peers_l);
return (_roots.count(id) > 0);
}
/**
* @param now Current time
* @return Number of peers with active direct paths
*/
inline unsigned long countActive(int64_t now) const
ZT_ALWAYS_INLINE unsigned long countActive(const int64_t now) const
{
unsigned long cnt = 0;
Mutex::Lock _l(_peers_l);
@ -214,8 +145,7 @@ public:
Address *a = (Address *)0;
SharedPtr<Peer> *p = (SharedPtr<Peer> *)0;
while (i.next(a,p)) {
const SharedPtr<Path> pp((*p)->getAppropriatePath(now,false));
if (pp)
if ((*p)->getAppropriatePath(now,false))
++cnt;
}
return cnt;
@ -243,161 +173,6 @@ public:
}
}
/**
* Apply a function or function object to all roots
*
* This locks the root list during execution but other operations
* are fine.
*
* @param f Function to apply f(peer,IPs)
* @tparam F function or function object type
*/
template<typename F>
inline void eachRoot(F f)
{
Mutex::Lock l(_roots_l);
Hashtable< Str,Locator >::Iterator i(_roots);
Str *k = (Str *)0;
Locator *v = (Locator *)0;
while (i.next(k,v)) {
if (*v) {
for(std::vector<Identity>::const_iterator id(v->virt().begin());id!=v->virt().end();++id) {
const SharedPtr<Peer> *ap;
{
Mutex::Lock l2(_peers_l);
ap = _peers.get(id->address());
}
if (ap) {
if (!f(*ap,v->phy()))
return;
} else {
SharedPtr<Peer> p(new Peer(RR,_myIdentity,*id));
{
Mutex::Lock l2(_peers_l);
_peers.set(id->address(),p);
}
if (!f(p,v->phy()))
return;
}
}
}
}
}
/**
* @return Current best root (updated automatically each second)
*/
inline SharedPtr<Peer> root(const int64_t now)
{
Mutex::Lock l(_bestRoot_l);
if ((!_bestRoot)||((now - _lastUpdatedBestRoot) > 1000)) {
_lastUpdatedBestRoot = now;
_RootRankingFunction rrf;
rrf.now = now;
eachRoot(rrf);
_bestRoot = rrf.bestRoot;
}
return _bestRoot;
}
/**
* Iterate through all root names
*
* @param f Function of (Str,Locator)
*/
template<typename F>
inline void eachRootName(F f) const
{
Mutex::Lock l(_roots_l);
Str *k = (Str *)0;
Locator *v = (Locator *)0;
Hashtable< Str,Locator >::Iterator i(const_cast<Topology *>(this)->_roots);
while (i.next(k,v)) {
if (!f(*k,*v))
break;
}
}
/**
* Set or update dynamic root if new locator is newer
*
* This does not check signatures or internal validity of the locator.
*
* @param name DNS name used to retrive root or simply the address for static roots
* @param latestLocator Latest locator
* @return True if locator is newer or if a new entry was created
*/
inline bool setRoot(const Str &name,const SharedPtr<const Locator> &latestLocator)
{
Mutex::Lock l(_roots_l);
if (latestLocator) {
SharedPtr<const Locator> &ll = _roots[name];
if ((ll)&&(ll->timestamp() < latestLocator->timestamp())) {
ll = latestLocator;
_updateRoots();
_rootsModified = true;
return true;
}
} else if (!_roots.contains(name)) {
_roots.set(name,SharedPtr<const Locator>()); // no locator known yet, but add name to name list to trigger DNS refreshing
_rootsModified = true;
return true;
}
return false;
}
/**
* Remove a dynamic root entry
*/
inline void removeRoot(const Str &name)
{
Mutex::Lock l(_roots_l);
if (_roots.erase(name)) {
_updateRoots();
_rootsModified = true;
}
}
/**
* @param Current time
* @return ZT_RootList as returned by the external CAPI
*/
inline ZT_RootList *apiRoots(const int64_t now) const
{
ScopedPtr< Buffer<65536> > lbuf(new Buffer<65536>());
Mutex::Lock l2(_roots_l);
ZT_RootList *rl = (ZT_RootList *)malloc(sizeof(ZT_RootList) + (sizeof(ZT_Root) * _roots.size()) + (256 * _roots.size()) + (65536 * _roots.size()));
if (!rl)
return nullptr;
char *nptr = ((char *)rl) + sizeof(ZT_RootList) + (sizeof(ZT_Root) * _roots.size());
uint8_t *lptr = ((uint8_t *)nptr) + (256 * _roots.size());
unsigned int c = 0;
Str *k = (Str *)0;
SharedPtr<const Locator> *v = (SharedPtr<const Locator> *)0;
Hashtable< Str,SharedPtr<const Locator> >::Iterator i(const_cast<Topology *>(this)->_roots);
while (i.next(k,v)) {
Utils::scopy(nptr,256,k->c_str());
rl->roots[c].name = nptr;
nptr += 256;
if (*v) {
lbuf->clear();
(*v)->serialize(*lbuf);
memcpy(lptr,lbuf->unsafeData(),lbuf->size());
rl->roots[c].locator = lptr;
rl->roots[c].locatorSize = lbuf->size();
} else {
rl->roots[c].locator = nullptr;
rl->roots[c].locatorSize = 0;
}
lptr += 65536;
++c;
}
rl->count = c;
return rl;
}
/**
* Get the best relay to a given address, which may or may not be a root
*
@ -405,10 +180,12 @@ public:
* @param toAddr Destination address
* @return Best current relay or NULL if none
*/
inline SharedPtr<Peer> findRelayTo(const int64_t now,const Address &toAddr)
ZT_ALWAYS_INLINE SharedPtr<Peer> findRelayTo(const int64_t now,const Address &toAddr)
{
// TODO: in the future this will check 'mesh-like' relays and if enabled consult LF for other roots (for if this is a root)
return root(now);
Mutex::Lock l(_peers_l);
if (_rootPeers.empty())
return SharedPtr<Peer>();
return _rootPeers[0];
}
/**
@ -422,9 +199,8 @@ public:
Hashtable< Address,SharedPtr<Peer> >::Iterator i(*(const_cast<Hashtable< Address,SharedPtr<Peer> > *>(&_peers)));
Address *a = (Address *)0;
SharedPtr<Peer> *p = (SharedPtr<Peer> *)0;
while (i.next(a,p)) {
while (i.next(a,p))
allPeers.push_back(*p);
}
}
/**
@ -436,7 +212,7 @@ public:
* @param mtu Variable set to MTU
* @param trustedPathId Variable set to trusted path ID
*/
inline void getOutboundPathInfo(const InetAddress &physicalAddress,unsigned int &mtu,uint64_t &trustedPathId)
ZT_ALWAYS_INLINE void getOutboundPathInfo(const InetAddress &physicalAddress,unsigned int &mtu,uint64_t &trustedPathId)
{
for(unsigned int i=0,j=_numConfiguredPhysicalPaths;i<j;++i) {
if (_physicalPathConfig[i].first.containsAddress(physicalAddress)) {
@ -453,7 +229,7 @@ public:
* @param physicalAddress Physical endpoint address
* @return MTU
*/
inline unsigned int getOutboundPathMtu(const InetAddress &physicalAddress)
ZT_ALWAYS_INLINE unsigned int getOutboundPathMtu(const InetAddress &physicalAddress)
{
for(unsigned int i=0,j=_numConfiguredPhysicalPaths;i<j;++i) {
if (_physicalPathConfig[i].first.containsAddress(physicalAddress))
@ -468,7 +244,7 @@ public:
* @param physicalAddress Physical address to which we are sending the packet
* @return Trusted path ID or 0 if none (0 is not a valid trusted path ID)
*/
inline uint64_t getOutboundPathTrust(const InetAddress &physicalAddress)
ZT_ALWAYS_INLINE uint64_t getOutboundPathTrust(const InetAddress &physicalAddress)
{
for(unsigned int i=0,j=_numConfiguredPhysicalPaths;i<j;++i) {
if (_physicalPathConfig[i].first.containsAddress(physicalAddress))
@ -483,7 +259,7 @@ public:
* @param physicalAddress Originating physical address
* @param trustedPathId Trusted path ID from packet (from MAC field)
*/
inline bool shouldInboundPathBeTrusted(const InetAddress &physicalAddress,const uint64_t trustedPathId)
ZT_ALWAYS_INLINE bool shouldInboundPathBeTrusted(const InetAddress &physicalAddress,const uint64_t trustedPathId)
{
for(unsigned int i=0,j=_numConfiguredPhysicalPaths;i<j;++i) {
if ((_physicalPathConfig[i].second.trustedPathId == trustedPathId)&&(_physicalPathConfig[i].first.containsAddress(physicalAddress)))
@ -529,27 +305,105 @@ public:
}
}
/**
* Add a root server's identity to the root server set
*
* @param id Root server identity
*/
inline void addRoot(const Identity &id)
{
if (id == _myIdentity) return; // sanity check
Mutex::Lock l1(_peers_l);
std::pair< std::set<Identity>::iterator,bool > ir(_roots.insert(id));
if (ir.second) {
SharedPtr<Peer> &p = _peers[id.address()];
if (!p)
p.set(new Peer(RR,_myIdentity,id));
_rootPeers.push_back(p);
}
}
/**
* Remove a root server's identity from the root server set
*
* @param id Root server identity
* @return True if root found and removed, false if not found
*/
inline bool removeRoot(const Identity &id)
{
Mutex::Lock l1(_peers_l);
std::set<Identity>::iterator r(_roots.find(id));
if (r != _roots.end()) {
for(std::vector< SharedPtr<Peer> >::iterator p(_rootPeers.begin());p!=_rootPeers.end();++p) {
if ((*p)->identity() == id) {
_rootPeers.erase(p);
break;
}
}
_roots.erase(r);
return true;
}
return false;
}
/**
* Do periodic tasks such as database cleanup
*/
inline void doPeriodicTasks(const int64_t now)
{
{
Mutex::Lock l1(_peers_l);
std::sort(_rootPeers.begin(),_rootPeers.end(),_RootSortComparisonOperator(now));
Hashtable< Address,SharedPtr<Peer> >::Iterator i(_peers);
Address *a = (Address *)0;
SharedPtr<Peer> *p = (SharedPtr<Peer> *)0;
while (i.next(a,p)) {
if ( (!(*p)->alive(now)) && (_roots.count((*p)->identity()) == 0) )
_peers.erase(*a);
}
}
{
Mutex::Lock l1(_paths_l);
Hashtable< Path::HashKey,SharedPtr<Path> >::Iterator i(_paths);
Path::HashKey *k = (Path::HashKey *)0;
SharedPtr<Path> *p = (SharedPtr<Path> *)0;
while (i.next(k,p)) {
if (p->references() <= 1)
_paths.erase(*k);
}
}
}
private:
struct _RootSortComparisonOperator
{
ZT_ALWAYS_INLINE _RootSortComparisonOperator(const int64_t now) : _now(now) {}
ZT_ALWAYS_INLINE bool operator()(const SharedPtr<Peer> &a,const SharedPtr<Peer> &b)
{
const int64_t now = _now;
if (a->alive(now)) {
if (b->alive(now))
return (a->latency(now) < b->latency(now));
return true;
}
return false;
}
const int64_t _now;
};
const RuntimeEnvironment *const RR;
const Identity _myIdentity;
std::pair<InetAddress,ZT_PhysicalPathConfiguration> _physicalPathConfig[ZT_MAX_CONFIGURABLE_PATHS];
Mutex _peers_l;
Mutex _paths_l;
std::pair< InetAddress,ZT_PhysicalPathConfiguration > _physicalPathConfig[ZT_MAX_CONFIGURABLE_PATHS];
unsigned int _numConfiguredPhysicalPaths;
Hashtable< Address,SharedPtr<Peer> > _peers;
Hashtable< Path::HashKey,SharedPtr<Path> > _paths;
Hashtable< Str,SharedPtr<const Locator> > _roots;
Hashtable< Identity,bool > _rootIdentities;
bool _rootsModified;
int64_t _lastUpdatedBestRoot;
SharedPtr<Peer> _bestRoot;
Mutex _peers_l;
Mutex _paths_l;
Mutex _roots_l;
Mutex _bestRoot_l;
std::set< Identity > _roots; // locked by _peers_l
std::vector< SharedPtr<Peer> > _rootPeers; // locked by _peers_l
};
} // namespace ZeroTier

View file

@ -367,83 +367,11 @@ int b32d(const char *encoded,uint8_t *result,int bufSize)
return count;
}
unsigned int b64e(const uint8_t *in,unsigned int inlen,char *out,unsigned int outlen)
static uint64_t _secureRandom64()
{
static const char base64en[64] = { 'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z','a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z','0','1','2','3','4','5','6','7','8','9','+','/' };
unsigned int i = 0,j = 0;
uint8_t l = 0;
int s = 0;
for (;i<inlen;++i) {
uint8_t c = in[i];
switch (s) {
case 0:
s = 1;
if (j >= outlen) return 0;
out[j++] = base64en[(c >> 2) & 0x3f];
break;
case 1:
s = 2;
if (j >= outlen) return 0;
out[j++] = base64en[((l & 0x3) << 4) | ((c >> 4) & 0xf)];
break;
case 2:
s = 0;
if (j >= outlen) return 0;
out[j++] = base64en[((l & 0xf) << 2) | ((c >> 6) & 0x3)];
if (j >= outlen) return 0;
out[j++] = base64en[c & 0x3f];
break;
}
l = c;
}
switch (s) {
case 1:
if (j >= outlen) return 0;
out[j++] = base64en[(l & 0x3) << 4];
//out[j++] = '=';
//out[j++] = '=';
break;
case 2:
if (j >= outlen) return 0;
out[j++] = base64en[(l & 0xf) << 2];
//out[j++] = '=';
break;
}
if (j >= outlen) return 0;
out[j] = 0;
return j;
}
unsigned int b64d(const char *in,unsigned char *out,unsigned int outlen)
{
static const uint8_t base64de[256] = { 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,62,255,255,255,63,52,53,54,55,56,57,58,59,60,61,255,255,255,255,255,255,255,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,255,255,255,255,255,255,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,255,255,255,255,255 };
unsigned int i = 0;
unsigned int j = 0;
while ((in[i] != '=')&&(in[i] != 0)) {
if (j >= outlen)
break;
uint8_t c = base64de[(unsigned char)in[i]];
if (c != 255) {
switch (i & 0x3) {
case 0:
out[j] = (c << 2) & 0xff;
break;
case 1:
out[j++] |= (c >> 4) & 0x3;
out[j] = (c & 0xf) << 4;
break;
case 2:
out[j++] |= (c >> 2) & 0xf;
out[j] = (c & 0x3) << 6;
break;
case 3:
out[j++] |= c;
break;
}
}
++i;
}
return j;
uint64_t tmp = 0;
getSecureRandom(&tmp,sizeof(tmp));
return tmp;
}
#define ROL64(x,k) (((x) << (k)) | ((x) >> (64 - (k))))
@ -451,10 +379,10 @@ uint64_t random()
{
// https://en.wikipedia.org/wiki/Xorshift#xoshiro256**
static Mutex l;
static uint64_t s0 = Utils::getSecureRandom64();
static uint64_t s1 = Utils::getSecureRandom64();
static uint64_t s2 = Utils::getSecureRandom64();
static uint64_t s3 = Utils::getSecureRandom64();
static uint64_t s0 = _secureRandom64();
static uint64_t s1 = _secureRandom64();
static uint64_t s2 = _secureRandom64();
static uint64_t s3 = _secureRandom64();
l.lock();
const uint64_t result = ROL64(s1 * 5,7) * 9;

View file

@ -140,21 +140,25 @@ unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen
void getSecureRandom(void *buf,unsigned int bytes);
/**
* Get a 64-bit unsigned secure random number
* Encode string to base32
*
* @param data Binary data to encode
* @param length Length of data in bytes
* @param result Result buffer
* @param bufSize Size of result buffer
* @return Number of bytes written
*/
static ZT_ALWAYS_INLINE uint64_t getSecureRandom64()
{
uint64_t x;
getSecureRandom(&x,sizeof(x));
return x;
}
int b32e(const uint8_t *data,int length,char *result,int bufSize);
int b32d(const char *encoded, uint8_t *result, int bufSize);
static ZT_ALWAYS_INLINE unsigned int b64MaxEncodedSize(const unsigned int s) { return ((((s + 2) / 3) * 4) + 1); }
unsigned int b64e(const uint8_t *in,unsigned int inlen,char *out,unsigned int outlen);
unsigned int b64d(const char *in,uint8_t *out,unsigned int outlen);
/**
* Decode base32 string
*
* @param encoded C-string in base32 format (non-base32 characters are ignored)
* @param result Result buffer
* @param bufSize Size of result buffer
* @return Number of bytes written or -1 on error
*/
int b32d(const char *encoded, uint8_t *result, int bufSize);
/**
* Get a non-cryptographic random integer
@ -239,18 +243,34 @@ static ZT_ALWAYS_INLINE long long hexStrTo64(const char *s)
*/
bool scopy(char *dest,unsigned int len,const char *src);
/**
* Calculate a non-cryptographic hash of a byte string
*
* @param key Key to hash
* @param len Length in bytes
* @return Non-cryptographic hash suitable for use in a hash table
*/
static unsigned long ZT_ALWAYS_INLINE hashString(const void *restrict key,const unsigned int len)
{
const uint8_t *p = reinterpret_cast<const uint8_t *>(key);
unsigned long h = 0;
for (unsigned int i=0;i<len;++i) {
h += p[i];
h += (h << 10);
h ^= (h >> 6);
}
h += (h << 3);
h ^= (h >> 11);
h += (h << 15);
return h;
}
#ifdef __GNUC__
static ZT_ALWAYS_INLINE unsigned int countBits(const uint8_t v) { return (unsigned int)__builtin_popcount((unsigned int)v); }
static ZT_ALWAYS_INLINE unsigned int countBits(const uint16_t v) { return (unsigned int)__builtin_popcount((unsigned int)v); }
static ZT_ALWAYS_INLINE unsigned int countBits(const uint32_t v) { return (unsigned int)__builtin_popcountl((unsigned long)v); }
static ZT_ALWAYS_INLINE unsigned int countBits(const uint64_t v) { return (unsigned int)__builtin_popcountll((unsigned long long)v); }
#else
/**
* Count the number of bits set in an integer
*
* @param v Unsigned integer
* @return Number of bits set in this integer (0-bits in integer)
*/
template<typename T>
static ZT_ALWAYS_INLINE unsigned int countBits(T v)
{