More built-in AES and GMAC primitive work.

This commit is contained in:
Adam Ierymenko 2020-02-14 09:05:48 -08:00
parent 08e06f9b8f
commit 5db0d9438c
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
4 changed files with 527 additions and 340 deletions

View file

@ -18,22 +18,176 @@ namespace ZeroTier {
// GMAC ---------------------------------------------------------------------------------------------------------------
namespace {
#if (defined(__GNUC__) || defined(__clang)) && (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64) || defined(__aarch64__))
#if defined(__SIZEOF_INT128__)
typedef unsigned __int128 uint128_t;
#else
typedef unsigned uint128_t __attribute__((mode(TI)));
#endif
ZT_ALWAYS_INLINE void s_bmul64(const uint64_t x,const uint64_t y,uint64_t &r_high,uint64_t &r_low) noexcept
{
static uint128_t m1 = (uint128_t)0x2108421084210842ULL << 64U | 0x1084210842108421ULL;
static uint128_t m2 = (uint128_t)0x4210842108421084ULL << 64U | 0x2108421084210842ULL;
static uint128_t m3 = (uint128_t)0x8421084210842108ULL << 64U | 0x4210842108421084ULL;
static uint128_t m4 = (uint128_t)0x0842108421084210ULL << 64U | 0x8421084210842108ULL;
static uint128_t m5 = (uint128_t)0x1084210842108421ULL << 64U | 0x0842108421084210ULL;
uint128_t x1 = x & m1;
uint128_t y1 = y & m1;
uint128_t x2 = x & m2;
uint128_t y2 = y & m2;
uint128_t x3 = x & m3;
uint128_t y3 = y & m3;
uint128_t x4 = x & m4;
uint128_t y4 = y & m4;
uint128_t x5 = x & m5;
uint128_t y5 = y & m5;
uint128_t z = (x1 * y1) ^ (x2 * y5) ^ (x3 * y4) ^ (x4 * y3) ^ (x5 * y2);
uint128_t r = z & m1;
z = (x1 * y2) ^ (x2 * y1) ^ (x3 * y5) ^ (x4 * y4) ^ (x5 * y3);
r |= z & m2;
z = (x1 * y3) ^ (x2 * y2) ^ (x3 * y1) ^ (x4 * y5) ^ (x5 * y4);
r |= z & m3;
z = (x1 * y4) ^ (x2 * y3) ^ (x3 * y2) ^ (x4 * y1) ^ (x5 * y5);
r |= z & m4;
z = (x1 * y5) ^ (x2 * y4) ^ (x3 * y3) ^ (x4 * y2) ^ (x5 * y1);
r |= z & m5;
r_high = (uint64_t)(r >> 64);
r_low = (uint64_t)r;
}
ZT_ALWAYS_INLINE void s_gfmul(const uint64_t h_high,const uint64_t h_low,uint64_t &y0, uint64_t &y1) noexcept
{
uint64_t z2_low,z2_high,z0_low,z0_high,z1a_low,z1a_high;
uint64_t y_high = Utils::ntoh(y0);
uint64_t y_low = Utils::ntoh(y1);
s_bmul64(y_high,h_high,z2_high,z2_low);
s_bmul64(y_low,h_low,z0_high,z0_low);
s_bmul64(y_high ^ y_low,h_high ^ h_low,z1a_high,z1a_low);
z1a_high ^= z2_high ^ z0_high;
z1a_low ^= z2_low ^ z0_low;
uint128_t z_high = ((uint128_t)z2_high << 64U) | (z2_low ^ z1a_high);
uint128_t z_low = (((uint128_t)z0_high << 64U) | z0_low) ^ (((uint128_t)z1a_low) << 64U);
z_high = (z_high << 1U) | (z_low >> 127U);
z_low <<= 1U;
z_low ^= (z_low << 127U) ^ (z_low << 126U) ^ (z_low << 121U);
z_high ^= z_low ^ (z_low >> 1U) ^ (z_low >> 2U) ^ (z_low >> 7U);
y1 = Utils::hton((uint64_t)z_high);
y0 = Utils::hton((uint64_t)(z_high >> 64U));
}
#else
ZT_ALWAYS_INLINE void s_bmul32(uint32_t x,uint32_t y,uint32_t &r_high,uint32_t &r_low) noexcept
{
const uint32_t m1 = (uint32_t)0x11111111;
const uint32_t m2 = (uint32_t)0x22222222;
const uint32_t m4 = (uint32_t)0x44444444;
const uint32_t m8 = (uint32_t)0x88888888;
uint32_t x0 = x & m1;
uint32_t x1 = x & m2;
uint32_t x2 = x & m4;
uint32_t x3 = x & m8;
uint32_t y0 = y & m1;
uint32_t y1 = y & m2;
uint32_t y2 = y & m4;
uint32_t y3 = y & m8;
uint64_t z0 = ((uint64_t)x0 * y0) ^ ((uint64_t)x1 * y3) ^ ((uint64_t)x2 * y2) ^ ((uint64_t)x3 * y1);
uint64_t z1 = ((uint64_t)x0 * y1) ^ ((uint64_t)x1 * y0) ^ ((uint64_t)x2 * y3) ^ ((uint64_t)x3 * y2);
uint64_t z2 = ((uint64_t)x0 * y2) ^ ((uint64_t)x1 * y1) ^ ((uint64_t)x2 * y0) ^ ((uint64_t)x3 * y3);
uint64_t z3 = ((uint64_t)x0 * y3) ^ ((uint64_t)x1 * y2) ^ ((uint64_t)x2 * y1) ^ ((uint64_t)x3 * y0);
z0 &= ((uint64_t)m1 << 32) | m1;
z1 &= ((uint64_t)m2 << 32) | m2;
z2 &= ((uint64_t)m4 << 32) | m4;
z3 &= ((uint64_t)m8 << 32) | m8;
uint64_t z = z0 | z1 | z2 | z3;
r_high = (uint32_t)(z >> 32);
r_low = (uint32_t)z;
}
ZT_ALWAYS_INLINE void s_gfmul(const uint64_t h_high,const uint64_t h_low,uint64_t &y0,uint64_t &y1) noexcept
{
uint32_t h_high_h = (uint32_t)(h_high >> 32);
uint32_t h_high_l = (uint32_t)h_high;
uint32_t h_low_h = (uint32_t)(h_low >> 32);
uint32_t h_low_l = (uint32_t)h_low;
uint32_t h_highXlow_h = h_high_h ^ h_low_h;
uint32_t h_highXlow_l = h_high_l ^ h_low_l;
uint64_t y_low = Utils::ntoh(y0);
uint64_t y_high = Utils::ntoh(y1);
uint32_t ci_low_h = (uint32_t)(y_high >> 32);
uint32_t ci_low_l = (uint32_t)y_high;
uint32_t ci_high_h = (uint32_t)(y_low >> 32);
uint32_t ci_high_l = (uint32_t)y_low;
uint32_t ci_highXlow_h = ci_high_h ^ ci_low_h;
uint32_t ci_highXlow_l = ci_high_l ^ ci_low_l;
uint32_t a_a_h,a_a_l,a_b_h,a_b_l,a_c_h,a_c_l;
s_bmul32(ci_high_h,h_high_h,a_a_h,a_a_l);
s_bmul32(ci_high_l,h_high_l,a_b_h,a_b_l);
s_bmul32(ci_high_h ^ ci_high_l,h_high_h ^ h_high_l,a_c_h,a_c_l);
a_c_h ^= a_a_h ^ a_b_h;
a_c_l ^= a_a_l ^ a_b_l;
a_a_l ^= a_c_h;
a_b_h ^= a_c_l;
uint32_t b_a_h,b_a_l,b_b_h,b_b_l,b_c_h,b_c_l;
s_bmul32(ci_low_h,h_low_h,b_a_h,b_a_l);
s_bmul32(ci_low_l,h_low_l,b_b_h,b_b_l);
s_bmul32(ci_low_h ^ ci_low_l,h_low_h ^ h_low_l,b_c_h,b_c_l);
b_c_h ^= b_a_h ^ b_b_h;
b_c_l ^= b_a_l ^ b_b_l;
b_a_l ^= b_c_h;
b_b_h ^= b_c_l;
uint32_t c_a_h,c_a_l,c_b_h,c_b_l,c_c_h,c_c_l;
s_bmul32(ci_highXlow_h,h_highXlow_h,c_a_h,c_a_l);
s_bmul32(ci_highXlow_l,h_highXlow_l,c_b_h,c_b_l);
s_bmul32(ci_highXlow_h ^ ci_highXlow_l, h_highXlow_h ^ h_highXlow_l,c_c_h,c_c_l);
c_c_h ^= c_a_h ^ c_b_h;
c_c_l ^= c_a_l ^ c_b_l;
c_a_l ^= c_c_h;
c_b_h ^= c_c_l;
c_a_h ^= b_a_h ^ a_a_h;
c_a_l ^= b_a_l ^ a_a_l;
c_b_h ^= b_b_h ^ a_b_h;
c_b_l ^= b_b_l ^ a_b_l;
uint64_t z_high_h = ((uint64_t)a_a_h << 32) | a_a_l;
uint64_t z_high_l = (((uint64_t)a_b_h << 32) | a_b_l) ^ (((uint64_t)c_a_h << 32) | c_a_l);
uint64_t z_low_h = (((uint64_t)b_a_h << 32) | b_a_l) ^ (((uint64_t)c_b_h << 32) | c_b_l);
uint64_t z_low_l = ((uint64_t)b_b_h << 32) | b_b_l;
z_high_h = z_high_h << 1 | z_high_l >> 63;
z_high_l = z_high_l << 1 | z_low_h >> 63;
z_low_h = z_low_h << 1 | z_low_l >> 63;
z_low_l <<= 1;
z_low_h ^= (z_low_l << 63) ^ (z_low_l << 62) ^ (z_low_l << 57);
z_high_h ^= z_low_h ^ (z_low_h >> 1) ^ (z_low_h >> 2) ^ (z_low_h >> 7);
z_high_l ^= z_low_l ^ (z_low_l >> 1) ^ (z_low_l >> 2) ^ (z_low_l >> 7) ^ (z_low_h << 63) ^ (z_low_h << 62) ^ (z_low_h << 57);
y0 = Utils::hton(z_high_h);
y1 = Utils::hton(z_high_l);
}
#endif
} // anonymous namespace
void AES::GMAC::update(const void *const data,unsigned int len) noexcept
{
const uint8_t *in = reinterpret_cast<const uint8_t *>(data);
_len += len;
#ifdef ZT_AES_AESNI
if (likely(Utils::CPUID.aes)) {
const uint8_t *d = reinterpret_cast<const uint8_t *>(data);
__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
const __m128i shuf = s_shuf;
// Handle anything left over from a previous run that wasn't a multiple of 16 bytes.
if (_rp) {
for(;;) {
if (!len)
return;
--len;
_r[_rp++] = *(d++);
_r[_rp++] = *(in++);
if (_rp == 16) {
y = _mult_block_aesni(shuf,_aes._k.ni.h,_mm_xor_si128(y,_mm_loadu_si128(reinterpret_cast<__m128i *>(_r))));
break;
@ -42,12 +196,12 @@ void AES::GMAC::update(const void *const data,unsigned int len) noexcept
}
while (len >= 64) {
__m128i d1 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(d));
__m128i d2 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(d + 16));
__m128i d3 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(d + 32));
__m128i d4 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(d + 48));
__m128i d1 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in));
__m128i d2 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 16));
__m128i d3 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 32));
__m128i d4 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 48));
d += 64;
in += 64;
len -= 64;
// This does 4X parallel mult_block via instruction level parallelism.
@ -128,18 +282,56 @@ void AES::GMAC::update(const void *const data,unsigned int len) noexcept
}
while (len >= 16) {
y = _mult_block_aesni(shuf,_aes._k.ni.h,_mm_xor_si128(y,_mm_loadu_si128(reinterpret_cast<const __m128i *>(d))));
d += 16;
y = _mult_block_aesni(shuf,_aes._k.ni.h,_mm_xor_si128(y,_mm_loadu_si128(reinterpret_cast<const __m128i *>(in))));
in += 16;
len -= 16;
}
_mm_storeu_si128(reinterpret_cast<__m128i *>(_y),y);
// Any overflow is cached for a later run or finish().
for(unsigned int i=0;i<len;++i)
_r[i] = d[i];
_r[i] = in[i];
_rp = len; // len is always less than 16 here
return;
}
#endif
const uint64_t h0 = _aes._k.sw.h[0];
const uint64_t h1 = _aes._k.sw.h[1];
uint64_t y0 = _y[0];
uint64_t y1 = _y[1];
if (_rp) {
for(;;) {
if (!len)
return;
--len;
_r[_rp++] = *(in++);
if (_rp == 16) {
y0 ^= Utils::loadAsIsEndian<uint64_t>(_r);
y1 ^= Utils::loadAsIsEndian<uint64_t>(_r + 8);
s_gfmul(h0,h1,y0,y1);
break;
}
}
}
while (len >= 16) {
y0 ^= Utils::loadAsIsEndian<uint64_t>(in);
y1 ^= Utils::loadAsIsEndian<uint64_t>(in + 8);
s_gfmul(h0,h1,y0,y1);
in += 16;
len -= 16;
}
for(unsigned int i=0;i<len;++i)
_r[i] = in[i];
_rp = len; // len is always less than 16 here
_y[0] = y0;
_y[1] = y1;
}
void AES::GMAC::finish(uint8_t tag[16]) noexcept
@ -148,6 +340,7 @@ void AES::GMAC::finish(uint8_t tag[16]) noexcept
if (likely(Utils::CPUID.aes)) {
__m128i y = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_y));
// Handle any remaining bytes, padding the last block with zeroes.
if (_rp) {
while (_rp < 16)
_r[_rp++] = 0;
@ -210,10 +403,39 @@ void AES::GMAC::finish(uint8_t tag[16]) noexcept
t4 = _mm_xor_si128(t4,t2);
t4 = _mm_xor_si128(t4,t3);
t4 = _mm_xor_si128(t4,t5);
_mm_storeu_si128(reinterpret_cast<__m128i *>(tag),_mm_xor_si128(_mm_shuffle_epi8(t4,s_shuf),encIV));
return;
}
#endif
const uint64_t h0 = _aes._k.sw.h[0];
const uint64_t h1 = _aes._k.sw.h[1];
uint64_t y0 = _y[0];
uint64_t y1 = _y[1];
if (_rp) {
while (_rp < 16)
_r[_rp++] = 0;
y0 ^= Utils::loadAsIsEndian<uint64_t>(_r);
y1 ^= Utils::loadAsIsEndian<uint64_t>(_r + 8);
s_gfmul(h0,h1,y0,y1);
}
y0 ^= Utils::hton((uint64_t)_len << 3U);
s_gfmul(h0,h1,y0,y1);
uint64_t iv2[2];
for(unsigned int i=0;i<12;++i) ((uint8_t *)iv2)[i] = _iv[i];
((uint8_t *)iv2)[12] = 0;
((uint8_t *)iv2)[13] = 0;
((uint8_t *)iv2)[14] = 0;
((uint8_t *)iv2)[15] = 1;
_aes._encryptSW((const uint8_t *)iv2,(uint8_t *)iv2);
Utils::storeAsIsEndian<uint64_t>(tag,iv2[0] ^ y0);
Utils::storeAsIsEndian<uint64_t>(tag + 8,iv2[1] ^ y1);
}
// AES-CTR ------------------------------------------------------------------------------------------------------------
@ -221,7 +443,7 @@ void AES::GMAC::finish(uint8_t tag[16]) noexcept
void AES::CTR::crypt(const void *const input,unsigned int len) noexcept
{
const uint8_t *in = reinterpret_cast<const uint8_t *>(input);
uint8_t *out = _out + _len;
uint8_t *out = _out;
#ifdef ZT_AES_AESNI
if (likely(Utils::CPUID.aes)) {
@ -230,19 +452,20 @@ void AES::CTR::crypt(const void *const input,unsigned int len) noexcept
_mm_prefetch(in + 128,_MM_HINT_T0);
uint64_t c0 = _ctr[0];
uint64_t c1 = _ctr[1];
uint64_t c1 = Utils::ntoh(_ctr[1]);
// Complete any unfinished blocks from previous calls to crypt().
if ((_len & 15U) != 0) {
unsigned int totalLen = _len;
if ((totalLen & 15U)) {
for (;;) {
if (!len) {
_ctr[0] = c0;
_ctr[1] = c1;
_ctr[1] = Utils::hton(c1);
return;
}
--len;
_out[_len++] = *(in++);
if ((_len & 15U) == 0) {
out[totalLen++] = *(in++);
if (!(totalLen & 15U)) {
__m128i d0 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
d0 = _mm_xor_si128(d0,_aes._k.ni.k[0]);
d0 = _mm_aesenc_si128(d0,_aes._k.ni.k[1]);
@ -259,16 +482,16 @@ void AES::CTR::crypt(const void *const input,unsigned int len) noexcept
d0 = _mm_aesenc_si128(d0,_aes._k.ni.k[12]);
d0 = _mm_aesenc_si128(d0,_aes._k.ni.k[13]);
d0 = _mm_aesenclast_si128(d0,_aes._k.ni.k[14]);
__m128i *const outblk = reinterpret_cast<__m128i *>(_out - 16);
__m128i *const outblk = reinterpret_cast<__m128i *>(out + (totalLen - 16));
_mm_storeu_si128(outblk,_mm_xor_si128(_mm_loadu_si128(outblk),d0));
c0 += (uint64_t)((++c1) == 0ULL);
out += 16;
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
break;
}
}
}
_len += len;
out += totalLen;
_len = (totalLen + len);
// This is the largest chunk size that will fit in SSE registers with four
// registers left over for round key data and temporaries.
@ -278,7 +501,7 @@ void AES::CTR::crypt(const void *const input,unsigned int len) noexcept
_mm_prefetch(in + 320,_MM_HINT_T0);
__m128i d0,d1,d2,d3,d4,d5,d6,d7,d8,d9,d10,d11;
if (likely((c1 + 12ULL) > c1)) {
if (likely(c1 < 0xfffffffffffffff4ULL)) {
d0 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
d1 = _mm_set_epi64x((long long)Utils::hton(c1 + 1ULL),(long long)c0);
d2 = _mm_set_epi64x((long long)Utils::hton(c1 + 2ULL),(long long)c0);
@ -294,73 +517,99 @@ void AES::CTR::crypt(const void *const input,unsigned int len) noexcept
c1 += 12;
} else {
d0 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d1 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d2 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d3 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d4 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d5 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d6 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d7 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d8 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d9 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d10 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d11 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
}
{
__m128i k = _aes._k.ni.k[0];
d0 = _mm_xor_si128(d0,k);
d1 = _mm_xor_si128(d1,k);
d2 = _mm_xor_si128(d2,k);
d3 = _mm_xor_si128(d3,k);
d4 = _mm_xor_si128(d4,k);
d5 = _mm_xor_si128(d5,k);
d6 = _mm_xor_si128(d6,k);
d7 = _mm_xor_si128(d7,k);
d8 = _mm_xor_si128(d8,k);
d9 = _mm_xor_si128(d9,k);
d10 = _mm_xor_si128(d10,k);
d11 = _mm_xor_si128(d11,k);
for (int r = 1; r < 14; ++r) {
k = _aes._k.ni.k[r];
d0 = _mm_aesenc_si128(d0,k);
d1 = _mm_aesenc_si128(d1,k);
d2 = _mm_aesenc_si128(d2,k);
d3 = _mm_aesenc_si128(d3,k);
d4 = _mm_aesenc_si128(d4,k);
d5 = _mm_aesenc_si128(d5,k);
d6 = _mm_aesenc_si128(d6,k);
d7 = _mm_aesenc_si128(d7,k);
d8 = _mm_aesenc_si128(d8,k);
d9 = _mm_aesenc_si128(d9,k);
d10 = _mm_aesenc_si128(d10,k);
d11 = _mm_aesenc_si128(d11,k);
__m128i k0 = _aes._k.ni.k[0];
__m128i k1 = _aes._k.ni.k[1];
d0 = _mm_xor_si128(d0,k0);
d1 = _mm_xor_si128(d1,k0);
d2 = _mm_xor_si128(d2,k0);
d3 = _mm_xor_si128(d3,k0);
d4 = _mm_xor_si128(d4,k0);
d5 = _mm_xor_si128(d5,k0);
d6 = _mm_xor_si128(d6,k0);
d7 = _mm_xor_si128(d7,k0);
d8 = _mm_xor_si128(d8,k0);
d9 = _mm_xor_si128(d9,k0);
d10 = _mm_xor_si128(d10,k0);
d11 = _mm_xor_si128(d11,k0);
d0 = _mm_aesenc_si128(d0,k1);
d1 = _mm_aesenc_si128(d1,k1);
d2 = _mm_aesenc_si128(d2,k1);
d3 = _mm_aesenc_si128(d3,k1);
d4 = _mm_aesenc_si128(d4,k1);
d5 = _mm_aesenc_si128(d5,k1);
d6 = _mm_aesenc_si128(d6,k1);
d7 = _mm_aesenc_si128(d7,k1);
d8 = _mm_aesenc_si128(d8,k1);
d9 = _mm_aesenc_si128(d9,k1);
d10 = _mm_aesenc_si128(d10,k1);
d11 = _mm_aesenc_si128(d11,k1);
for (int r=2;r<14;r+=2) {
k0 = _aes._k.ni.k[r];
k1 = _aes._k.ni.k[r+1];
d0 = _mm_aesenc_si128(d0,k0);
d1 = _mm_aesenc_si128(d1,k0);
d2 = _mm_aesenc_si128(d2,k0);
d3 = _mm_aesenc_si128(d3,k0);
d4 = _mm_aesenc_si128(d4,k0);
d5 = _mm_aesenc_si128(d5,k0);
d6 = _mm_aesenc_si128(d6,k0);
d7 = _mm_aesenc_si128(d7,k0);
d8 = _mm_aesenc_si128(d8,k0);
d9 = _mm_aesenc_si128(d9,k0);
d10 = _mm_aesenc_si128(d10,k0);
d11 = _mm_aesenc_si128(d11,k0);
d0 = _mm_aesenc_si128(d0,k1);
d1 = _mm_aesenc_si128(d1,k1);
d2 = _mm_aesenc_si128(d2,k1);
d3 = _mm_aesenc_si128(d3,k1);
d4 = _mm_aesenc_si128(d4,k1);
d5 = _mm_aesenc_si128(d5,k1);
d6 = _mm_aesenc_si128(d6,k1);
d7 = _mm_aesenc_si128(d7,k1);
d8 = _mm_aesenc_si128(d8,k1);
d9 = _mm_aesenc_si128(d9,k1);
d10 = _mm_aesenc_si128(d10,k1);
d11 = _mm_aesenc_si128(d11,k1);
}
k = _aes._k.ni.k[14];
d0 = _mm_aesenclast_si128(d0,k);
d1 = _mm_aesenclast_si128(d1,k);
d2 = _mm_aesenclast_si128(d2,k);
d3 = _mm_aesenclast_si128(d3,k);
d4 = _mm_aesenclast_si128(d4,k);
d5 = _mm_aesenclast_si128(d5,k);
d6 = _mm_aesenclast_si128(d6,k);
d7 = _mm_aesenclast_si128(d7,k);
d8 = _mm_aesenclast_si128(d8,k);
d9 = _mm_aesenclast_si128(d9,k);
d10 = _mm_aesenclast_si128(d10,k);
d11 = _mm_aesenclast_si128(d11,k);
k0 = _aes._k.ni.k[14];
d0 = _mm_aesenclast_si128(d0,k0);
d1 = _mm_aesenclast_si128(d1,k0);
d2 = _mm_aesenclast_si128(d2,k0);
d3 = _mm_aesenclast_si128(d3,k0);
d4 = _mm_aesenclast_si128(d4,k0);
d5 = _mm_aesenclast_si128(d5,k0);
d6 = _mm_aesenclast_si128(d6,k0);
d7 = _mm_aesenclast_si128(d7,k0);
d8 = _mm_aesenclast_si128(d8,k0);
d9 = _mm_aesenclast_si128(d9,k0);
d10 = _mm_aesenclast_si128(d10,k0);
d11 = _mm_aesenclast_si128(d11,k0);
}
{
@ -376,19 +625,18 @@ void AES::CTR::crypt(const void *const input,unsigned int len) noexcept
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 16),p1);
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 32),p2);
_mm_storeu_si128(reinterpret_cast<__m128i *>(out + 48),p3);
p0 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 64));
p1 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 80));
p2 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 96));
p3 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 112));
d0 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 128));
d1 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 144));
d2 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 160));
d3 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 176));
p0 = _mm_xor_si128(d4,p0);
p1 = _mm_xor_si128(d5,p1);
p2 = _mm_xor_si128(d6,p2);
p3 = _mm_xor_si128(d7,p3);
d0 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 128));
d1 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 144));
d2 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 160));
d3 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in + 176));
d0 = _mm_xor_si128(d8,d0);
d1 = _mm_xor_si128(d9,d1);
d2 = _mm_xor_si128(d10,d2);
@ -410,7 +658,7 @@ void AES::CTR::crypt(const void *const input,unsigned int len) noexcept
while (_len >= 64) {
__m128i d0,d1,d2,d3;
if (likely((c1 + 4ULL) > c1)) {
if (likely(c1 < 0xfffffffffffffffcULL)) {
d0 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
d1 = _mm_set_epi64x((long long)Utils::hton(c1 + 1ULL),(long long)c0);
d2 = _mm_set_epi64x((long long)Utils::hton(c1 + 2ULL),(long long)c0);
@ -418,33 +666,43 @@ void AES::CTR::crypt(const void *const input,unsigned int len) noexcept
c1 += 4;
} else {
d0 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d1 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d2 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
d3 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
}
{
__m128i k = _aes._k.ni.k[0];
d0 = _mm_xor_si128(d0,k);
d1 = _mm_xor_si128(d1,k);
d2 = _mm_xor_si128(d2,k);
d3 = _mm_xor_si128(d3,k);
for (int r = 1; r < 14; ++r) {
k = _aes._k.ni.k[r];
d0 = _mm_aesenc_si128(d0,k);
d1 = _mm_aesenc_si128(d1,k);
d2 = _mm_aesenc_si128(d2,k);
d3 = _mm_aesenc_si128(d3,k);
__m128i k0 = _aes._k.ni.k[0];
__m128i k1 = _aes._k.ni.k[1];
d0 = _mm_xor_si128(d0,k0);
d1 = _mm_xor_si128(d1,k0);
d2 = _mm_xor_si128(d2,k0);
d3 = _mm_xor_si128(d3,k0);
d0 = _mm_xor_si128(d0,k1);
d1 = _mm_xor_si128(d1,k1);
d2 = _mm_xor_si128(d2,k1);
d3 = _mm_xor_si128(d3,k1);
for (int r=2;r<14;r+=2) {
k0 = _aes._k.ni.k[r];
k1 = _aes._k.ni.k[r+1];
d0 = _mm_aesenc_si128(d0,k0);
d1 = _mm_aesenc_si128(d1,k0);
d2 = _mm_aesenc_si128(d2,k0);
d3 = _mm_aesenc_si128(d3,k0);
d0 = _mm_aesenc_si128(d0,k1);
d1 = _mm_aesenc_si128(d1,k1);
d2 = _mm_aesenc_si128(d2,k1);
d3 = _mm_aesenc_si128(d3,k1);
}
k = _aes._k.ni.k[14];
d0 = _mm_aesenclast_si128(d0,k);
d1 = _mm_aesenclast_si128(d1,k);
d2 = _mm_aesenclast_si128(d2,k);
d3 = _mm_aesenclast_si128(d3,k);
k0 = _aes._k.ni.k[14];
d0 = _mm_aesenclast_si128(d0,k0);
d1 = _mm_aesenclast_si128(d1,k0);
d2 = _mm_aesenclast_si128(d2,k0);
d3 = _mm_aesenclast_si128(d3,k0);
}
__m128i p0 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(in));
@ -467,8 +725,6 @@ void AES::CTR::crypt(const void *const input,unsigned int len) noexcept
while (len >= 16) {
__m128i d0 = _mm_set_epi64x((long long)Utils::hton(c1),(long long)c0);
c0 += (uint64_t)((++c1) == 0ULL);
d0 = _mm_xor_si128(d0,_aes._k.ni.k[0]);
d0 = _mm_aesenc_si128(d0,_aes._k.ni.k[1]);
d0 = _mm_aesenc_si128(d0,_aes._k.ni.k[2]);
@ -492,6 +748,8 @@ void AES::CTR::crypt(const void *const input,unsigned int len) noexcept
in += 16;
len -= 16;
out += 16;
if (unlikely(++c1 == 0ULL)) c0 = Utils::hton(Utils::ntoh(c0) + 1ULL);
}
// Any remaining input is placed in _out. This will be picked up and crypted
@ -503,26 +761,68 @@ void AES::CTR::crypt(const void *const input,unsigned int len) noexcept
}
_ctr[0] = c0;
_ctr[1] = c1;
_ctr[1] = Utils::hton(c1);
return;
}
#endif
uint8_t keyStream[16];
unsigned int totalLen = _len;
if ((totalLen & 15U)) {
for (;;) {
if (!len)
return;
--len;
out[totalLen++] = *(in++);
if (!(totalLen & 15U)) {
_aes._encryptSW(reinterpret_cast<const uint8_t *>(_ctr),keyStream);
uint8_t *outblk = out + (totalLen - 16);
for(int i=0;i<16;++i)
outblk[i] ^= keyStream[i];
if (unlikely((_ctr[1] = Utils::hton(Utils::ntoh(_ctr[1]) + 1ULL)) == 0)) _ctr[0] = Utils::hton(Utils::ntoh(_ctr[0]) + 1ULL);
break;
}
}
}
out += totalLen;
_len = (totalLen + len);
while (len >= 16) {
_aes._encryptSW(reinterpret_cast<const uint8_t *>(_ctr),keyStream);
for(int i=0;i<16;++i)
out[i] = in[i] ^ keyStream[i];
out += 16;
len -= 16;
in += 16;
if (unlikely((_ctr[1] = Utils::hton(Utils::ntoh(_ctr[1]) + 1ULL)) == 0)) _ctr[0] = Utils::hton(Utils::ntoh(_ctr[0]) + 1ULL);
}
// Any remaining input is placed in _out. This will be picked up and crypted
// on subsequent calls to crypt() or finish() as it'll mean _len will not be
// an even multiple of 16.
while (len) {
--len;
*(out++) = *(in++);
}
}
void AES::CTR::finish() noexcept
{
const unsigned int rem = _len & 15U;
#ifdef ZT_AES_AESNI
if (likely(Utils::CPUID.aes)) {
// Encrypt any remaining bytes as indicated by _len not being an even multiple of 16.
const unsigned int rem = _len & 15U;
if (rem) {
uint8_t tmp[16];
for (unsigned int i = 0,j = _len - rem; i < rem; ++i)
for (unsigned int i = 0,j = _len - rem;i < rem;++i)
tmp[i] = _out[j];
for (unsigned int i = rem; i < 16; ++i)
for (unsigned int i = rem;i < 16;++i)
tmp[i] = 0;
__m128i d0 = _mm_set_epi64x((long long)Utils::hton(_ctr[1]),(long long)_ctr[0]);
__m128i d0 = _mm_loadu_si128(reinterpret_cast<const __m128i *>(_ctr));
d0 = _mm_xor_si128(d0,_aes._k.ni.k[0]);
d0 = _mm_aesenc_si128(d0,_aes._k.ni.k[1]);
d0 = _mm_aesenc_si128(d0,_aes._k.ni.k[2]);
@ -540,12 +840,23 @@ void AES::CTR::finish() noexcept
d0 = _mm_aesenclast_si128(d0,_aes._k.ni.k[14]);
_mm_storeu_si128(reinterpret_cast<__m128i *>(tmp),_mm_xor_si128(_mm_loadu_si128(reinterpret_cast<__m128i *>(tmp)),d0));
for (unsigned int i = 0,j = _len - rem; i < rem; ++i)
for (unsigned int i = 0,j = _len - rem;i < rem;++i)
_out[j] = tmp[i];
}
return;
}
#endif
if (rem) {
uint8_t tmp[16],keyStream[16];
for (unsigned int i = 0,j = _len - rem;i < rem;++i)
tmp[i] = _out[j];
for (unsigned int i = rem;i < 16;++i)
tmp[i] = 0;
_aes._encryptSW(reinterpret_cast<const uint8_t *>(_ctr),keyStream);
for (unsigned int i = 0,j = _len - rem;i < rem;++i)
_out[j] = tmp[i] ^ keyStream[i];
}
}
// Software AES and AES key expansion ---------------------------------------------------------------------------------
@ -770,203 +1081,6 @@ void AES::_decryptSW(const uint8_t in[16],uint8_t out[16]) const noexcept
writeuint32_t(out + 12,(Td4[(t3 >> 24)] << 24) ^ (Td4[(t2 >> 16) & 0xff] << 16) ^ (Td4[(t1 >> 8) & 0xff] << 8) ^ (Td4[(t0) & 0xff]) ^ rk[3]);
}
#if (defined(__GNUC__) || defined(__clang)) && (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64) || defined(__aarch64__))
#if defined(__SIZEOF_INT128__)
typedef unsigned __int128 uint128_t;
#else
typedef unsigned uint128_t __attribute__((mode(TI)));
#endif
static ZT_ALWAYS_INLINE void s_bmul64(const uint64_t x,const uint64_t y,uint64_t &r_high,uint64_t &r_low) noexcept
{
static uint128_t m1 = (uint128_t)0x2108421084210842ULL << 64U | 0x1084210842108421ULL;
static uint128_t m2 = (uint128_t)0x4210842108421084ULL << 64U | 0x2108421084210842ULL;
static uint128_t m3 = (uint128_t)0x8421084210842108ULL << 64U | 0x4210842108421084ULL;
static uint128_t m4 = (uint128_t)0x0842108421084210ULL << 64U | 0x8421084210842108ULL;
static uint128_t m5 = (uint128_t)0x1084210842108421ULL << 64U | 0x0842108421084210ULL;
uint128_t x1 = x & m1;
uint128_t y1 = y & m1;
uint128_t x2 = x & m2;
uint128_t y2 = y & m2;
uint128_t x3 = x & m3;
uint128_t y3 = y & m3;
uint128_t x4 = x & m4;
uint128_t y4 = y & m4;
uint128_t x5 = x & m5;
uint128_t y5 = y & m5;
uint128_t z = (x1 * y1) ^ (x2 * y5) ^ (x3 * y4) ^ (x4 * y3) ^ (x5 * y2);
uint128_t r = z & m1;
z = (x1 * y2) ^ (x2 * y1) ^ (x3 * y5) ^ (x4 * y4) ^ (x5 * y3);
r |= z & m2;
z = (x1 * y3) ^ (x2 * y2) ^ (x3 * y1) ^ (x4 * y5) ^ (x5 * y4);
r |= z & m3;
z = (x1 * y4) ^ (x2 * y3) ^ (x3 * y2) ^ (x4 * y1) ^ (x5 * y5);
r |= z & m4;
z = (x1 * y5) ^ (x2 * y4) ^ (x3 * y3) ^ (x4 * y2) ^ (x5 * y1);
r |= z & m5;
r_high = (uint64_t)(r >> 64);
r_low = (uint64_t)r;
}
static ZT_ALWAYS_INLINE void s_gfmul(const uint64_t h_high,const uint64_t h_low,uint64_t &y0, uint64_t &y1) noexcept
{
uint64_t z2_low,z2_high,z0_low,z0_high,z1a_low,z1a_high;
uint64_t y_high = Utils::ntoh(y0);
uint64_t y_low = Utils::ntoh(y1);
s_bmul64(y_high,h_high,z2_high,z2_low);
s_bmul64(y_low,h_low,z0_high,z0_low);
s_bmul64(y_high ^ y_low,h_high ^ h_low,z1a_high,z1a_low);
z1a_high ^= z2_high ^ z0_high;
z1a_low ^= z2_low ^ z0_low;
uint128_t z_high = ((uint128_t)z2_high << 64U) | (z2_low ^ z1a_high);
uint128_t z_low = (((uint128_t)z0_high << 64U) | z0_low) ^ (((uint128_t)z1a_low) << 64U);
z_high = (z_high << 1U) | (z_low >> 127U);
z_low <<= 1U;
z_low ^= (z_low << 127U) ^ (z_low << 126U) ^ (z_low << 121U);
z_high ^= z_low ^ (z_low >> 1U) ^ (z_low >> 2U) ^ (z_low >> 7U);
y1 = Utils::hton((uint64_t)z_high);
y0 = Utils::hton((uint64_t)(z_high >> 64U));
}
#else
static ZT_ALWAYS_INLINE void s_bmul32(uint32_t x,uint32_t y,uint32_t &r_high,uint32_t &r_low) noexcept
{
const uint32_t m1 = (uint32_t)0x11111111;
const uint32_t m2 = (uint32_t)0x22222222;
const uint32_t m4 = (uint32_t)0x44444444;
const uint32_t m8 = (uint32_t)0x88888888;
uint32_t x0 = x & m1;
uint32_t x1 = x & m2;
uint32_t x2 = x & m4;
uint32_t x3 = x & m8;
uint32_t y0 = y & m1;
uint32_t y1 = y & m2;
uint32_t y2 = y & m4;
uint32_t y3 = y & m8;
uint64_t z0 = ((uint64_t)x0 * y0) ^ ((uint64_t)x1 * y3) ^ ((uint64_t)x2 * y2) ^ ((uint64_t)x3 * y1);
uint64_t z1 = ((uint64_t)x0 * y1) ^ ((uint64_t)x1 * y0) ^ ((uint64_t)x2 * y3) ^ ((uint64_t)x3 * y2);
uint64_t z2 = ((uint64_t)x0 * y2) ^ ((uint64_t)x1 * y1) ^ ((uint64_t)x2 * y0) ^ ((uint64_t)x3 * y3);
uint64_t z3 = ((uint64_t)x0 * y3) ^ ((uint64_t)x1 * y2) ^ ((uint64_t)x2 * y1) ^ ((uint64_t)x3 * y0);
z0 &= ((uint64_t)m1 << 32) | m1;
z1 &= ((uint64_t)m2 << 32) | m2;
z2 &= ((uint64_t)m4 << 32) | m4;
z3 &= ((uint64_t)m8 << 32) | m8;
uint64_t z = z0 | z1 | z2 | z3;
r_high = (uint32_t)(z >> 32);
r_low = (uint32_t)z;
}
static ZT_ALWAYS_INLINE void s_gfmul(const uint64_t h_high,const uint64_t h_low,uint64_t &y0,uint64_t &y1) noexcept
{
uint32_t h_high_h = (uint32_t)(h_high >> 32);
uint32_t h_high_l = (uint32_t)h_high;
uint32_t h_low_h = (uint32_t)(h_low >> 32);
uint32_t h_low_l = (uint32_t)h_low;
uint32_t h_highXlow_h = h_high_h ^ h_low_h;
uint32_t h_highXlow_l = h_high_l ^ h_low_l;
uint64_t y_low = Utils::ntoh(y0);
uint64_t y_high = Utils::ntoh(y1);
uint32_t ci_low_h = (uint32_t)(y_high >> 32);
uint32_t ci_low_l = (uint32_t)y_high;
uint32_t ci_high_h = (uint32_t)(y_low >> 32);
uint32_t ci_high_l = (uint32_t)y_low;
uint32_t ci_highXlow_h = ci_high_h ^ ci_low_h;
uint32_t ci_highXlow_l = ci_high_l ^ ci_low_l;
uint32_t a_a_h,a_a_l,a_b_h,a_b_l,a_c_h,a_c_l;
s_bmul32(ci_high_h,h_high_h,a_a_h,a_a_l);
s_bmul32(ci_high_l,h_high_l,a_b_h,a_b_l);
s_bmul32(ci_high_h ^ ci_high_l,h_high_h ^ h_high_l,a_c_h,a_c_l);
a_c_h ^= a_a_h ^ a_b_h;
a_c_l ^= a_a_l ^ a_b_l;
a_a_l ^= a_c_h;
a_b_h ^= a_c_l;
uint32_t b_a_h,b_a_l,b_b_h,b_b_l,b_c_h,b_c_l;
s_bmul32(ci_low_h,h_low_h,b_a_h,b_a_l);
s_bmul32(ci_low_l,h_low_l,b_b_h,b_b_l);
s_bmul32(ci_low_h ^ ci_low_l,h_low_h ^ h_low_l,b_c_h,b_c_l);
b_c_h ^= b_a_h ^ b_b_h;
b_c_l ^= b_a_l ^ b_b_l;
b_a_l ^= b_c_h;
b_b_h ^= b_c_l;
uint32_t c_a_h,c_a_l,c_b_h,c_b_l,c_c_h,c_c_l;
s_bmul32(ci_highXlow_h,h_highXlow_h,c_a_h,c_a_l);
s_bmul32(ci_highXlow_l,h_highXlow_l,c_b_h,c_b_l);
s_bmul32(ci_highXlow_h ^ ci_highXlow_l, h_highXlow_h ^ h_highXlow_l,c_c_h,c_c_l);
c_c_h ^= c_a_h ^ c_b_h;
c_c_l ^= c_a_l ^ c_b_l;
c_a_l ^= c_c_h;
c_b_h ^= c_c_l;
c_a_h ^= b_a_h ^ a_a_h;
c_a_l ^= b_a_l ^ a_a_l;
c_b_h ^= b_b_h ^ a_b_h;
c_b_l ^= b_b_l ^ a_b_l;
uint64_t z_high_h = ((uint64_t)a_a_h << 32) | a_a_l;
uint64_t z_high_l = (((uint64_t)a_b_h << 32) | a_b_l) ^ (((uint64_t)c_a_h << 32) | c_a_l);
uint64_t z_low_h = (((uint64_t)b_a_h << 32) | b_a_l) ^ (((uint64_t)c_b_h << 32) | c_b_l);
uint64_t z_low_l = ((uint64_t)b_b_h << 32) | b_b_l;
z_high_h = z_high_h << 1 | z_high_l >> 63;
z_high_l = z_high_l << 1 | z_low_h >> 63;
z_low_h = z_low_h << 1 | z_low_l >> 63;
z_low_l <<= 1;
z_low_h ^= (z_low_l << 63) ^ (z_low_l << 62) ^ (z_low_l << 57);
z_high_h ^= z_low_h ^ (z_low_h >> 1) ^ (z_low_h >> 2) ^ (z_low_h >> 7);
z_high_l ^= z_low_l ^ (z_low_l >> 1) ^ (z_low_l >> 2) ^ (z_low_l >> 7) ^ (z_low_h << 63) ^ (z_low_h << 62) ^ (z_low_h << 57);
y0 = Utils::hton(z_high_h);
y1 = Utils::hton(z_high_l);
}
#endif
void AES::_gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const noexcept
{
const uint64_t h0 = _k.sw.h[0];
const uint64_t h1 = _k.sw.h[1];
const uint64_t lpad = Utils::hton((uint64_t)len << 3U);
uint64_t y0 = 0,y1 = 0;
while (len >= 16) {
#ifdef ZT_NO_UNALIGNED_ACCESS
for(unsigned int i=0;i<8;++i) ((uint8_t *)&y0)[i] ^= *(in++);
for(unsigned int i=0;i<8;++i) ((uint8_t *)&y1)[i] ^= *(in++);
#else
y0 ^= *((const uint64_t *)in);
y1 ^= *((const uint64_t *)(in + 8));
in += 16;
#endif
s_gfmul(h0,h1,y0,y1);
len -= 16;
}
if (len) {
uint64_t last[2] = { 0,0 };
for(unsigned int i=0;i<len;++i) ((uint8_t *)last)[i] = in[i];
y0 ^= last[0];
y1 ^= last[1];
s_gfmul(h0,h1,y0,y1);
}
y0 ^= lpad;
s_gfmul(h0,h1,y0,y1);
uint64_t iv2[2];
for(unsigned int i=0;i<12;++i) ((uint8_t *)iv2)[i] = iv[i];
((uint8_t *)iv2)[12] = 0;
((uint8_t *)iv2)[13] = 0;
((uint8_t *)iv2)[14] = 0;
((uint8_t *)iv2)[15] = 1;
_encryptSW((const uint8_t *)iv2,(uint8_t *)iv2);
#ifdef ZT_NO_UNALIGNED_ACCESS
for(unsigned int i=0;i<8;++i) out[i] = ((const uint8_t *)&y0)[i] ^ ((const uint8_t *)iv2)[i];
for(unsigned int i=8;i<16;++i) out[i] = ((const uint8_t *)&y1)[i-8] ^ ((const uint8_t *)iv2)[i];
#else
((uint64_t *)out)[0] = y0 ^ iv2[0];
((uint64_t *)out)[1] = y1 ^ iv2[1];
#endif
}
#ifdef ZT_AES_AESNI
// SSE shuffle parameter to reverse bytes in a 128-bit vector.

View file

@ -22,10 +22,10 @@
#include <cstring>
#if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
#include <xmmintrin.h>
#include <wmmintrin.h>
#include <emmintrin.h>
#include <smmintrin.h>
#include <immintrin.h>
#define ZT_AES_AESNI 1
#endif
@ -33,12 +33,37 @@ namespace ZeroTier {
/**
* AES-256 and pals including GMAC, CTR, etc.
*
* This includes hardware acceleration for certain processors. The software
* mode is fallback and is significantly slower.
*/
class AES
{
public:
/**
* @return True if this system has hardware AES acceleration
*/
static ZT_ALWAYS_INLINE bool accelerated()
{
#ifdef ZT_AES_AESNI
return Utils::CPUID.aes;
#else
return false;
#endif
}
/**
* Create an un-initialized AES instance (must call init() before use)
*/
ZT_ALWAYS_INLINE AES() noexcept {}
/**
* Create an AES instance with the given key
*
* @param key 256-bit key
*/
explicit ZT_ALWAYS_INLINE AES(const uint8_t key[32]) noexcept { this->init(key); }
ZT_ALWAYS_INLINE ~AES() { Utils::burn(&_k,sizeof(_k)); }
/**
@ -102,14 +127,22 @@ public:
*/
ZT_ALWAYS_INLINE GMAC(const AES &aes) : _aes(aes) {}
/**
* Reset and initialize for a new GMAC calculation
*
* @param iv 96-bit initialization vector (pad with zeroes if actual IV is shorter)
*/
ZT_ALWAYS_INLINE void init(const uint8_t iv[12]) noexcept
{
_rp = 0;
_len = 0;
// We fill the least significant 32 bits in the _iv field with 1 since in GCM mode
// this would hold the counter, but we're not doing GCM. The counter is therefore
// always 1.
#ifdef ZT_AES_AESNI // also implies an x64 processor
*reinterpret_cast<uint64_t *>(_iv) = *reinterpret_cast<const uint64_t *>(iv);
*reinterpret_cast<uint32_t *>(_iv + 8) = *reinterpret_cast<const uint64_t *>(iv + 8);
*reinterpret_cast<uint32_t *>(_iv + 12) = 0x01000000; // 00000001 in big-endian byte order
*reinterpret_cast<uint32_t *>(_iv + 12) = 0x01000000; // 0x00000001 in big-endian byte order
#else
for(int i=0;i<12;++i)
_iv[i] = iv[i];
@ -122,8 +155,21 @@ public:
_y[1] = 0;
}
/**
* Process data through GMAC
*
* @param data Bytes to process
* @param len Length of input
*/
void update(const void *data,unsigned int len) noexcept;
/**
* Process any remaining cached bytes and generate tag
*
* Don't call finish() more than once or you'll get an invalid result.
*
* @param tag 128-bit GMAC tag (can be truncated)
*/
void finish(uint8_t tag[16]) noexcept;
private:
@ -149,16 +195,9 @@ public:
* @param iv Unique initialization vector
* @param output Buffer to which to store output (MUST be large enough for total bytes processed!)
*/
ZT_ALWAYS_INLINE void init(const uint8_t iv[16],void *output) noexcept
ZT_ALWAYS_INLINE void init(const uint8_t iv[16],void *const output) noexcept
{
#ifdef ZT_AES_AESNI // also implies an x64 processor
_ctr[0] = Utils::ntoh(*reinterpret_cast<const uint64_t *>(iv));
_ctr[1] = Utils::ntoh(*reinterpret_cast<const uint64_t *>(iv + 8));
#else
memcpy(_ctr,iv,16);
_ctr[0] = Utils::ntoh(_ctr[0]);
_ctr[1] = Utils::ntoh(_ctr[1]);
#endif
_out = reinterpret_cast<uint8_t *>(output);
_len = 0;
}
@ -173,6 +212,8 @@ public:
/**
* Finish any remaining bytes if total bytes processed wasn't a multiple of 16
*
* Don't call more than once for a given stream or data may be corrupted.
*/
void finish() noexcept;
@ -199,7 +240,6 @@ private:
void _initSW(const uint8_t key[32]) noexcept;
void _encryptSW(const uint8_t in[16],uint8_t out[16]) const noexcept;
void _decryptSW(const uint8_t in[16],uint8_t out[16]) const noexcept;
void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const noexcept;
union {
#ifdef ZT_AES_AESNI
@ -216,7 +256,6 @@ private:
} sw;
} _k;
#ifdef ZT_AES_AESNI
static const __m128i s_shuf;

View file

@ -54,7 +54,7 @@ CPUIDRegisters::CPUIDRegisters()
rdrand = ((ecx & (1U << 30U)) != 0);
aes = ( ((ecx & (1U << 25U)) != 0) && ((ecx & (1U << 19U)) != 0) && ((ecx & (1U << 1U)) != 0) ); // AES, PCLMUL, SSE4.1
}
CPUIDRegisters CPUID;
const CPUIDRegisters CPUID;
#endif
const uint64_t ZERO256[4] = { 0,0,0,0 };
@ -71,8 +71,24 @@ bool secureEq(const void *a,const void *b,unsigned int len) noexcept
// Crazy hack to force memory to be securely zeroed in spite of the best efforts of optimizing compilers.
static void _Utils_doBurn(volatile uint8_t *ptr,unsigned int len)
{
volatile uint8_t *const end = ptr + len;
while (ptr != end) *(ptr++) = (uint8_t)0;
#ifndef ZT_NO_UNALIGNED_ACCESS
const uint64_t z = 0;
while (len >= 32) {
*reinterpret_cast<volatile uint64_t *>(ptr) = z;
*reinterpret_cast<volatile uint64_t *>(ptr + 8) = z;
*reinterpret_cast<volatile uint64_t *>(ptr + 16) = z;
*reinterpret_cast<volatile uint64_t *>(ptr + 24) = z;
ptr += 32;
len -= 32;
}
while (len >= 8) {
*reinterpret_cast<volatile uint64_t *>(ptr) = z;
ptr += 8;
len -= 8;
}
#endif
for(unsigned int i=0;i<len;++i)
ptr[i] = 0;
}
static void (*volatile _Utils_doBurn_ptr)(volatile uint8_t *,unsigned int) = _Utils_doBurn;
void burn(void *ptr,unsigned int len) { (_Utils_doBurn_ptr)((volatile uint8_t *)ptr,len); }

View file

@ -43,7 +43,7 @@ struct CPUIDRegisters
bool aes;
CPUIDRegisters();
};
extern CPUIDRegisters CPUID;
extern const CPUIDRegisters CPUID;
#endif
/**
@ -435,26 +435,6 @@ static ZT_ALWAYS_INLINE I loadBigEndian(const void *const p) noexcept
#endif
}
/**
* Copy bits from memory into an integer type without modifying their order
*
* @tparam I Type to load
* @param p Byte stream, must be at least sizeof(I) in size
* @return Loaded raw integer
*/
template<typename I>
static ZT_ALWAYS_INLINE I loadAsIsEndian(const void *const p) noexcept
{
#ifdef ZT_NO_UNALIGNED_ACCESS
I x = (I)0;
for(unsigned int k=0;k<sizeof(I);++k)
reinterpret_cast<uint8_t *>(&x)[k] = reinterpret_cast<const uint8_t *>(p)[k];
return x;
#else
return *reinterpret_cast<const I *>(p);
#endif
}
/**
* Save an integer in big-endian format
*
@ -478,6 +458,44 @@ static ZT_ALWAYS_INLINE void storeBigEndian(void *const p,const I i) noexcept
#endif
}
/**
* Copy bits from memory into an integer type without modifying their order
*
* @tparam I Type to load
* @param p Byte stream, must be at least sizeof(I) in size
* @return Loaded raw integer
*/
template<typename I>
static ZT_ALWAYS_INLINE I loadAsIsEndian(const void *const p) noexcept
{
#ifdef ZT_NO_UNALIGNED_ACCESS
I x = (I)0;
for(unsigned int k=0;k<sizeof(I);++k)
reinterpret_cast<uint8_t *>(&x)[k] = reinterpret_cast<const uint8_t *>(p)[k];
return x;
#else
return *reinterpret_cast<const I *>(p);
#endif
}
/**
* Copy bits from memory into an integer type without modifying their order
*
* @tparam I Type to store
* @param p Byte array (must be at least sizeof(I))
* @param i Integer to store
*/
template<typename I>
static ZT_ALWAYS_INLINE void storeAsIsEndian(void *const p,const I i) noexcept
{
#ifdef ZT_NO_UNALIGNED_ACCESS
for(unsigned int k=0;k<sizeof(I);++k)
reinterpret_cast<uint8_t *>(p)[k] = reinterpret_cast<const uint8_t *>(&i)[k];
#else
*reinterpret_cast<I *>(p) = i;
#endif
}
} // namespace Utils
} // namespace ZeroTier