Clean up some NAT traversal code, modify algorithm to eliminate the need for toggle-able options.

This commit is contained in:
Adam Ierymenko 2020-05-31 15:11:47 -07:00
parent dcc686a3a7
commit 20ae12d385
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
8 changed files with 262 additions and 229 deletions

View file

@ -137,17 +137,17 @@
/**
* Maximum number of queued endpoints to try per "pulse."
*/
#define ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE 4
#define ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE 16
/**
* Delay between calls to the pulse() method in Peer for each peer
*/
#define ZT_PEER_PULSE_INTERVAL (ZT_PATH_KEEPALIVE_PERIOD / 2)
#define ZT_PEER_PULSE_INTERVAL 8000
/**
* Interval between HELLOs to peers.
*/
#define ZT_PEER_HELLO_INTERVAL 120000LL
#define ZT_PEER_HELLO_INTERVAL 120000
/**
* Timeout for peers being alive

View file

@ -123,6 +123,38 @@ public:
}
}
/**
* Check whether this endpoint's address is the same as another.
*
* Right now this checks whether IPs are equal if both are IP based endpoints.
* Otherwise it checks for simple equality.
*
* @param ep Endpoint to check
* @return True if endpoints seem to refer to the same address/host
*/
ZT_INLINE bool isSameAddress(const Endpoint &ep) const noexcept
{
switch (this->type) {
case ZT_ENDPOINT_TYPE_IP:
case ZT_ENDPOINT_TYPE_IP_UDP:
case ZT_ENDPOINT_TYPE_IP_TCP:
case ZT_ENDPOINT_TYPE_IP_HTTP2:
switch(ep.type) {
case ZT_ENDPOINT_TYPE_IP:
case ZT_ENDPOINT_TYPE_IP_UDP:
case ZT_ENDPOINT_TYPE_IP_TCP:
case ZT_ENDPOINT_TYPE_IP_HTTP2:
return ip().ipsEqual(ep.ip());
default:
break;
}
break;
default:
break;
}
return (*this) == ep;
}
/**
* Get InetAddress if this type uses IPv4 or IPv6 addresses (undefined otherwise)
*

View file

@ -77,7 +77,6 @@ Node::Node(void *uPtr, void *tPtr, const struct ZT_Node_Callbacks *callbacks, in
m_lastHousekeepingRun(0),
m_lastNetworkHousekeepingRun(0),
m_now(now),
m_natMustDie(true),
m_online(false)
{
// Load this node's identity.
@ -112,9 +111,27 @@ Node::Node(void *uPtr, void *tPtr, const struct ZT_Node_Callbacks *callbacks, in
stateObjectPut(tPtr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, RR->publicIdentityStr, (unsigned int) strlen(RR->publicIdentityStr));
}
// 2X hash our identity private key(s) to obtain a symmetric key for encrypting
// locally cached data at rest (as a defense in depth measure). This is not used
// for any network level encryption or authentication.
uint8_t tmph[ZT_SHA384_DIGEST_SIZE];
RR->identity.hashWithPrivate(tmph);
SHA384(tmph, tmph, ZT_SHA384_DIGEST_SIZE);
RR->localCacheSymmetric.init(tmph);
Utils::burn(tmph, ZT_SHA384_DIGEST_SIZE);
// Generate a random sort order for privileged ports for use in NAT-t algorithms.
for(unsigned int i=0;i<1023;++i)
RR->randomPrivilegedPortOrder[i] = (uint16_t)(i + 1);
for(unsigned int i=0;i<512;++i) {
const unsigned int a = (unsigned int)Utils::random() % 1023;
const unsigned int b = (unsigned int)Utils::random() % 1023;
if (a != b) {
const uint16_t tmp = RR->randomPrivilegedPortOrder[a];
RR->randomPrivilegedPortOrder[a] = RR->randomPrivilegedPortOrder[b];
RR->randomPrivilegedPortOrder[b] = tmp;
}
}
// This constructs all the components of the ZeroTier core within a single contiguous memory container,
// which reduces memory fragmentation and may improve cache locality.
@ -186,29 +203,20 @@ ZT_ResultCode Node::processVirtualNetworkFrame(
struct _processBackgroundTasks_eachPeer
{
ZT_INLINE _processBackgroundTasks_eachPeer(const int64_t now_, Node *const parent_, void *const tPtr_) noexcept:
now(now_),
parent(parent_),
tPtr(tPtr_),
online(false),
rootsNotOnline()
{}
const int64_t now;
Node *const parent;
void *const tPtr;
bool online;
Vector<SharedPtr<Peer> > rootsNotOnline;
ZT_INLINE _processBackgroundTasks_eachPeer(const int64_t now_, void *const tPtr_) noexcept :
now(now_),
tPtr(tPtr_),
online(false)
{}
ZT_INLINE void operator()(const SharedPtr<Peer> &peer, const bool isRoot) noexcept
{
peer->pulse(tPtr, now, isRoot);
if (isRoot) {
if (peer->directlyConnected(now)) {
online = true;
} else {
rootsNotOnline.push_back(peer);
}
}
this->online |= (isRoot && peer->directlyConnected(now));
}
};
@ -222,22 +230,13 @@ ZT_ResultCode Node::processBackgroundTasks(void *tPtr, int64_t now, volatile int
if ((now - m_lastPeerPulse) >= ZT_PEER_PULSE_INTERVAL) {
m_lastPeerPulse = now;
try {
_processBackgroundTasks_eachPeer pf(now, this, tPtr);
_processBackgroundTasks_eachPeer pf(now, tPtr);
RR->topology->eachPeerWithRoot<_processBackgroundTasks_eachPeer &>(pf);
if (pf.online != m_online) {
m_online = pf.online;
postEvent(tPtr, m_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
}
if (m_online.exchange(pf.online) != pf.online)
postEvent(tPtr, pf.online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
RR->topology->rankRoots();
if (pf.online) {
// If we have at least one online root, request whois for roots not online.
// TODO
//for (Vector<Address>::const_iterator r(pf.rootsNotOnline.begin()); r != pf.rootsNotOnline.end(); ++r)
// RR->sw->requestWhois(tPtr,now,*r);
}
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
@ -246,33 +245,29 @@ ZT_ResultCode Node::processBackgroundTasks(void *tPtr, int64_t now, volatile int
// Perform network housekeeping and possibly request new certs and configs every ZT_NETWORK_HOUSEKEEPING_PERIOD.
if ((now - m_lastNetworkHousekeepingRun) >= ZT_NETWORK_HOUSEKEEPING_PERIOD) {
m_lastHousekeepingRun = now;
{
RWMutex::RLock l(m_networks_l);
for (Map<uint64_t, SharedPtr<Network> >::const_iterator i(m_networks.begin());i != m_networks.end();++i)
i->second->doPeriodicTasks(tPtr, now);
RWMutex::RLock l(m_networks_l);
for (Map<uint64_t, SharedPtr<Network> >::const_iterator i(m_networks.begin());i != m_networks.end();++i) {
i->second->doPeriodicTasks(tPtr, now);
}
}
// Clean up other stuff every ZT_HOUSEKEEPING_PERIOD.
if ((now - m_lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {
m_lastHousekeepingRun = now;
try {
// Clean up any old local controller auth memoizations. This is an
// optimization for network controllers to know whether to accept
// or trust nodes without doing an extra cert check.
m_localControllerAuthorizations_l.lock();
for (Map<p_LocalControllerAuth, int64_t>::iterator i(m_localControllerAuthorizations.begin());i != m_localControllerAuthorizations.end();) { // NOLINT(hicpp-use-auto,modernize-use-auto)
if ((i->second - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3))
m_localControllerAuthorizations.erase(i++);
else ++i;
}
m_localControllerAuthorizations_l.unlock();
RR->topology->doPeriodicTasks(tPtr, now);
RR->sa->clean(now);
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
// Clean up any old local controller auth memoizations. This is an
// optimization for network controllers to know whether to accept
// or trust nodes without doing an extra cert check.
m_localControllerAuthorizations_l.lock();
for (Map<p_LocalControllerAuth, int64_t>::iterator i(m_localControllerAuthorizations.begin());i != m_localControllerAuthorizations.end();) { // NOLINT(hicpp-use-auto,modernize-use-auto)
if ((i->second - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3))
m_localControllerAuthorizations.erase(i++);
else ++i;
}
m_localControllerAuthorizations_l.unlock();
RR->topology->doPeriodicTasks(tPtr, now);
RR->sa->clean(now);
}
*nextBackgroundTaskDeadline = now + ZT_TIMER_TASK_INTERVAL;

View file

@ -320,12 +320,6 @@ public:
ZT_INLINE const Identity &identity() const noexcept
{ return m_RR.identity; }
/**
* @return True if aggressive NAT-traversal mechanisms like scanning of <1024 ports are enabled
*/
ZT_INLINE bool natMustDie() const noexcept
{ return m_natMustDie; }
/**
* Check whether a local controller has authorized a member on a network
*
@ -407,9 +401,6 @@ private:
// This is the most recent value for time passed in via any of the core API methods.
std::atomic<int64_t> m_now;
// True if we are to use really intensive NAT-busting measures.
std::atomic<bool> m_natMustDie;
// True if at least one root appears reachable.
std::atomic<bool> m_online;
};

View file

@ -45,7 +45,7 @@ Peer::Peer(const RuntimeEnvironment *renv) :
Peer::~Peer()
{
Utils::burn(m_helloMacKey,sizeof(m_helloMacKey));
Utils::burn(m_helloMacKey, sizeof(m_helloMacKey));
}
bool Peer::init(const Identity &peerIdentity)
@ -57,10 +57,10 @@ bool Peer::init(const Identity &peerIdentity)
m_id = peerIdentity;
uint8_t k[ZT_SYMMETRIC_KEY_SIZE];
if (!RR->identity.agree(peerIdentity,k))
if (!RR->identity.agree(peerIdentity, k))
return false;
m_identityKey.set(new SymmetricKey(RR->node->now(),k));
Utils::burn(k,sizeof(k));
m_identityKey.set(new SymmetricKey(RR->node->now(), k));
Utils::burn(k, sizeof(k));
m_deriveSecondaryIdentityKeys();
@ -79,14 +79,14 @@ void Peer::received(
const int64_t now = RR->node->now();
m_lastReceive = now;
m_inMeter.log(now,payloadLength);
m_inMeter.log(now, payloadLength);
if (hops == 0) {
RWMutex::RMaybeWLock l(m_lock);
// If this matches an existing path, skip path learning stuff. For the small number
// of paths a peer will have linear scan is the fastest way to do lookup.
for (unsigned int i=0;i < m_alivePathCount;++i) {
for (unsigned int i = 0;i < m_alivePathCount;++i) {
if (m_paths[i] == path)
return;
}
@ -103,7 +103,7 @@ void Peer::received(
unsigned int newPathIdx = 0;
if (m_alivePathCount == ZT_MAX_PEER_NETWORK_PATHS) {
int64_t lastReceiveTimeMax = 0;
for (unsigned int i=0;i<m_alivePathCount;++i) {
for (unsigned int i = 0;i < m_alivePathCount;++i) {
if ((m_paths[i]->address().family() == path->address().family()) &&
(m_paths[i]->localSocket() == path->localSocket()) && // TODO: should be localInterface when multipath is integrated
(m_paths[i]->address().ipsEqual2(path->address()))) {
@ -130,25 +130,25 @@ void Peer::received(
RR->t->learnedNewPath(tPtr, 0x582fabdd, packetId, m_id, path->address(), old);
} else {
path->sent(now,hello(tPtr,path->localSocket(),path->address(),now));
RR->t->tryingNewPath(tPtr, 0xb7747ddd, m_id, path->address(), path->address(), packetId, (uint8_t)verb, m_id);
path->sent(now, hello(tPtr, path->localSocket(), path->address(), now));
RR->t->tryingNewPath(tPtr, 0xb7747ddd, m_id, path->address(), path->address(), packetId, (uint8_t) verb, m_id);
}
}
}
}
void Peer::send(void *tPtr,int64_t now,const void *data,unsigned int len) noexcept
void Peer::send(void *tPtr, int64_t now, const void *data, unsigned int len) noexcept
{
SharedPtr<Path> via(this->path(now));
if (via) {
via->send(RR,tPtr,data,len,now);
via->send(RR, tPtr, data, len, now);
} else {
const SharedPtr<Peer> root(RR->topology->root());
if ((root)&&(root.ptr() != this)) {
if ((root) && (root.ptr() != this)) {
via = root->path(now);
if (via) {
via->send(RR,tPtr,data,len,now);
root->relayed(now,len);
via->send(RR, tPtr, data, len, now);
root->relayed(now, len);
} else {
return;
}
@ -156,69 +156,69 @@ void Peer::send(void *tPtr,int64_t now,const void *data,unsigned int len) noexce
return;
}
}
sent(now,len);
sent(now, len);
}
unsigned int Peer::hello(void *tPtr,int64_t localSocket,const InetAddress &atAddress,const int64_t now)
unsigned int Peer::hello(void *tPtr, int64_t localSocket, const InetAddress &atAddress, const int64_t now)
{
Buf outp;
const uint64_t packetId = m_identityKey->nextMessage(RR->identity.address(),m_id.address());
int ii = Protocol::newPacket(outp,packetId,m_id.address(),RR->identity.address(),Protocol::VERB_HELLO);
const uint64_t packetId = m_identityKey->nextMessage(RR->identity.address(), m_id.address());
int ii = Protocol::newPacket(outp, packetId, m_id.address(), RR->identity.address(), Protocol::VERB_HELLO);
outp.wI8(ii,ZT_PROTO_VERSION);
outp.wI8(ii,ZEROTIER_VERSION_MAJOR);
outp.wI8(ii,ZEROTIER_VERSION_MINOR);
outp.wI16(ii,ZEROTIER_VERSION_REVISION);
outp.wI64(ii,(uint64_t)now);
outp.wO(ii,RR->identity);
outp.wO(ii,atAddress);
outp.wI8(ii, ZT_PROTO_VERSION);
outp.wI8(ii, ZEROTIER_VERSION_MAJOR);
outp.wI8(ii, ZEROTIER_VERSION_MINOR);
outp.wI16(ii, ZEROTIER_VERSION_REVISION);
outp.wI64(ii, (uint64_t) now);
outp.wO(ii, RR->identity);
outp.wO(ii, atAddress);
const int ivStart = ii;
outp.wR(ii,12);
outp.wR(ii, 12);
// LEGACY: the six reserved bytes after the IV exist for legacy compatibility with v1.x nodes.
// Once those are dead they'll become just reserved bytes for future use as flags etc.
outp.wI32(ii,0); // reserved bytes
outp.wI32(ii, 0); // reserved bytes
void *const legacyMoonCountStart = outp.unsafeData + ii;
outp.wI16(ii,0);
outp.wI16(ii, 0);
const uint64_t legacySalsaIv = packetId & ZT_CONST_TO_BE_UINT64(0xfffffffffffffff8ULL);
Salsa20(m_identityKey->secret,&legacySalsaIv).crypt12(legacyMoonCountStart,legacyMoonCountStart,2);
Salsa20(m_identityKey->secret, &legacySalsaIv).crypt12(legacyMoonCountStart, legacyMoonCountStart, 2);
const int cryptSectionStart = ii;
FCV<uint8_t,4096> md;
Dictionary::append(md,ZT_PROTO_HELLO_NODE_META_INSTANCE_ID,RR->instanceId);
outp.wI16(ii,(uint16_t)md.size());
outp.wB(ii,md.data(),(unsigned int)md.size());
FCV<uint8_t, 4096> md;
Dictionary::append(md, ZT_PROTO_HELLO_NODE_META_INSTANCE_ID, RR->instanceId);
outp.wI16(ii, (uint16_t) md.size());
outp.wB(ii, md.data(), (unsigned int) md.size());
if (unlikely((ii + ZT_HMACSHA384_LEN) > ZT_BUF_SIZE)) // sanity check: should be impossible
return 0;
AES::CTR ctr(m_helloCipher);
void *const cryptSection = outp.unsafeData + ii;
ctr.init(outp.unsafeData + ivStart,0,cryptSection);
ctr.crypt(cryptSection,ii - cryptSectionStart);
ctr.init(outp.unsafeData + ivStart, 0, cryptSection);
ctr.crypt(cryptSection, ii - cryptSectionStart);
ctr.finish();
HMACSHA384(m_helloMacKey,outp.unsafeData,ii,outp.unsafeData + ii);
HMACSHA384(m_helloMacKey, outp.unsafeData, ii, outp.unsafeData + ii);
ii += ZT_HMACSHA384_LEN;
// LEGACY: we also need Poly1305 for v1.x peers.
uint8_t polyKey[ZT_POLY1305_KEY_SIZE],perPacketKey[ZT_SALSA20_KEY_SIZE];
Protocol::salsa2012DeriveKey(m_identityKey->secret,perPacketKey,outp,ii);
Salsa20(perPacketKey,&packetId).crypt12(Utils::ZERO256,polyKey,sizeof(polyKey));
uint8_t polyKey[ZT_POLY1305_KEY_SIZE], perPacketKey[ZT_SALSA20_KEY_SIZE];
Protocol::salsa2012DeriveKey(m_identityKey->secret, perPacketKey, outp, ii);
Salsa20(perPacketKey, &packetId).crypt12(Utils::ZERO256, polyKey, sizeof(polyKey));
Poly1305 p1305(polyKey);
p1305.update(outp.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,ii - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START);
p1305.update(outp.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START, ii - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START);
uint64_t polyMac[2];
p1305.finish(polyMac);
Utils::storeAsIsEndian<uint64_t>(outp.unsafeData + ZT_PROTO_PACKET_MAC_INDEX,polyMac[0]);
Utils::storeAsIsEndian<uint64_t>(outp.unsafeData + ZT_PROTO_PACKET_MAC_INDEX, polyMac[0]);
if (likely(RR->node->putPacket(tPtr,localSocket,atAddress,outp.unsafeData,ii)))
if (likely(RR->node->putPacket(tPtr, localSocket, atAddress, outp.unsafeData, ii)))
return ii;
return 0;
}
void Peer::pulse(void *const tPtr,const int64_t now,const bool isRoot)
void Peer::pulse(void *const tPtr, const int64_t now, const bool isRoot)
{
RWMutex::Lock l(m_lock);
@ -226,7 +226,7 @@ void Peer::pulse(void *const tPtr,const int64_t now,const bool isRoot)
// to be sent. The latter happens every ZT_PEER_HELLO_INTERVAL or if a new
// ephemeral key pair is generated.
bool needHello = false;
if ( (m_vProto >= 11) && ( ((now - m_ephemeralPairTimestamp) >= (ZT_SYMMETRIC_KEY_TTL / 2)) || ((m_ephemeralKeys[0])&&(m_ephemeralKeys[0]->odometer() >= (ZT_SYMMETRIC_KEY_TTL_MESSAGES / 2))) ) ) {
if ((m_vProto >= 11) && (((now - m_ephemeralPairTimestamp) >= (ZT_SYMMETRIC_KEY_TTL / 2)) || ((m_ephemeralKeys[0]) && (m_ephemeralKeys[0]->odometer() >= (ZT_SYMMETRIC_KEY_TTL_MESSAGES / 2))))) {
m_ephemeralPair.generate();
needHello = true;
} else if ((now - m_lastSentHello) >= ZT_PEER_HELLO_INTERVAL) {
@ -241,83 +241,84 @@ void Peer::pulse(void *const tPtr,const int64_t now,const bool isRoot)
// If there are no living paths and nothing in the try queue, try addresses
// from any locator we have on file or that are fetched via the external API
// callback (if one was supplied).
if (m_locator) {
for(Vector<Endpoint>::const_iterator ep(m_locator->endpoints().begin());ep!=m_locator->endpoints().end();++ep) {
for (Vector<Endpoint>::const_iterator ep(m_locator->endpoints().begin());ep != m_locator->endpoints().end();++ep) {
if (ep->type == ZT_ENDPOINT_TYPE_IP_UDP) {
RR->t->tryingNewPath(tPtr, 0x84b22322, m_id, ep->ip(), InetAddress::NIL, 0, 0, Identity::NIL);
sent(now,m_sendProbe(tPtr,-1,ep->ip(),nullptr,0,now));
sent(now, m_sendProbe(tPtr, -1, ep->ip(), nullptr, 0, now));
}
}
}
InetAddress addr;
if (RR->node->externalPathLookup(tPtr, m_id, -1, addr)) {
if ((addr)&&(RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, -1, addr))) {
if ((addr) && (RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, -1, addr))) {
RR->t->tryingNewPath(tPtr, 0x84a10000, m_id, addr, InetAddress::NIL, 0, 0, Identity::NIL);
sent(now,m_sendProbe(tPtr,-1,addr,nullptr,0,now));
sent(now, m_sendProbe(tPtr, -1, addr, nullptr, 0, now));
}
}
}
} else {
// Attempt up to ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE queued addresses.
for (int k=0;k<ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE;++k) {
unsigned int attempts = 0;
do {
p_TryQueueItem &qi = m_tryQueue.front();
if (likely((now - qi.ts) < ZT_PATH_ALIVE_TIMEOUT)) {
if (qi.target.type == ZT_ENDPOINT_TYPE_IP_UDP) {
// Skip entry if it overlaps with any currently active IP.
for(unsigned int i=0;i<m_alivePathCount;++i) {
if (m_paths[i]->address().ipsEqual(qi.target.ip()))
goto skip_tryQueue_item;
}
if ((m_alivePathCount == 0) && (qi.natMustDie) && (RR->node->natMustDie())) {
// Attempt aggressive NAT traversal if both requested and enabled. This sends a probe
// to all ports under 1024, which assumes that the peer has bound to such a port and
// has attempted to initiate a connection through it. This can traverse a decent number
// of symmetric NATs at the cost of 32KiB per attempt and the potential to trigger IDS
// systems by looking like a port scan (because it is).
uint16_t ports[1023];
for (unsigned int i=0;i<1023;++i)
ports[i] = (uint64_t)(i + 1);
for (unsigned int i=0;i<512;++i) {
const uint64_t rn = Utils::random();
const unsigned int a = (unsigned int)rn % 1023;
const unsigned int b = (unsigned int)(rn >> 32U) % 1023;
if (a != b) {
const uint16_t tmp = ports[a];
ports[a] = ports[b];
ports[b] = tmp;
}
}
sent(now,m_sendProbe(tPtr, -1, qi.target.ip(), ports, 1023, now));
} else {
sent(now,m_sendProbe(tPtr, -1, qi.target.ip(), nullptr, 0, now));
}
if (qi.target.isInetAddr()) {
// Skip entry if it overlaps with any currently active IP.
for (unsigned int i = 0;i < m_alivePathCount;++i) {
if (m_paths[i]->address().ipsEqual(qi.target.ip()))
goto next_tryQueue_item;
}
}
skip_tryQueue_item:
if (qi.target.type == ZT_ENDPOINT_TYPE_IP_UDP) {
++attempts;
if (qi.privilegedPortTrialIteration < 0) {
sent(now, m_sendProbe(tPtr, -1, qi.target.ip(), nullptr, 0, now));
if ((qi.target.ip().isV4()) && (qi.target.ip().port() < 1024)) {
qi.privilegedPortTrialIteration = 0;
if (m_tryQueue.size() > 1)
m_tryQueue.splice(m_tryQueue.end(),m_tryQueue,m_tryQueue.begin());
continue;
} // else goto next_tryQueue_item;
} else if (qi.privilegedPortTrialIteration < 1023) {
uint16_t ports[ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE];
unsigned int pn = 0;
while ((pn < ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE) && (qi.privilegedPortTrialIteration < 1023)) {
const uint16_t p = RR->randomPrivilegedPortOrder[qi.privilegedPortTrialIteration++];
if ((unsigned int)p != qi.target.ip().port())
ports[pn++] = p;
}
sent(now, m_sendProbe(tPtr, -1, qi.target.ip(), ports, pn, now));
if (qi.privilegedPortTrialIteration < 1023) {
if (m_tryQueue.size() > 1)
m_tryQueue.splice(m_tryQueue.end(),m_tryQueue,m_tryQueue.begin());
continue;
} // else goto next_tryQueue_item;
}
}
next_tryQueue_item:
m_tryQueue.pop_front();
if (m_tryQueue.empty())
break;
}
} while ((attempts < ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE) && (!m_tryQueue.empty()));
}
// Do keepalive on all currently active paths, sending HELLO to the first
// if needHello is true and sending small keepalives to others.
uint64_t randomJunk = Utils::random();
for(unsigned int i=0;i<m_alivePathCount;++i) {
for (unsigned int i = 0;i < m_alivePathCount;++i) {
if (needHello) {
needHello = false;
const unsigned int bytes = hello(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), now);
m_paths[i]->sent(now, bytes);
sent(now,bytes);
sent(now, bytes);
m_lastSentHello = now;
} else if ((now - m_paths[i]->lastOut()) >= ZT_PATH_KEEPALIVE_PERIOD) {
m_paths[i]->send(RR, tPtr, reinterpret_cast<uint8_t *>(&randomJunk) + (i & 7U), 1, now);
sent(now,1);
sent(now, 1);
}
}
@ -327,49 +328,59 @@ skip_tryQueue_item:
if (root) {
const SharedPtr<Path> via(root->path(now));
if (via) {
const unsigned int bytes = hello(tPtr,via->localSocket(),via->address(),now);
via->sent(now,bytes);
root->relayed(now,bytes);
sent(now,bytes);
const unsigned int bytes = hello(tPtr, via->localSocket(), via->address(), now);
via->sent(now, bytes);
root->relayed(now, bytes);
sent(now, bytes);
m_lastSentHello = now;
}
}
}
}
void Peer::contact(void *tPtr,const int64_t now,const Endpoint &ep,const bool natMustDie)
void Peer::contact(void *tPtr, const int64_t now, const Endpoint &ep)
{
static uint8_t foo = 0;
RWMutex::Lock l(m_lock);
if (ep.isInetAddr()&&ep.ip().isV4()) {
// For IPv4 addresses we send a tiny packet with a low TTL, which helps to
// traverse some NAT types. It has no effect otherwise. It's important to
// send this right away in case this is a coordinated attempt via RENDEZVOUS.
RR->node->putPacket(tPtr,-1,ep.ip(),&foo,1,2);
++foo;
// See if there's already a path to this endpoint and if so ignore it.
if (ep.isInetAddr()) {
if ((now - m_lastPrioritizedPaths) > ZT_PEER_PRIORITIZE_PATHS_INTERVAL)
m_prioritizePaths(now);
for (unsigned int i = 0;i < m_alivePathCount;++i) {
if (m_paths[i]->address().ipsEqual(ep.ip()))
return;
}
}
for(List<p_TryQueueItem>::iterator i(m_tryQueue.begin());i!=m_tryQueue.end();++i) {
if (i->target == ep) {
i->ts = now;
i->natMustDie = natMustDie;
// For IPv4 addresses we send a tiny packet with a low TTL, which helps to
// traverse some NAT types. It has no effect otherwise.
if (ep.isInetAddr() && ep.ip().isV4()) {
++foo;
RR->node->putPacket(tPtr, -1, ep.ip(), &foo, 1, 2);
}
// Make sure address is not already in the try queue. If so just update it.
for (List<p_TryQueueItem>::iterator i(m_tryQueue.begin());i != m_tryQueue.end();++i) {
if (i->target.isSameAddress(ep)) {
i->target = ep;
i->privilegedPortTrialIteration = -1;
return;
}
}
m_tryQueue.push_back(p_TryQueueItem(now, ep, natMustDie));
m_tryQueue.push_back(p_TryQueueItem(ep));
}
void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now)
void Peer::resetWithinScope(void *tPtr, InetAddress::IpScope scope, int inetAddressFamily, int64_t now)
{
RWMutex::Lock l(m_lock);
unsigned int pc = 0;
for(unsigned int i=0;i<m_alivePathCount;++i) {
for (unsigned int i = 0;i < m_alivePathCount;++i) {
if ((m_paths[i]) && ((m_paths[i]->address().family() == inetAddressFamily) && (m_paths[i]->address().ipScope() == scope))) {
const unsigned int bytes = m_sendProbe(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), nullptr, 0, now);
m_paths[i]->sent(now, bytes);
sent(now,bytes);
sent(now, bytes);
} else if (pc != i) {
m_paths[pc++] = m_paths[i];
}
@ -391,7 +402,7 @@ bool Peer::directlyConnected(int64_t now)
}
}
void Peer::getAllPaths(Vector< SharedPtr<Path> > &paths)
void Peer::getAllPaths(Vector<SharedPtr<Path> > &paths)
{
RWMutex::RLock l(m_lock);
paths.clear();
@ -404,14 +415,14 @@ void Peer::save(void *tPtr) const
uint8_t buf[8 + ZT_PEER_MARSHAL_SIZE_MAX];
// Prefix each saved peer with the current timestamp.
Utils::storeBigEndian<uint64_t>(buf,(uint64_t)RR->node->now());
Utils::storeBigEndian<uint64_t>(buf, (uint64_t) RR->node->now());
const int len = marshal(buf + 8);
if (len > 0) {
uint64_t id[2];
id[0] = m_id.address().toInt();
id[1] = 0;
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_PEER,id,buf,(unsigned int)len + 8);
RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_PEER, id, buf, (unsigned int) len + 8);
}
}
@ -431,9 +442,9 @@ int Peer::marshal(uint8_t data[ZT_PEER_MARSHAL_SIZE_MAX]) const noexcept
// SECURITY: encryption in place is only to protect secrets if they are
// cached to local storage. It's not used over the wire. Dumb ECB is fine
// because secret keys are random and have no structure to reveal.
RR->localCacheSymmetric.encrypt(m_identityKey->secret,data + 6);
RR->localCacheSymmetric.encrypt(m_identityKey->secret + 22,data + 17);
RR->localCacheSymmetric.encrypt(m_identityKey->secret + 38,data + 33);
RR->localCacheSymmetric.encrypt(m_identityKey->secret, data + 6);
RR->localCacheSymmetric.encrypt(m_identityKey->secret + 22, data + 17);
RR->localCacheSymmetric.encrypt(m_identityKey->secret + 38, data + 33);
int p = 54;
@ -452,13 +463,13 @@ int Peer::marshal(uint8_t data[ZT_PEER_MARSHAL_SIZE_MAX]) const noexcept
data[p++] = 0;
}
Utils::storeBigEndian(data + p,(uint16_t)m_vProto);
Utils::storeBigEndian(data + p, (uint16_t) m_vProto);
p += 2;
Utils::storeBigEndian(data + p,(uint16_t)m_vMajor);
Utils::storeBigEndian(data + p, (uint16_t) m_vMajor);
p += 2;
Utils::storeBigEndian(data + p,(uint16_t)m_vMinor);
Utils::storeBigEndian(data + p, (uint16_t) m_vMinor);
p += 2;
Utils::storeBigEndian(data + p,(uint16_t)m_vRevision);
Utils::storeBigEndian(data + p, (uint16_t) m_vRevision);
p += 2;
data[p++] = 0;
@ -467,7 +478,7 @@ int Peer::marshal(uint8_t data[ZT_PEER_MARSHAL_SIZE_MAX]) const noexcept
return p;
}
int Peer::unmarshal(const uint8_t *restrict data,const int len) noexcept
int Peer::unmarshal(const uint8_t *restrict data, const int len) noexcept
{
RWMutex::Lock l(m_lock);
@ -480,12 +491,12 @@ int Peer::unmarshal(const uint8_t *restrict data,const int len) noexcept
if (Address(data + 1) == RR->identity.address()) {
uint8_t k[ZT_SYMMETRIC_KEY_SIZE];
static_assert(ZT_SYMMETRIC_KEY_SIZE == 48,"marshal() and unmarshal() must be revisited if ZT_SYMMETRIC_KEY_SIZE is changed");
RR->localCacheSymmetric.decrypt(data + 1,k);
RR->localCacheSymmetric.decrypt(data + 17,k + 16);
RR->localCacheSymmetric.decrypt(data + 33,k + 32);
m_identityKey.set(new SymmetricKey(RR->node->now(),k));
Utils::burn(k,sizeof(k));
static_assert(ZT_SYMMETRIC_KEY_SIZE == 48, "marshal() and unmarshal() must be revisited if ZT_SYMMETRIC_KEY_SIZE is changed");
RR->localCacheSymmetric.decrypt(data + 1, k);
RR->localCacheSymmetric.decrypt(data + 17, k + 16);
RR->localCacheSymmetric.decrypt(data + 33, k + 32);
m_identityKey.set(new SymmetricKey(RR->node->now(), k));
Utils::burn(k, sizeof(k));
}
int p = 49;
@ -497,10 +508,10 @@ int Peer::unmarshal(const uint8_t *restrict data,const int len) noexcept
if (!m_identityKey) {
uint8_t k[ZT_SYMMETRIC_KEY_SIZE];
if (!RR->identity.agree(m_id,k))
if (!RR->identity.agree(m_id, k))
return -1;
m_identityKey.set(new SymmetricKey(RR->node->now(),k));
Utils::burn(k,sizeof(k));
m_identityKey.set(new SymmetricKey(RR->node->now(), k));
Utils::burn(k, sizeof(k));
}
if (data[p] == 0) {
@ -520,11 +531,15 @@ int Peer::unmarshal(const uint8_t *restrict data,const int len) noexcept
if ((p + 10) > len)
return -1;
m_vProto = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
m_vMajor = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
m_vMinor = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
m_vRevision = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
p += 2 + (int)Utils::loadBigEndian<uint16_t>(data + p);
m_vProto = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
m_vMajor = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
m_vMinor = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
m_vRevision = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
p += 2 + (int) Utils::loadBigEndian<uint16_t>(data + p);
m_deriveSecondaryIdentityKeys();
@ -533,7 +548,7 @@ int Peer::unmarshal(const uint8_t *restrict data,const int len) noexcept
struct _PathPriorityComparisonOperator
{
ZT_INLINE bool operator()(const SharedPtr<Path> &a,const SharedPtr<Path> &b) const noexcept
ZT_INLINE bool operator()(const SharedPtr<Path> &a, const SharedPtr<Path> &b) const noexcept
{
// Sort in descending order of most recent receive time.
return (a->lastIn() > b->lastIn());
@ -550,7 +565,7 @@ void Peer::m_prioritizePaths(int64_t now)
std::sort(m_paths, m_paths + m_alivePathCount, _PathPriorityComparisonOperator());
// Let go of paths that have expired.
for (unsigned int i = 0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
for (unsigned int i = 0;i < ZT_MAX_PEER_NETWORK_PATHS;++i) {
if ((!m_paths[i]) || (!m_paths[i]->alive(now))) {
m_alivePathCount = i;
for (;i < ZT_MAX_PEER_NETWORK_PATHS;++i)
@ -561,33 +576,32 @@ void Peer::m_prioritizePaths(int64_t now)
}
}
unsigned int Peer::m_sendProbe(void *tPtr,int64_t localSocket,const InetAddress &atAddress,const uint16_t *ports,const unsigned int numPorts,int64_t now)
unsigned int Peer::m_sendProbe(void *tPtr, int64_t localSocket, const InetAddress &atAddress, const uint16_t *ports, const unsigned int numPorts, int64_t now)
{
// Assumes m_lock is locked
const SharedPtr<SymmetricKey> k(m_key());
const uint64_t packetId = k->nextMessage(RR->identity.address(),m_id.address());
const uint64_t packetId = k->nextMessage(RR->identity.address(), m_id.address());
uint8_t p[ZT_PROTO_MIN_PACKET_LENGTH + 1];
Utils::storeAsIsEndian<uint64_t>(p + ZT_PROTO_PACKET_ID_INDEX,packetId);
uint8_t p[ZT_PROTO_MIN_PACKET_LENGTH];
Utils::storeAsIsEndian<uint64_t>(p + ZT_PROTO_PACKET_ID_INDEX, packetId);
m_id.address().copyTo(p + ZT_PROTO_PACKET_DESTINATION_INDEX);
RR->identity.address().copyTo(p + ZT_PROTO_PACKET_SOURCE_INDEX);
p[ZT_PROTO_PACKET_FLAGS_INDEX] = 0;
p[ZT_PROTO_PACKET_VERB_INDEX] = Protocol::VERB_ECHO;
p[ZT_PROTO_PACKET_VERB_INDEX + 1] = 0; // arbitrary payload
Protocol::armor(p,ZT_PROTO_MIN_PACKET_LENGTH + 1,k,cipher());
Protocol::armor(p, ZT_PROTO_MIN_PACKET_LENGTH, k, cipher());
RR->expect->sending(packetId,now);
RR->expect->sending(packetId, now);
if (numPorts > 0) {
InetAddress tmp(atAddress);
for(unsigned int i=0;i<numPorts;++i) {
for (unsigned int i = 0;i < numPorts;++i) {
tmp.setPort(ports[i]);
RR->node->putPacket(tPtr,-1,tmp,p,ZT_PROTO_MIN_PACKET_LENGTH + 1);
RR->node->putPacket(tPtr, -1, tmp, p, ZT_PROTO_MIN_PACKET_LENGTH);
}
return ZT_PROTO_MIN_PACKET_LENGTH * numPorts;
} else {
RR->node->putPacket(tPtr,-1,atAddress,p,ZT_PROTO_MIN_PACKET_LENGTH + 1);
RR->node->putPacket(tPtr, -1, atAddress, p, ZT_PROTO_MIN_PACKET_LENGTH);
return ZT_PROTO_MIN_PACKET_LENGTH;
}
}
@ -595,10 +609,10 @@ unsigned int Peer::m_sendProbe(void *tPtr,int64_t localSocket,const InetAddress
void Peer::m_deriveSecondaryIdentityKeys() noexcept
{
uint8_t hk[ZT_SYMMETRIC_KEY_SIZE];
KBKDFHMACSHA384(m_identityKey->secret,ZT_KBKDF_LABEL_HELLO_DICTIONARY_ENCRYPT,0,0,hk);
KBKDFHMACSHA384(m_identityKey->secret, ZT_KBKDF_LABEL_HELLO_DICTIONARY_ENCRYPT, 0, 0, hk);
m_helloCipher.init(hk);
Utils::burn(hk,sizeof(hk));
KBKDFHMACSHA384(m_identityKey->secret,ZT_KBKDF_LABEL_PACKET_HMAC,0,0,m_helloMacKey);
Utils::burn(hk, sizeof(hk));
KBKDFHMACSHA384(m_identityKey->secret, ZT_KBKDF_LABEL_PACKET_HMAC, 0, 0, m_helloMacKey);
}
} // namespace ZeroTier

View file

@ -231,9 +231,8 @@ public:
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param now Current time
* @param ep Endpoint to attempt to contact
* @param bfg1024 Use BFG1024 brute force symmetric NAT busting algorithm if applicable
*/
void contact(void *tPtr, int64_t now, const Endpoint &ep, bool breakSymmetricBFG1024);
void contact(void *tPtr, int64_t now, const Endpoint &ep);
/**
* Reset paths within a given IP scope and address family
@ -524,15 +523,18 @@ private:
// Addresses recieved via PUSH_DIRECT_PATHS etc. that we are scheduled to try.
struct p_TryQueueItem
{
ZT_INLINE p_TryQueueItem() : ts(0), target(), natMustDie(false)
ZT_INLINE p_TryQueueItem() :
target(),
privilegedPortTrialIteration(-1)
{}
ZT_INLINE p_TryQueueItem(const int64_t now, const Endpoint &t, const bool nmd) : ts(now), target(t), natMustDie(nmd)
ZT_INLINE p_TryQueueItem(const Endpoint &t) :
target(t),
privilegedPortTrialIteration(-1)
{}
int64_t ts;
Endpoint target;
bool natMustDie;
int privilegedPortTrialIteration;
};
List<p_TryQueueItem> m_tryQueue;

View file

@ -627,24 +627,20 @@ enum Verb
/**
* Push of potential endpoints for direct communication:
* <[2] 16-bit number of paths>
* <[...] paths>
* <[2] 16-bit number of endpoints>
* <[...] endpoints>
*
* Path record format:
* <[1] 8-bit path flags>
* <[2] length of endpoint record>
* <[...] endpoint>
*
* The following fields are also included if the node is pre-2.x:
* <[1] address type (LEGACY)>
* <[1] address length in bytes (LEGACY)>
* <[...] address (LEGACY)>
* If the target node is pre-2.0 path records of the following format
* are sent instead of post-2.x endpoints:
* <[1] 8-bit path flags (zero)>
* <[2] length of extended path characteristics (0)>
* [<[...] extended path characteristics>]
* <[1] address type>
* <[1] address length in bytes>
* <[...] address>
*
* Path record flags:
* 0x01 - reserved (legacy)
* 0x02 - reserved (legacy)
* 0x04 - Symmetric NAT detected at sender side
* 0x08 - Request aggressive symmetric NAT traversal
* Recipients will add these endpoints to a queue of possible endpoints
* to try for a given peer.
*
* OK and ERROR are not generated.
*/

View file

@ -87,6 +87,9 @@ public:
// AES keyed with a hash of this node's identity secret keys for local cache encryption at rest (where needed).
AES localCacheSymmetric;
// Privileged ports from 1 to 1023 in a random order (for IPv4 NAT traversal)
uint16_t randomPrivilegedPortOrder[1023];
};
} // namespace ZeroTier