implemented proper windowing

This commit is contained in:
mamoniot 2022-12-25 11:35:07 -05:00
parent 3e90ca889d
commit 3cc407cecd
2 changed files with 147 additions and 82 deletions

View file

@ -1,4 +1,7 @@
use std::sync::atomic::{AtomicU32, AtomicU64, Ordering}; use std::sync::{
atomic::{AtomicU64, Ordering},
Mutex, RwLock,
};
use zerotier_crypto::random; use zerotier_crypto::random;
@ -23,7 +26,7 @@ impl Counter {
/// Get the value most recently used to send a packet. /// Get the value most recently used to send a packet.
#[inline(always)] #[inline(always)]
pub fn previous(&self) -> CounterValue { pub fn previous(&self) -> CounterValue {
CounterValue(self.0.load(Ordering::SeqCst)) CounterValue(self.0.load(Ordering::SeqCst).wrapping_sub(1))
} }
/// Get a counter value for the next packet being sent. /// Get a counter value for the next packet being sent.
@ -56,33 +59,95 @@ impl CounterValue {
} }
/// Incoming packet deduplication and replay protection window. /// Incoming packet deduplication and replay protection window.
pub(crate) struct CounterWindow(AtomicU32, [AtomicU32; COUNTER_MAX_DELTA as usize]); pub(crate) struct CounterWindowAlt(RwLock<(u32, [u32; COUNTER_MAX_DELTA as usize])>);
impl CounterWindow { impl CounterWindowAlt {
#[inline(always)] #[inline(always)]
pub fn new(initial: u32) -> Self { pub fn new(initial: u32) -> Self {
Self(AtomicU32::new(initial), std::array::from_fn(|_| AtomicU32::new(initial))) Self(RwLock::new((initial, std::array::from_fn(|_| initial))))
} }
#[inline(always)] #[inline(always)]
pub fn message_received(&self, received_counter_value: u32) -> bool { pub fn message_received(&self, received_counter_value: u32) -> bool {
let prev_max = self.0.fetch_max(received_counter_value, Ordering::AcqRel); let idx = (received_counter_value % COUNTER_MAX_DELTA) as usize;
if received_counter_value >= prev_max || prev_max.wrapping_sub(received_counter_value) <= COUNTER_MAX_DELTA { let data = self.0.read().unwrap();
// First, the most common case: counter is higher than the previous maximum OR is no older than MAX_DELTA. let max_counter_seen = data.0;
// In that case we accept the packet if it is not a duplicate. Duplicate check is this swap/compare. let lower_window = max_counter_seen.wrapping_sub(COUNTER_MAX_DELTA / 2);
self.1[(received_counter_value % COUNTER_MAX_DELTA) as usize].swap(received_counter_value, Ordering::AcqRel) let upper_window = max_counter_seen.wrapping_add(COUNTER_MAX_DELTA / 2);
!= received_counter_value if lower_window < upper_window {
} else if received_counter_value.wrapping_sub(prev_max) <= COUNTER_MAX_DELTA { if (lower_window <= received_counter_value) & (received_counter_value < upper_window) {
// If the received value is lower and wraps when the previous max is subtracted, this means the if data.1[idx] != received_counter_value {
// unsigned integer counter has wrapped. In that case we write the new lower-but-actually-higher "max" return true;
// value and then check the deduplication window. }
self.0.store(received_counter_value, Ordering::Release); }
self.1[(received_counter_value % COUNTER_MAX_DELTA) as usize].swap(received_counter_value, Ordering::AcqRel) } else if (lower_window <= received_counter_value) | (received_counter_value < upper_window) {
!= received_counter_value if data.1[idx] != received_counter_value {
} else { return true;
// If the received value is more than MAX_DELTA in the past and wrapping has NOT occurred, this packet }
// is too old and is rejected.
false
} }
return false;
}
#[inline(always)]
pub fn message_authenticated(&self, received_counter_value: u32) -> bool {
let idx = (received_counter_value % COUNTER_MAX_DELTA) as usize;
let mut data = self.0.write().unwrap();
let max_counter_seen = data.0;
let lower_window = max_counter_seen.wrapping_sub(COUNTER_MAX_DELTA / 2);
let upper_window = max_counter_seen.wrapping_add(COUNTER_MAX_DELTA / 2);
if lower_window < upper_window {
if (lower_window <= received_counter_value) & (received_counter_value < upper_window) {
if data.1[idx] != received_counter_value {
data.1[idx] = received_counter_value;
data.0 = max_counter_seen.max(received_counter_value);
return true;
}
}
} else if (lower_window <= received_counter_value) | (received_counter_value < upper_window) {
if data.1[idx] != received_counter_value {
data.1[idx] = received_counter_value;
data.0 = (max_counter_seen as i32).max(received_counter_value as i32) as u32;
return true;
}
}
return false;
}
}
pub(crate) struct CounterWindow(Mutex<(usize, [u64; COUNTER_MAX_DELTA as usize])>);
impl CounterWindow {
#[inline(always)]
pub fn new(initial: u32) -> Self {
let initial_nonce = (initial as u64).wrapping_shl(32);
Self(Mutex::new((0, std::array::from_fn(|_| initial_nonce))))
}
#[inline(always)]
pub fn message_received(&self, received_counter_value: u32, received_fragment_no: u8) -> bool {
let fragment_nonce = (received_counter_value as u64).wrapping_shl(32) | (received_fragment_no as u64);
//everything past this point must be atomic, i.e. these instructions must be run mutually exclusive to completion;
//atomic instructions are only ever atomic within themselves;
//sequentially consistent atomics do not guarantee that the thread is not preempted between individual atomic instructions
let mut data = self.0.lock().unwrap();
let mut is_in = false;
let mut is_gt_min = false;
for nonce in data.1 {
is_in |= nonce == fragment_nonce;
let udist = nonce.abs_diff(fragment_nonce);
let sdist = (nonce as i64).abs_diff(fragment_nonce as i64);
if udist < sdist {
is_gt_min |= nonce < fragment_nonce;
} else {
is_gt_min |= (nonce as i64) < (fragment_nonce as i64);
}
}
if !is_in & is_gt_min {
let idx = data.0;
data.1[idx] = fragment_nonce;
data.0 = (idx + 1) % (COUNTER_MAX_DELTA as usize);
return true;
}
return false;
} }
} }

View file

@ -113,6 +113,7 @@ pub struct Session<Application: ApplicationLayer> {
pub application_data: Application::Data, pub application_data: Application::Data,
send_counter: Counter, // Outgoing packet counter and nonce state send_counter: Counter, // Outgoing packet counter and nonce state
receive_window: CounterWindow, // Receive window for anti-replay and deduplication
psk: Secret<64>, // Arbitrary PSK provided by external code psk: Secret<64>, // Arbitrary PSK provided by external code
noise_ss: Secret<48>, // Static raw shared ECDH NIST P-384 key noise_ss: Secret<48>, // Static raw shared ECDH NIST P-384 key
header_check_cipher: Aes, // Cipher used for header check codes (not Noise related) header_check_cipher: Aes, // Cipher used for header check codes (not Noise related)
@ -136,7 +137,6 @@ struct SessionKey {
secret_fingerprint: [u8; 16], // First 128 bits of a SHA384 computed from the secret secret_fingerprint: [u8; 16], // First 128 bits of a SHA384 computed from the secret
creation_time: i64, // Time session key was established creation_time: i64, // Time session key was established
creation_counter: CounterValue, // Counter value at which session was established creation_counter: CounterValue, // Counter value at which session was established
receive_window: CounterWindow, // Receive window for anti-replay and deduplication
lifetime: KeyLifetime, // Key expiration time and counter lifetime: KeyLifetime, // Key expiration time and counter
ratchet_key: Secret<64>, // Ratchet key for deriving the next session key ratchet_key: Secret<64>, // Ratchet key for deriving the next session key
receive_key: Secret<AES_KEY_SIZE>, // Receive side AES-GCM key receive_key: Secret<AES_KEY_SIZE>, // Receive side AES-GCM key
@ -486,45 +486,50 @@ impl<Application: ApplicationLayer> ReceiveContext<Application> {
{ {
if let Some(session) = app.lookup_session(local_session_id) { if let Some(session) = app.lookup_session(local_session_id) {
if verify_header_check_code(incoming_packet, &session.header_check_cipher) { if verify_header_check_code(incoming_packet, &session.header_check_cipher) {
let canonical_header = CanonicalHeader::make(local_session_id, packet_type, counter); if session.receive_window.message_received(counter, fragment_no) {
if fragment_count > 1 { let canonical_header = CanonicalHeader::make(local_session_id, packet_type, counter);
if fragment_count <= (MAX_FRAGMENTS as u8) && fragment_no < fragment_count { if fragment_count > 1 {
let mut defrag = session.defrag.lock().unwrap(); if fragment_count <= (MAX_FRAGMENTS as u8) && fragment_no < fragment_count {
let fragment_gather_array = defrag.get_or_create_mut(&counter, || GatherArray::new(fragment_count)); let mut defrag = session.defrag.lock().unwrap();
if let Some(assembled_packet) = fragment_gather_array.add(fragment_no, incoming_packet_buf) { let fragment_gather_array = defrag.get_or_create_mut(&counter, || GatherArray::new(fragment_count));
drop(defrag); // release lock if let Some(assembled_packet) = fragment_gather_array.add(fragment_no, incoming_packet_buf) {
return self.receive_complete( drop(defrag); // release lock
app, return self.receive_complete(
remote_address, app,
&mut send, remote_address,
data_buf, &mut send,
counter, data_buf,
canonical_header.as_bytes(), counter,
assembled_packet.as_ref(), canonical_header.as_bytes(),
packet_type, assembled_packet.as_ref(),
Some(session), packet_type,
mtu, Some(session),
current_time, mtu,
); current_time,
);
}
} else {
unlikely_branch();
return Err(Error::InvalidPacket);
} }
} else { } else {
unlikely_branch(); return self.receive_complete(
return Err(Error::InvalidPacket); app,
remote_address,
&mut send,
data_buf,
counter,
canonical_header.as_bytes(),
&[incoming_packet_buf],
packet_type,
Some(session),
mtu,
current_time,
);
} }
} else { } else {
return self.receive_complete( unlikely_branch();
app, return Ok(ReceiveResult::Ignored);
remote_address,
&mut send,
data_buf,
counter,
canonical_header.as_bytes(),
&[incoming_packet_buf],
packet_type,
Some(session),
mtu,
current_time,
);
} }
} else { } else {
unlikely_branch(); unlikely_branch();
@ -658,36 +663,31 @@ impl<Application: ApplicationLayer> ReceiveContext<Application> {
session_key.return_receive_cipher(c); session_key.return_receive_cipher(c);
if aead_authentication_ok { if aead_authentication_ok {
if session_key.receive_window.message_received(counter) { // Select this key as the new default if it's newer than the current key.
// Select this key as the new default if it's newer than the current key. if p > 0
if p > 0 && state.session_keys[state.cur_session_key_idx]
&& state.session_keys[state.cur_session_key_idx] .as_ref()
.as_ref() .map_or(true, |old| old.creation_counter < session_key.creation_counter)
.map_or(true, |old| old.creation_counter < session_key.creation_counter) {
{ drop(state);
drop(state); let mut state = session.state.write().unwrap();
let mut state = session.state.write().unwrap(); state.cur_session_key_idx = key_idx;
state.cur_session_key_idx = key_idx; for i in 0..KEY_HISTORY_SIZE {
for i in 0..KEY_HISTORY_SIZE { if i != key_idx {
if i != key_idx { if let Some(old_key) = state.session_keys[key_idx].as_ref() {
if let Some(old_key) = state.session_keys[key_idx].as_ref() { // Release pooled cipher memory from old keys.
// Release pooled cipher memory from old keys. old_key.receive_cipher_pool.lock().unwrap().clear();
old_key.receive_cipher_pool.lock().unwrap().clear(); old_key.send_cipher_pool.lock().unwrap().clear();
old_key.send_cipher_pool.lock().unwrap().clear();
}
} }
} }
} }
}
if packet_type == PACKET_TYPE_DATA { if packet_type == PACKET_TYPE_DATA {
return Ok(ReceiveResult::OkData(&mut data_buf[..data_len])); return Ok(ReceiveResult::OkData(&mut data_buf[..data_len]));
} else {
unlikely_branch();
return Ok(ReceiveResult::Ok);
}
} else { } else {
unlikely_branch(); unlikely_branch();
return Ok(ReceiveResult::Ignored); return Ok(ReceiveResult::Ok);
} }
} }
} }