Bunch of new-gen serialization work

This commit is contained in:
Adam Ierymenko 2019-12-16 11:57:33 -08:00
parent 6267c67888
commit 3b94ef99ae
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
4 changed files with 336 additions and 70 deletions

View file

@ -37,34 +37,37 @@ public:
enum Type
{
NIL = 0, // NIL value
SOCKADDR = 1, // InetAddress
INETADDR = 1, // InetAddress (v4 or v6)
DNSNAME = 2, // DNS name and port that resolves to InetAddress
ZEROTIER = 3, // ZeroTier Address (for relaying and meshy behavior)
URL = 4 // URL for http/https/ws/etc. (not implemented yet)
URL = 4, // URL for http/https/ws/etc. (not implemented yet)
ETHERNET = 5 // 48-bit LAN-local Ethernet address
};
inline Endpoint() { memset(reinterpret_cast<void *>(this),0,sizeof(Endpoint)); }
inline Endpoint(const InetAddress &sa) : _t(SOCKADDR) { _v.sa = sa; }
inline Endpoint(const InetAddress &sa) : _t(INETADDR) { _v.sa = sa; }
inline Endpoint(const Address &zt,const uint8_t identityHash[ZT_IDENTITY_HASH_SIZE]) : _t(ZEROTIER) { _v.zt.a = zt.toInt(); memcpy(_v.zt.idh,identityHash,ZT_IDENTITY_HASH_SIZE); }
inline Endpoint(const char *name,const int port) : _t(DNSNAME) { Utils::scopy(_v.dns.name,sizeof(_v.dns.name),name); _v.dns.port = port; }
inline Endpoint(const char *url) : _t(URL) { Utils::scopy(_v.url,sizeof(_v.url),url); }
inline const InetAddress *sockaddr() const { return (_t == SOCKADDR) ? reinterpret_cast<const InetAddress *>(&_v.sa) : nullptr; }
inline const InetAddress *sockaddr() const { return (_t == INETADDR) ? reinterpret_cast<const InetAddress *>(&_v.sa) : nullptr; }
inline const char *dnsName() const { return (_t == DNSNAME) ? _v.dns.name : nullptr; }
inline const int dnsPort() const { return (_t == DNSNAME) ? _v.dns.port : -1; }
inline Address ztAddress() const { return (_t == ZEROTIER) ? Address(_v.zt.a) : Address(); }
inline const uint8_t *ztIdentityHash() const { return (_t == ZEROTIER) ? _v.zt.idh : nullptr; }
inline const char *url() const { return (_t == URL) ? _v.url : nullptr; }
inline MAC ethernet() const { return (_t == ETHERNET) ? MAC(_v.eth) : MAC(); }
inline Type type() const { return _t; }
inline unsigned int marshal(uint8_t data[ZT_ENDPOINT_MARSHAL_SIZE_MAX])
static inline int marshalSizeMax() { return ZT_ENDPOINT_MARSHAL_SIZE_MAX; }
inline int marshal(uint8_t data[ZT_ENDPOINT_MARSHAL_SIZE_MAX])
{
unsigned int p;
int p;
switch(_t) {
case SOCKADDR:
data[0] = (uint8_t)SOCKADDR;
case INETADDR:
data[0] = (uint8_t)INETADDR;
return 1 + reinterpret_cast<const InetAddress *>(&_v.sa)->marshal(data+1);
case DNSNAME:
data[0] = (uint8_t)DNSNAME;
@ -74,7 +77,7 @@ public:
break;
++p;
if (p == (ZT_ENDPOINT_MAX_NAME_SIZE+1))
return 0;
return -1;
}
data[p++] = (uint8_t)((_v.dns.port >> 8) & 0xff);
data[p++] = (uint8_t)(_v.dns.port & 0xff);
@ -96,45 +99,55 @@ public:
break;
++p;
if (p == (ZT_ENDPOINT_MAX_NAME_SIZE+1))
return 0;
return -1;
}
return p;
case ETHERNET:
data[0] = (uint8_t)ETHERNET;
data[1] = (uint8_t)((_v.eth >> 40) & 0xff);
data[2] = (uint8_t)((_v.eth >> 32) & 0xff);
data[3] = (uint8_t)((_v.eth >> 24) & 0xff);
data[4] = (uint8_t)((_v.eth >> 16) & 0xff);
data[5] = (uint8_t)((_v.eth >> 8) & 0xff);
data[6] = (uint8_t)(_v.eth & 0xff);
return 7;
default:
data[0] = (uint8_t)NIL;
return 1;
}
}
inline bool unmarshal(const uint8_t *restrict data,const unsigned int len)
inline int unmarshal(const uint8_t *restrict data,const int len)
{
if (len == 0)
return false;
unsigned int p;
if (len <= 0)
return -1;
int p;
switch((Type)data[0]) {
case NIL:
_t = NIL;
return true;
case SOCKADDR:
_t = SOCKADDR;
return 1;
case INETADDR:
_t = INETADDR;
return reinterpret_cast<InetAddress *>(&_v.sa)->unmarshal(data+1,len-1);
case DNSNAME:
if (len < 4)
return false;
return -1;
_t = DNSNAME;
p = 1;
for (;;) {
if ((_v.dns.name[p-1] = (char)data[p]) == 0)
if ((_v.dns.name[p-1] = (char)data[p]) == 0) {
++p;
break;
}
++p;
if ((p >= (ZT_ENDPOINT_MAX_NAME_SIZE+1))||(p >= (len-2)))
return;
}
_v.dns.port = ((int)data[p++]) << 8;
_v.dns.port |= (int)data[p++];
return true;
return p;
case ZEROTIER:
if (len != (ZT_IDENTITY_HASH_SIZE + 6))
return false;
if (len < (ZT_IDENTITY_HASH_SIZE + 6))
return -1;
_t = ZEROTIER;
_v.zt.a = ((uint64_t)data[1]) << 32;
_v.zt.a |= ((uint64_t)data[2]) << 24;
@ -142,20 +155,33 @@ public:
_v.zt.a |= ((uint64_t)data[4]) << 8;
_v.zt.a |= (uint64_t)data[5];
memcpy(_v.zt.idh,data + 6,ZT_IDENTITY_HASH_SIZE);
return true;
return (ZT_IDENTITY_HASH_SIZE + 6);
case URL:
if (len < 2)
return false;
return -1;
_t = URL;
p = 1;
for (;;) {
if ((_v.url[p-1] = (char)data[p]) == 0)
if ((_v.url[p-1] = (char)data[p]) == 0) {
++p;
break;
}
++p;
if ((p >= (ZT_ENDPOINT_MAX_NAME_SIZE+1))||(p >= len))
return;
return -1;
}
return true;
return p;
case ETHERNET:
if (len < 7)
return -1;
_t = ZEROTIER;
_v.eth = ((uint64_t)data[1]) << 40;
_v.eth |= ((uint64_t)data[2]) << 32;
_v.eth |= ((uint64_t)data[3]) << 24;
_v.eth |= ((uint64_t)data[4]) << 16;
_v.eth |= ((uint64_t)data[5]) << 8;
_v.eth |= (uint64_t)data[6];
return 7;
}
return false;
}
@ -173,6 +199,7 @@ private:
uint8_t idh[ZT_IDENTITY_HASH_SIZE];
} zt;
char url[ZT_ENDPOINT_MAX_NAME_SIZE];
uint64_t eth;
} _v;
};

View file

@ -27,6 +27,11 @@
#define ZT_IDENTITY_STRING_BUFFER_LENGTH 1024
#define ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE (ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE + ZT_C25519_SIGNATURE_LEN + ZT_ECC384_SIGNATURE_SIZE)
#define ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE (ZT_C25519_PRIVATE_KEY_LEN + ZT_ECC384_PRIVATE_KEY_SIZE)
#define ZT_IDENTITY_MARSHAL_SIZE_MAX (ZT_ADDRESS_LENGTH + 4 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE)
namespace ZeroTier {
/**
@ -241,6 +246,87 @@ public:
*/
inline const Address &address() const { return _address; }
static inline int marshalSizeMax() { return ZT_IDENTITY_MARSHAL_SIZE_MAX; }
inline int marshal(uint8_t restrict data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate = false) const
{
_address.copyTo(data,ZT_ADDRESS_LENGTH);
switch(_type) {
case C25519:
data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519;
memcpy(data + ZT_ADDRESS_LENGTH + 1,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
if ((includePrivate)&&(_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = ZT_C25519_PRIVATE_KEY_LEN;
memcpy(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN);
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN);
}
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1);
case P384:
data[ZT_ADDRESS_LENGTH] = (uint8_t)P384;
memcpy(data + ZT_ADDRESS_LENGTH + 1,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
if ((includePrivate)&&(_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_C25519_PRIVATE_KEY_LEN + ZT_ECC384_PRIVATE_KEY_SIZE;
memcpy(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,&_priv,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1);
}
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0;
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2);
}
return -1;
}
inline int unmarshal(const uint8_t *restrict data,const int len)
{
if (len < (ZT_ADDRESS_LENGTH + 1))
return -1;
unsigned int privlen;
switch((_type = (Type)data[ZT_ADDRESS_LENGTH])) {
case C25519:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1))
return -1;
memcpy(_pub.c25519,data + ZT_ADDRESS_LENGTH + 1,ZT_C25519_PUBLIC_KEY_LEN);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN];
if (privlen == ZT_C25519_PRIVATE_KEY_LEN) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN))
return -1;
_hasPrivate = true;
memcpy(_priv.c25519,data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,ZT_C25519_PRIVATE_KEY_LEN);
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN);
} else if (privlen == 0) {
_hasPrivate = false;
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1);
}
break;
case P384:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2))
return -1;
memcpy(&_pub,data + ZT_ADDRESS_LENGTH + 1,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE];
if (privlen == ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1))
return -1;
_hasPrivate = true;
memcpy(&_priv,data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE];
if (len < (privlen + (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1)))
return -1;
return (privlen + (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1));
} else if (privlen == 0) {
_hasPrivate = false;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2);
}
break;
}
return -1;
}
/**
* Serialize this identity (binary)
*
@ -274,7 +360,7 @@ public:
} else {
b.append((uint8_t)0);
}
b.append((uint16_t)0); // size of additional fields (should have included such a thing in v0!)
b.append((uint8_t)0); // size of additional fields (should have included such a thing in v0!)
break;
}
@ -332,7 +418,7 @@ public:
} else {
_hasPrivate = false;
}
p += b.template at<uint16_t>(p) + 2;
p += b.template at<uint8_t>(p) + 2;
break;
default:

View file

@ -489,7 +489,8 @@ struct InetAddress : public sockaddr_storage
*/
inline operator bool() const { return (ss_family != 0); }
inline unsigned int marshal(uint8_t restrict data[20]) const
static inline int marshalSizeMax() { return 19; }
inline int marshal(uint8_t restrict data[19]) const
{
switch(ss_family) {
case AF_INET:
@ -515,37 +516,36 @@ struct InetAddress : public sockaddr_storage
return 1;
}
}
inline bool unmarshal(const uint8_t *restrict data,const unsigned int len)
inline int unmarshal(const uint8_t *restrict data,const int len)
{
if (len) {
memset(this,0,sizeof(InetAddress));
switch(data[0]) {
case 0:
return true;
case 4:
if (len != 7)
return false;
reinterpret_cast<sockaddr_in *>(this)->sin_family = AF_INET;
reinterpret_cast<uint8_t *>(&(reinterpret_cast<sockaddr_in *>(this)->sin_addr.s_addr))[0] = data[1];
reinterpret_cast<uint8_t *>(&(reinterpret_cast<sockaddr_in *>(this)->sin_addr.s_addr))[1] = data[2];
reinterpret_cast<uint8_t *>(&(reinterpret_cast<sockaddr_in *>(this)->sin_addr.s_addr))[2] = data[3];
reinterpret_cast<uint8_t *>(&(reinterpret_cast<sockaddr_in *>(this)->sin_addr.s_addr))[3] = data[4];
reinterpret_cast<sockaddr_in *>(this)->sin_port = Utils::hton((((uint16_t)data[5]) << 8) | (uint16_t)data[6]);
return true;
case 6:
if (len != 19)
return false;
reinterpret_cast<sockaddr_in6 *>(this)->sin6_family = AF_INET6;
for(int i=0;i<16;i++)
(reinterpret_cast<sockaddr_in6 *>(this)->sin6_addr.s6_addr)[i] = data[i+1];
reinterpret_cast<sockaddr_in6 *>(this)->sin6_port = Utils::hton((((uint16_t)data[17]) << 8) | (uint16_t)data[18]);
return true;
default:
return false;
}
if (len <= 0)
return -1;
switch(data[0]) {
case 0:
return 1;
case 4:
if (len < 7)
return -1;
memset(this,0,sizeof(InetAddress));
reinterpret_cast<sockaddr_in *>(this)->sin_family = AF_INET;
reinterpret_cast<uint8_t *>(&(reinterpret_cast<sockaddr_in *>(this)->sin_addr.s_addr))[0] = data[1];
reinterpret_cast<uint8_t *>(&(reinterpret_cast<sockaddr_in *>(this)->sin_addr.s_addr))[1] = data[2];
reinterpret_cast<uint8_t *>(&(reinterpret_cast<sockaddr_in *>(this)->sin_addr.s_addr))[2] = data[3];
reinterpret_cast<uint8_t *>(&(reinterpret_cast<sockaddr_in *>(this)->sin_addr.s_addr))[3] = data[4];
reinterpret_cast<sockaddr_in *>(this)->sin_port = Utils::hton((((uint16_t)data[5]) << 8) | (uint16_t)data[6]);
return 7;
case 6:
if (len < 19)
return -1;
memset(this,0,sizeof(InetAddress));
reinterpret_cast<sockaddr_in6 *>(this)->sin6_family = AF_INET6;
for(int i=0;i<16;i++)
(reinterpret_cast<sockaddr_in6 *>(this)->sin6_addr.s6_addr)[i] = data[i+1];
reinterpret_cast<sockaddr_in6 *>(this)->sin6_port = Utils::hton((((uint16_t)data[17]) << 8) | (uint16_t)data[18]);
return 19;
default:
return -1;
}
return false;
}
template<unsigned int C>

View file

@ -19,6 +19,7 @@
#include "Constants.hpp"
#include "Endpoint.hpp"
#include "Identity.hpp"
#define ZT_LOCATOR_MAX_ENDPOINTS 8
@ -29,26 +30,178 @@ namespace ZeroTier {
/**
* Signed information about a node's location on the network
*
* A locator is a signed record that contains information about where a node
* may be found. It can contain static physical addresses or virtual ZeroTier
* addresses of nodes that can forward to the target node. Locator records
* can be stored in signed DNS TXT record sets, in LF by roots, in caches,
* etc.
* A locator contains long-lived endpoints for a node such as IP/port pairs,
* URLs, or other nodes, and is signed by the node it describes.
*/
class Locator
{
friend class SharedPtr<Locator>;
public:
inline Locator() : _ts(0),_signatureLength(0) {}
inline Locator() : _ts(0),_at(nullptr),_signatureLength(0) {}
inline ~Locator() { delete [] _at; }
inline Locator(const Locator &l) :
_ts(l._ts),
_id(l._id),
_at((l._endpointCount > 0) ? new Endpoint[l._endpointCount] : nullptr),
_endpointCount(l._endpointCount),
_signatureLength(l._signatureLength)
{
for(unsigned int i=0;i<_endpointCount;++i)
_at[i] = l._at[i];
memcpy(_signature,l._signature,_signatureLength);
}
inline Locator &operator=(const Locator &l)
{
_ts = l._ts;
_id = l._id;
delete [] _at;
_at = (l._endpointCount > 0) ? new Endpoint[l._endpointCount] : nullptr;
for(unsigned int i=0;i<l._endpointCount;++i)
_at[i] = l._at[i];
_endpointCount = l._endpointCount;
_signatureLength = l._signatureLength;
memcpy(_signature,l._signature,_signatureLength);
return *this;
}
inline int64_t timestamp() const { return _ts; }
inline const Identity &id() const { return _id; }
inline operator bool() const { return (_ts != 0); }
/**
* Create and sign a Locator
*
* @param ts Timestamp
* @param id Identity (must include secret to allow signing)
* @param at Array of Endpoint objects specifying where this peer might be found
* @param endpointCount Number of endpoints (max: ZT_LOCATOR_MAX_ENDPOINTS)
* @return True if init and sign were successful
*/
inline bool create(const int64_t ts,const Identity &id,const Endpoint *restrict at,const unsigned int endpointCount)
{
if ((endpointCount > ZT_LOCATOR_MAX_ENDPOINTS)||(!id.hasPrivate()))
return false;
_ts = ts;
_id = id;
if (_at)
delete [] _at;
_at = new Endpoint[endpointCount];
for(unsigned int i=0;i<endpointCount;++i)
_at[i] = at[i];
_endpointCount = endpointCount;
uint8_t signData[ZT_LOCATOR_MARSHAL_SIZE_MAX];
const unsigned int signLen = marshal(signData,true);
if (signLen == 0)
return false;
if ((_signatureLength = id.sign(signData,signLen,_signature,sizeof(_signature))) == 0)
return false;
return true;
}
/**
* Verify this Locator's validity and signature
*
* @return True if valid and signature checks out
*/
inline bool verify() const
{
if ((_ts == 0)||(_endpointCount > ZT_LOCATOR_MAX_ENDPOINTS)||(_signatureLength > ZT_SIGNATURE_BUFFER_SIZE))
return false;
uint8_t signData[ZT_LOCATOR_MARSHAL_SIZE_MAX];
const unsigned int signLen = marshal(signData,true);
return _id.verify(signData,signLen,_signature,_signatureLength);
}
inline operator bool() const { return (_ts != 0); }
static inline int marshalSizeMax() { return ZT_LOCATOR_MARSHAL_SIZE_MAX; }
inline int marshal(uint8_t restrict data[ZT_LOCATOR_MARSHAL_SIZE_MAX],const bool excludeSignature = false) const
{
if ((_endpointCount > ZT_LOCATOR_MAX_ENDPOINTS)||(_signatureLength > ZT_SIGNATURE_BUFFER_SIZE))
return -1;
data[0] = (uint8_t)((uint64_t)_ts >> 56);
data[1] = (uint8_t)((uint64_t)_ts >> 48);
data[2] = (uint8_t)((uint64_t)_ts >> 40);
data[3] = (uint8_t)((uint64_t)_ts >> 32);
data[4] = (uint8_t)((uint64_t)_ts >> 24);
data[5] = (uint8_t)((uint64_t)_ts >> 16);
data[6] = (uint8_t)((uint64_t)_ts >> 8);
data[7] = (uint8_t)((uint64_t)_ts);
int p = _id.marshal(data + 8,false);
if (p <= 0)
return -1;
p += 8;
data[p++] = (uint8_t)_endpointCount;
for(unsigned int i=0;i<_endpointCount;++i) {
int tmp = _at[i].marshal(data + p);
if (tmp < 0)
return -1;
p += tmp;
}
if (!excludeSignature) {
data[p++] = (uint8_t)(_signatureLength >> 8);
data[p++] = (uint8_t)_signatureLength;
memcpy(data + p,_signature,_signatureLength);
p += _signatureLength;
}
return p;
}
inline int unmarshal(const uint8_t *restrict data,const int len)
{
if (len <= 8)
return -1;
uint64_t ts = ((uint64_t)data[0] << 56);
ts |= ((uint64_t)data[1] << 48);
ts |= ((uint64_t)data[2] << 40);
ts |= ((uint64_t)data[3] << 32);
ts |= ((uint64_t)data[4] << 24);
ts |= ((uint64_t)data[5] << 16);
ts |= ((uint64_t)data[6] << 8);
ts |= (uint64_t)data[7];
_ts = (int64_t)ts;
int p = _id.unmarshal(data + 8,len - 8);
if (p <= 0)
return -1;
p += 8;
if (p >= len)
return -1;
unsigned int ec = (int)data[p++];
if (ec > ZT_LOCATOR_MAX_ENDPOINTS)
return -1;
if (_at)
delete [] _at;
_at = new Endpoint[ec];
for(int i=0;i<ec;++i) {
int tmp = _at[i].unmarshal(data + p,len - p);
if (tmp < 0)
return -1;
p += tmp;
}
if ((p + 2) > len)
return -1;
unsigned int sl = data[p++];
sl <<= 8;
sl |= data[p++];
if (sl > ZT_SIGNATURE_BUFFER_SIZE)
return -1;
_signatureLength = sl;
if ((p + sl) > len)
return -1;
memcpy(_signature,data + p,sl);
p += (int)sl;
return p;
}
private: