More endless work in progress...

This commit is contained in:
Adam Ierymenko 2020-05-06 10:42:09 -07:00
parent b533c300d8
commit 666d44b14a
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
19 changed files with 758 additions and 600 deletions

View file

@ -25,15 +25,15 @@
#else #else
#include <arpa/inet.h> #include <arpa/inet.h>
#include <netinet/in.h> #include <netinet/in.h>
#include <net/if_dl.h>
#include <sys/types.h> #include <sys/types.h>
#include <sys/socket.h> #include <sys/socket.h>
#include <stdint.h>
#include <stdlib.h>
#endif #endif
#ifdef __cplusplus #ifdef __cplusplus
#include <cstdint>
extern "C" { extern "C" {
#else
#include <stdint.h>
#endif #endif
/* This symbol may be defined to anything we need to put in front of API function prototypes. */ /* This symbol may be defined to anything we need to put in front of API function prototypes. */
@ -41,16 +41,22 @@ extern "C" {
#define ZT_SDK_API #define ZT_SDK_API
#endif #endif
/* ----------------------------------------------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------------------------------------------------- */
/** /**
* Default UDP port for devices running a ZeroTier endpoint * Default primary UDP port for devices running a ZeroTier endpoint
*
* NOTE: as of V2 this has changed to 893 since many NATs (even symmetric)
* treat privileged ports in a special way. The old default was 9993 and
* this is likely to be seen in the wild quite a bit.
*/ */
#define ZT_DEFAULT_PORT 793 #define ZT_DEFAULT_PORT 9993
/**
* IP protocol number for naked IP encapsulation (this is not currently used)
*/
#define ZT_DEFAULT_IP_PROTOCOL 193
/**
* Ethernet type for naked Ethernet encapsulation (this is not currently used)
*/
#define ZT_DEFAULT_ETHERNET_PROTOCOL 0x9993
/** /**
* Size of a standard I/O buffer as returned by getBuffer(). * Size of a standard I/O buffer as returned by getBuffer().
@ -170,8 +176,6 @@ extern "C" {
*/ */
#define ZT_MAX_CERTIFICATES_OF_OWNERSHIP 4 #define ZT_MAX_CERTIFICATES_OF_OWNERSHIP 4
/* ----------------------------------------------------------------------------------------------------------------- */
/** /**
* Packet characteristics flag: packet direction, 1 if inbound 0 if outbound * Packet characteristics flag: packet direction, 1 if inbound 0 if outbound
*/ */
@ -257,14 +261,13 @@ extern "C" {
*/ */
#define ZT_RULE_PACKET_CHARACTERISTICS_TCP_FIN 0x0000000000000001ULL #define ZT_RULE_PACKET_CHARACTERISTICS_TCP_FIN 0x0000000000000001ULL
/* ----------------------------------------------------------------------------------------------------------------- */ /* ---------------------------------------------------------------------------------------------------------------- */
/** /**
* Identity type codes * Identity type codes (must be the same as Identity.hpp).
*/ */
enum ZT_Identity_Type enum ZT_Identity_Type
{ {
/* These values must be the same as in Identity.hpp in the core. */
ZT_IDENTITY_TYPE_C25519 = 0, /* C25519/Ed25519 */ ZT_IDENTITY_TYPE_C25519 = 0, /* C25519/Ed25519 */
ZT_IDENTITY_TYPE_P384 = 1 /* Combined C25519/NIST-P-384 key */ ZT_IDENTITY_TYPE_P384 = 1 /* Combined C25519/NIST-P-384 key */
}; };
@ -303,6 +306,25 @@ enum ZT_CredentialType
ZT_CREDENTIAL_TYPE_REVOCATION = 6 ZT_CREDENTIAL_TYPE_REVOCATION = 6
}; };
/**
* Endpoint address and protocol types
*
* Most of these are not currently implemented and are just reserved
* for future use.
*/
enum ZT_EndpointType
{
ZT_ENDPOINT_TYPE_NIL = 0, // Nil/empty endpoint
ZT_ENDPOINT_TYPE_ZEROTIER = 1, // ZeroTier relaying (address+fingerprint)
ZT_ENDPOINT_TYPE_ETHERNET = 2, // Ethernet with ethertype 0x9993
ZT_ENDPOINT_TYPE_WIFI_DIRECT = 3, // Ethernet using WiFi direct
ZT_ENDPOINT_TYPE_BLUETOOTH = 4, // Bluetooth (same address type as Ethernet)
ZT_ENDPOINT_TYPE_IP = 5, // Naked IP (protocol 193)
ZT_ENDPOINT_TYPE_IP_UDP = 6, // IP/UDP
ZT_ENDPOINT_TYPE_IP_TCP = 7, // IP/TCP
ZT_ENDPOINT_TYPE_IP_HTTP2 = 8 // IP/HTTP2 encapsulation
};
/** /**
* Flag indicating that VL1 tracing should be generated * Flag indicating that VL1 tracing should be generated
*/ */
@ -330,16 +352,11 @@ enum ZT_CredentialType
*/ */
enum ZT_TraceEventType enum ZT_TraceEventType
{ {
/* An unexpected error is an internal assertion / sanity check failure, out of memory, etc. */
ZT_TRACE_UNEXPECTED_ERROR = 0, ZT_TRACE_UNEXPECTED_ERROR = 0,
/* VL1 events related to the peer-to-peer layer */
ZT_TRACE_VL1_RESETTING_PATHS_IN_SCOPE = 1, ZT_TRACE_VL1_RESETTING_PATHS_IN_SCOPE = 1,
ZT_TRACE_VL1_TRYING_NEW_PATH = 2, ZT_TRACE_VL1_TRYING_NEW_PATH = 2,
ZT_TRACE_VL1_LEARNED_NEW_PATH = 3, ZT_TRACE_VL1_LEARNED_NEW_PATH = 3,
ZT_TRACE_VL1_INCOMING_PACKET_DROPPED = 4, ZT_TRACE_VL1_INCOMING_PACKET_DROPPED = 4,
/* VL2 events relate to virtual networks, packet filtering, and authentication */
ZT_TRACE_VL2_OUTGOING_FRAME_DROPPED = 100, ZT_TRACE_VL2_OUTGOING_FRAME_DROPPED = 100,
ZT_TRACE_VL2_INCOMING_FRAME_DROPPED = 101, ZT_TRACE_VL2_INCOMING_FRAME_DROPPED = 101,
ZT_TRACE_VL2_NETWORK_CONFIG_REQUESTED = 102, ZT_TRACE_VL2_NETWORK_CONFIG_REQUESTED = 102,
@ -378,36 +395,6 @@ enum ZT_TraceFrameDropReason
ZT_TRACE_FRAME_DROP_REASON_PERMISSION_DENIED = 7 ZT_TRACE_FRAME_DROP_REASON_PERMISSION_DENIED = 7
}; };
/**
* Address types for ZT_TraceEventPathAddress
*
* These are currently the same as the types in Endpoint.hpp and should remain so
* if possible for consistency. Not all of these are used (yet?) but they are defined
* for possible future use and the structure is sized to support them.
*/
enum ZT_EndpointType
{
ZT_ENDPOINT_TYPE_NIL = 0, /* none/empty */
ZT_ENDPOINT_TYPE_ZEROTIER = 1, /* 5-byte ZeroTier + 48-byte identity hash */
ZT_ENDPOINT_TYPE_ETHERNET = 2, /* 6-byte Ethernet */
ZT_ENDPOINT_TYPE_INETADDR_V4 = 4, /* 4-byte IPv4 */
ZT_ENDPOINT_TYPE_INETADDR_V6 = 6 /* 16-byte IPv6 */
};
/**
* Protocol bits allowed for endpoint addresses.
*/
enum ZT_EndpointProtocol
{
ZT_ENDPOINT_PROTO_DGRAM = 0x0001,
ZT_ENDPOINT_PROTO_STREAM = 0x0002,
ZT_ENDPOINT_PROTO_HTTP2 = 0x0004,
ZT_ENDPOINT_PROTO_HTTPS2 = 0x0008,
ZT_ENDPOINT_PROTO_WS = 0x0010,
ZT_ENDPOINT_PROTO_WEBRTC = 0x0020,
ZT_ENDPOINT_PROTO_WIREGUARD = 0x0040
};
/** /**
* Reasons for credential rejection * Reasons for credential rejection
*/ */
@ -419,8 +406,6 @@ enum ZT_TraceCredentialRejectionReason
ZT_TRACE_CREDENTIAL_REJECTION_REASON_INVALID = 4 ZT_TRACE_CREDENTIAL_REJECTION_REASON_INVALID = 4
}; };
// Fields used in trace output dictionaries. Which fields are present depends on
// the trace event type. All trace dictionaries contain TYPE and CODE_LOCATION.
#define ZT_TRACE_FIELD_TYPE "t" #define ZT_TRACE_FIELD_TYPE "t"
#define ZT_TRACE_FIELD_CODE_LOCATION "@" #define ZT_TRACE_FIELD_CODE_LOCATION "@"
#define ZT_TRACE_FIELD_ENDPOINT "e" #define ZT_TRACE_FIELD_ENDPOINT "e"
@ -458,8 +443,6 @@ enum ZT_TraceCredentialRejectionReason
#define ZT_TRACE_FIELD_CREDENTIAL_TYPE "crT" #define ZT_TRACE_FIELD_CREDENTIAL_TYPE "crT"
#define ZT_TRACE_FIELD_CREDENTIAL_TIMESTAMP "crTS" #define ZT_TRACE_FIELD_CREDENTIAL_TIMESTAMP "crTS"
/****************************************************************************/
/** /**
* Function return code: OK (0) or error results * Function return code: OK (0) or error results
* *
@ -1309,7 +1292,7 @@ enum ZT_StateObjectType
* Peer and related state * Peer and related state
* *
* Object ID: peer address * Object ID: peer address
* Canonical path: <HOME>/peers.d/<ID> (10-digit address * Canonical path: <HOME>/peers.d/<ID> (10-digit address)
* Persistence: optional, can be cleared at any time * Persistence: optional, can be cleared at any time
*/ */
ZT_STATE_OBJECT_PEER = 5, ZT_STATE_OBJECT_PEER = 5,
@ -1338,7 +1321,7 @@ enum ZT_StateObjectType
*/ */
typedef void ZT_Node; typedef void ZT_Node;
/****************************************************************************/ /* ---------------------------------------------------------------------------------------------------------------- */
/** /**
* Callback called to update virtual network port configuration * Callback called to update virtual network port configuration
@ -1528,7 +1511,7 @@ typedef int (*ZT_PathLookupFunction)(
int, /* Desired ss_family or -1 for any */ int, /* Desired ss_family or -1 for any */
struct sockaddr_storage *); /* Result buffer */ struct sockaddr_storage *); /* Result buffer */
/****************************************************************************/ /* ---------------------------------------------------------------------------------------------------------------- */
/** /**
* Structure for configuring ZeroTier core callback functions * Structure for configuring ZeroTier core callback functions
@ -1576,6 +1559,8 @@ struct ZT_Node_Callbacks
ZT_PathLookupFunction pathLookupFunction; ZT_PathLookupFunction pathLookupFunction;
}; };
/* ---------------------------------------------------------------------------------------------------------------- */
/** /**
* Get a buffer for reading data to be passed back into the core via one of the processX() functions * Get a buffer for reading data to be passed back into the core via one of the processX() functions
* *
@ -1595,6 +1580,8 @@ ZT_SDK_API void *ZT_getBuffer();
*/ */
ZT_SDK_API void ZT_freeBuffer(void *b); ZT_SDK_API void ZT_freeBuffer(void *b);
/* ---------------------------------------------------------------------------------------------------------------- */
/** /**
* Create a new ZeroTier node * Create a new ZeroTier node
* *
@ -1929,7 +1916,7 @@ ZT_SDK_API void ZT_Node_setController(ZT_Node *node,void *networkConfigMasterIns
*/ */
ZT_SDK_API enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node *node,const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig); ZT_SDK_API enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node *node,const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig);
/****************************************************************************/ /* ---------------------------------------------------------------------------------------------------------------- */
/** /**
* Generate a new identity * Generate a new identity
@ -2039,7 +2026,7 @@ ZT_SDK_API const ZT_Fingerprint *ZT_Identity_fingerprint(const ZT_Identity *id);
*/ */
ZT_SDK_API void ZT_Identity_delete(ZT_Identity *id); ZT_SDK_API void ZT_Identity_delete(ZT_Identity *id);
/****************************************************************************/ /* ---------------------------------------------------------------------------------------------------------------- */
/** /**
* Get ZeroTier One version * Get ZeroTier One version

View file

@ -2381,7 +2381,7 @@ void C25519::generateC25519(uint8_t pub[ZT_C25519_ECDH_PUBLIC_KEY_SIZE],uint8_t
s_calcPubDH(pub, priv); s_calcPubDH(pub, priv);
} }
void C25519::agree(const uint8_t mine[ZT_C25519_COMBINED_PRIVATE_KEY_SIZE],const uint8_t their[ZT_C25519_COMBINED_PUBLIC_KEY_SIZE],uint8_t rawkey[ZT_C25519_ECDH_SHARED_SECRET_SIZE]) void C25519::agree(const uint8_t mine[ZT_C25519_ECDH_PRIVATE_KEY_SIZE],const uint8_t their[ZT_C25519_ECDH_PUBLIC_KEY_SIZE],uint8_t rawkey[ZT_C25519_ECDH_SHARED_SECRET_SIZE])
{ {
crypto_scalarmult(rawkey,mine,their); crypto_scalarmult(rawkey,mine,their);
} }

View file

@ -80,7 +80,7 @@ public:
* @param their Their public key * @param their Their public key
* @param rawkey Buffer to receive raw (not hashed) agreed upon key * @param rawkey Buffer to receive raw (not hashed) agreed upon key
*/ */
static void agree(const uint8_t mine[ZT_C25519_COMBINED_PRIVATE_KEY_SIZE],const uint8_t their[ZT_C25519_COMBINED_PUBLIC_KEY_SIZE],uint8_t rawkey[ZT_C25519_ECDH_SHARED_SECRET_SIZE]); static void agree(const uint8_t mine[ZT_C25519_ECDH_PRIVATE_KEY_SIZE],const uint8_t their[ZT_C25519_ECDH_PUBLIC_KEY_SIZE],uint8_t rawkey[ZT_C25519_ECDH_SHARED_SECRET_SIZE]);
/** /**
* Sign a message with a sender's key pair * Sign a message with a sender's key pair

View file

@ -16,145 +16,99 @@
namespace ZeroTier { namespace ZeroTier {
Endpoint::Endpoint(const InetAddress &sa,const Protocol proto) noexcept // NOLINT(cppcoreguidelines-pro-type-member-init,hicpp-member-init)
{
switch (sa.family()) {
case AF_INET:
_t = TYPE_INETADDR_V4;
break;
case AF_INET6:
_t = TYPE_INETADDR_V6;
break;
default:
_t = TYPE_NIL;
return;
}
_proto = proto;
asInetAddress(_v.sa) = sa;
}
bool Endpoint::operator==(const Endpoint &ep) const noexcept
{
if ((_t == ep._t)&&(_proto == ep._proto)) {
switch(_t) {
default:
return true;
case TYPE_ZEROTIER:
return ((_v.zt.address == ep._v.zt.address) && (memcmp(_v.zt.hash,ep._v.zt.hash,sizeof(_v.zt.hash)) == 0));
case TYPE_ETHERNET:
return memcmp(_v.eth,ep._v.eth,6) == 0;
case TYPE_INETADDR_V4:
case TYPE_INETADDR_V6:
return asInetAddress(_v.sa) == asInetAddress(ep._v.sa);
}
}
return false;
}
bool Endpoint::operator<(const Endpoint &ep) const noexcept
{
if ((int)_t < (int)ep._t) {
return true;
} else if (_t == ep._t) {
if ((int)_proto < (int)ep._proto) {
return true;
} else {
switch (_t) {
case TYPE_ZEROTIER:
return (_v.zt.address < ep._v.zt.address) ? true : ((_v.zt.address == ep._v.zt.address) && (memcmp(_v.zt.hash,ep._v.zt.hash,sizeof(_v.zt.hash)) < 0));
case TYPE_ETHERNET:
return memcmp(_v.eth,ep._v.eth,6) < 0;
case TYPE_INETADDR_V4:
case TYPE_INETADDR_V6:
return asInetAddress(_v.sa) < asInetAddress(ep._v.sa);
default:
return false;
}
}
}
return false;
}
int Endpoint::marshal(uint8_t data[ZT_ENDPOINT_MARSHAL_SIZE_MAX]) const noexcept int Endpoint::marshal(uint8_t data[ZT_ENDPOINT_MARSHAL_SIZE_MAX]) const noexcept
{ {
data[0] = (uint8_t)_t; switch(m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX-1]) {
Utils::storeBigEndian(data + 1,(uint16_t)_proto);
Utils::storeBigEndian(data + 3,(uint16_t)_l[0]);
Utils::storeBigEndian(data + 5,(uint16_t)_l[1]);
Utils::storeBigEndian(data + 7,(uint16_t)_l[2]);
int p;
switch(_t) {
case TYPE_ZEROTIER:
data[9] = (uint8_t)(_v.zt.address >> 32U);
data[10] = (uint8_t)(_v.zt.address >> 24U);
data[11] = (uint8_t)(_v.zt.address >> 16U);
data[12] = (uint8_t)(_v.zt.address >> 8U);
data[13] = (uint8_t)_v.zt.address;
Utils::copy<ZT_FINGERPRINT_HASH_SIZE>(data + 14,_v.zt.hash);
return ZT_FINGERPRINT_HASH_SIZE + 14;
case TYPE_ETHERNET:
Utils::copy<6>(data + 9,_v.eth);
return 15;
case TYPE_INETADDR_V4:
case TYPE_INETADDR_V6:
p = 9 + asInetAddress(_v.sa).marshal(data + 7);
if (p <= 9)
return -1;
return p;
default: default:
data[0] = (uint8_t)TYPE_NIL; //case ZT_ENDPOINT_TYPE_NIL:
data[0] = 0;
return 1; return 1;
case ZT_ENDPOINT_TYPE_ZEROTIER:
data[0] = 16 + ZT_ENDPOINT_TYPE_ZEROTIER;
reinterpret_cast<const Fingerprint *>(m_value)->address().copyTo(data + 1);
Utils::copy<ZT_FINGERPRINT_HASH_SIZE>(data + 1 + ZT_ADDRESS_LENGTH,reinterpret_cast<const Fingerprint *>(m_value)->hash());
return 1 + ZT_ADDRESS_LENGTH + ZT_FINGERPRINT_HASH_SIZE;
case ZT_ENDPOINT_TYPE_ETHERNET:
case ZT_ENDPOINT_TYPE_WIFI_DIRECT:
case ZT_ENDPOINT_TYPE_BLUETOOTH:
data[0] = 16 + m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX-1];
reinterpret_cast<const MAC *>(m_value)->copyTo(data + 1);
return 7;
case ZT_ENDPOINT_TYPE_IP_UDP:
return reinterpret_cast<const InetAddress *>(m_value)->marshal(data);
case ZT_ENDPOINT_TYPE_IP:
case ZT_ENDPOINT_TYPE_IP_TCP:
case ZT_ENDPOINT_TYPE_IP_HTTP2:
data[0] = 16 + m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX-1];
return 1 + reinterpret_cast<const InetAddress *>(m_value)->marshal(data + 1);
} }
} }
int Endpoint::unmarshal(const uint8_t *restrict data,const int len) noexcept int Endpoint::unmarshal(const uint8_t *restrict data,int len) noexcept
{ {
if (len < 1) memoryZero(this);
if (unlikely(len <= 0))
return -1; return -1;
_t = (Type)data[0]; // Serialized endpoints with type bytes less than 16 are passed through
if (_t == TYPE_NIL) // to the unmarshal method of InetAddress and considered UDP endpoints.
// This allows backward compatibility with old endpoint fields in the
// protocol that were serialized InetAddress instances.
if (data[0] < 16) {
switch(data[0]) {
case 0:
return 1;
case 4:
case 6:
m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX-1] = (uint8_t)ZT_ENDPOINT_TYPE_IP_UDP;
return reinterpret_cast<InetAddress *>(m_value)->unmarshal(data,len);
}
return -1;
}
switch((m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX-1] = (data[0] - 16))) {
case ZT_ENDPOINT_TYPE_NIL:
return 1; return 1;
_proto = (Protocol)Utils::loadBigEndian<uint16_t>(data + 1); case ZT_ENDPOINT_TYPE_ZEROTIER:
_l[0] = (int)Utils::loadBigEndian<uint16_t>(data + 3); if (len >= (1 + ZT_ADDRESS_LENGTH + ZT_FINGERPRINT_HASH_SIZE)) {
_l[1] = (int)Utils::loadBigEndian<uint16_t>(data + 5); reinterpret_cast<Fingerprint *>(m_value)->apiFingerprint()->address = Address(data + 1).toInt();
_l[2] = (int)Utils::loadBigEndian<uint16_t>(data + 7); Utils::copy<ZT_FINGERPRINT_HASH_SIZE>(reinterpret_cast<Fingerprint *>(m_value)->apiFingerprint()->hash,data + 1 + ZT_ADDRESS_LENGTH);
return 1 + ZT_ADDRESS_LENGTH + ZT_FINGERPRINT_HASH_SIZE;
int p;
switch(_t) {
case TYPE_ZEROTIER:
if (len < (14 + ZT_FINGERPRINT_HASH_SIZE))
return -1;
_v.zt.address = ((uint64_t)data[9]) << 32U;
_v.zt.address |= ((uint64_t)data[10]) << 24U;
_v.zt.address |= ((uint64_t)data[11]) << 16U;
_v.zt.address |= ((uint64_t)data[12]) << 8U;
_v.zt.address |= (uint64_t)data[13];
Utils::copy<ZT_FINGERPRINT_HASH_SIZE>(_v.zt.hash,data + 14);
return ZT_FINGERPRINT_HASH_SIZE + 14;
case TYPE_ETHERNET:
if (len < 15)
return -1;
Utils::copy<6>(_v.eth,data + 9);
return 15;
case TYPE_INETADDR_V4:
case TYPE_INETADDR_V6:
if (len <= 9)
return -1;
p = 9 + asInetAddress(_v.sa).unmarshal(data + 9,len - 9);
if ((p <= 9)||(p >= len))
return -1;
return p;
default:
// Unrecognized endpoint types not yet specified must start with a 16-bit
// length so that older versions of ZeroTier can skip them.
if (len < 11)
return -1;
p = 11 + (int)Utils::loadBigEndian<uint16_t>(data + 9);
return (p > len) ? -1 : p;
} }
return -1;
case ZT_ENDPOINT_TYPE_ETHERNET:
case ZT_ENDPOINT_TYPE_WIFI_DIRECT:
case ZT_ENDPOINT_TYPE_BLUETOOTH:
if (len >= 7) {
reinterpret_cast<MAC *>(m_value)->setTo(data + 1);
return 7;
}
return -1;
case ZT_ENDPOINT_TYPE_IP:
case ZT_ENDPOINT_TYPE_IP_UDP:
case ZT_ENDPOINT_TYPE_IP_TCP:
case ZT_ENDPOINT_TYPE_IP_HTTP2:
return reinterpret_cast<InetAddress *>(m_value)->unmarshal(data + 1,len - 1);
default:
break;
}
// Unrecognized types can still be passed over in a valid stream if they are
// prefixed by a 16-bit size. This allows forward compatibility with future
// endpoint types.
m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX-1] = (uint8_t)ZT_ENDPOINT_TYPE_NIL;
if (len < 3)
return -1;
const int unrecLen = 1 + (int)Utils::loadBigEndian<uint16_t>(data + 1);
return (unrecLen > len) ? -1 : unrecLen;
} }
} // namespace ZeroTier } // namespace ZeroTier

View file

@ -20,101 +20,137 @@
#include "Utils.hpp" #include "Utils.hpp"
#include "TriviallyCopyable.hpp" #include "TriviallyCopyable.hpp"
#include "Fingerprint.hpp" #include "Fingerprint.hpp"
#include "MAC.hpp"
#define ZT_ENDPOINT_MARSHAL_SIZE_MAX 64 #define ZT_ENDPOINT_MARSHAL_SIZE_MAX 128
static_assert(ZT_ENDPOINT_MARSHAL_SIZE_MAX > (ZT_INETADDRESS_MARSHAL_SIZE_MAX + 1),"ZT_ENDPOINT_MARSHAL_SIZE_MAX not large enough");
static_assert(ZT_ENDPOINT_MARSHAL_SIZE_MAX > (sizeof(ZT_Fingerprint) + 1),"ZT_ENDPOINT_MARSHAL_SIZE_MAX not large enough");
namespace ZeroTier { namespace ZeroTier {
/** /**
* Endpoint variant specifying some form of network endpoint. * Endpoint variant specifying some form of network endpoint.
*
* This is sort of a superset of InetAddress and for the standard UDP
* protocol marshals and unmarshals to a compatible format. This makes
* it backward compatible with older node versions' protocol fields
* where InetAddress was used as long as only the UDP type is exchanged
* with those nodes.
*/ */
class Endpoint : public TriviallyCopyable class Endpoint : public TriviallyCopyable
{ {
public: public:
/** /**
* Endpoint type * Endpoint type (defined in the API)
*/
typedef ZT_EndpointType Type;
/**
* Create a NIL/empty endpoint
*/
ZT_INLINE Endpoint() noexcept { memoryZero(this); }
/**
* Create an endpoint for a type that uses an IP
* *
* These are set to be the same as the IDs used for trace events in ZeroTierCore.h. * @param a IP/port
* @param et Endpoint type (default: IP_UDP)
*/ */
enum Type ZT_INLINE Endpoint(const InetAddress &a,const Type et = ZT_ENDPOINT_TYPE_IP_UDP) noexcept
{ {
TYPE_NIL = ZT_ENDPOINT_TYPE_NIL, if (a) {
TYPE_ZEROTIER = ZT_ENDPOINT_TYPE_ZEROTIER, Utils::copy<sizeof(InetAddress)>(m_value,&a);
TYPE_ETHERNET = ZT_ENDPOINT_TYPE_ETHERNET, m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX-1] = (uint8_t)et;
TYPE_INETADDR_V4 = ZT_ENDPOINT_TYPE_INETADDR_V4, } else {
TYPE_INETADDR_V6 = ZT_ENDPOINT_TYPE_INETADDR_V6 memoryZero(this);
}; }
}
/** /**
* Protocol identifier bits. * Create an endpoint for ZeroTier relaying (ZEROTIER type)
*
* @param zt_ ZeroTier identity fingerprint
*/ */
enum Protocol ZT_INLINE Endpoint(const Fingerprint &zt_) noexcept
{ {
PROTO_DGRAM = ZT_ENDPOINT_PROTO_DGRAM, if (zt_) {
PROTO_STREAM = ZT_ENDPOINT_PROTO_STREAM, Utils::copy<sizeof(Fingerprint)>(m_value,&zt_);
PROTO_HTTP2 = ZT_ENDPOINT_PROTO_HTTP2, m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX-1] = (uint8_t)ZT_ENDPOINT_TYPE_ZEROTIER;
PROTO_HTTPS2 = ZT_ENDPOINT_PROTO_HTTPS2, } else {
PROTO_WS = ZT_ENDPOINT_PROTO_WS, memoryZero(this);
PROTO_WEBRTC = ZT_ENDPOINT_PROTO_WEBRTC, }
PROTO_WIREGUARD = ZT_ENDPOINT_PROTO_WIREGUARD }
};
ZT_INLINE Endpoint() noexcept { memoryZero(this); } // NOLINT(cppcoreguidelines-pro-type-member-init,hicpp-member-init)
explicit Endpoint(const InetAddress &sa,Protocol proto = PROTO_DGRAM) noexcept;
/** /**
* @return True if this is an IPv4 or IPv6 IP address * Create an endpoint for a type that uses a MAC address
*
* @param eth_ Ethernet address
* @param et Endpoint type (default: ETHERNET)
*/ */
ZT_INLINE bool isInetAddr() const noexcept { return ((_t == TYPE_INETADDR_V4)||(_t == TYPE_INETADDR_V6)); } ZT_INLINE Endpoint(const MAC &eth_,const Type et = ZT_ENDPOINT_TYPE_ETHERNET) noexcept
{
if (eth_) {
Utils::copy<sizeof(MAC)>(m_value,&eth_);
m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX-1] = (uint8_t)et;
} else {
memoryZero(this);
}
}
/** /**
* @return InetAddress or NIL if not of this type * @return Endpoint type
*/ */
ZT_INLINE const InetAddress &inetAddr() const noexcept { return ((_t == TYPE_INETADDR_V4) || (_t == TYPE_INETADDR_V6)) ? asInetAddress(_v.sa) : InetAddress::NIL; } ZT_INLINE Type type() const noexcept { return (Type)m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX-1]; }
/** /**
* @return Protocol bit mask * @return True if endpoint type isn't NIL
*/ */
ZT_INLINE Protocol protocol() const noexcept { return _proto; } ZT_INLINE operator bool() const noexcept { return (m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX] != (uint8_t)ZT_ENDPOINT_TYPE_NIL); }
/** /**
* @return 384-bit hash of identity keys or NULL if not of this type * @return True if this endpoint type has an InetAddress address type and thus ip() is valid
*/ */
ZT_INLINE const Fingerprint &fingerprint() const noexcept { return *reinterpret_cast<const Fingerprint *>(&_v.zt); } ZT_INLINE bool isInetAddr() const noexcept
{
switch(this->type()) {
case ZT_ENDPOINT_TYPE_IP:
case ZT_ENDPOINT_TYPE_IP_UDP:
case ZT_ENDPOINT_TYPE_IP_TCP:
case ZT_ENDPOINT_TYPE_IP_HTTP2:
return true;
default:
return false;
}
}
/** /**
* @return Ethernet address or NIL if not of this type * Get InetAddress if this type uses IPv4 or IPv6 addresses (undefined otherwise)
*
* @return InetAddress instance
*/ */
ZT_INLINE MAC ethernet() const noexcept { return (_t == TYPE_ETHERNET) ? MAC(_v.eth) : MAC(); } ZT_INLINE const InetAddress &ip() const noexcept { return *reinterpret_cast<const InetAddress *>(m_value); }
/** /**
* @return Endpoint type or NIL if unset/empty * Get MAC if this is an Ethernet, WiFi direct, or Bluetooth type (undefined otherwise)
*
* @return Ethernet MAC
*/ */
ZT_INLINE Type type() const noexcept { return _t; } ZT_INLINE const MAC &eth() const noexcept { return *reinterpret_cast<const MAC *>(m_value); }
ZT_INLINE operator bool() const noexcept { return _t != TYPE_NIL; } // NOLINT(google-explicit-constructor,hicpp-explicit-conversions) /**
* Get fingerprint if this is a ZeroTier endpoint type (undefined otherwise)
bool operator==(const Endpoint &ep) const noexcept; *
ZT_INLINE bool operator!=(const Endpoint &ep) const noexcept { return (!(*this == ep)); } * @return ZeroTier fingerprint
bool operator<(const Endpoint &ep) const noexcept; */
ZT_INLINE bool operator>(const Endpoint &ep) const noexcept { return (ep < *this); } ZT_INLINE const Fingerprint &zt() const noexcept { return *reinterpret_cast<const Fingerprint *>(m_value); }
ZT_INLINE bool operator<=(const Endpoint &ep) const noexcept { return !(ep < *this); }
ZT_INLINE bool operator>=(const Endpoint &ep) const noexcept { return !(*this < ep); }
static constexpr int marshalSizeMax() noexcept { return ZT_ENDPOINT_MARSHAL_SIZE_MAX; } static constexpr int marshalSizeMax() noexcept { return ZT_ENDPOINT_MARSHAL_SIZE_MAX; }
int marshal(uint8_t data[ZT_ENDPOINT_MARSHAL_SIZE_MAX]) const noexcept; int marshal(uint8_t data[ZT_ENDPOINT_MARSHAL_SIZE_MAX]) const noexcept;
int unmarshal(const uint8_t *restrict data,int len) noexcept; int unmarshal(const uint8_t *restrict data,int len) noexcept;
private: private:
Type _t; uint8_t m_value[ZT_ENDPOINT_MARSHAL_SIZE_MAX]; // the last byte in this buffer is the type
Protocol _proto;
int _l[3]; // X,Y,Z location in kilometers from the nearest gravitational center of mass (e.g. Earth)
union {
sockaddr_storage sa;
ZT_Fingerprint zt;
uint8_t eth[6];
} _v;
}; };
} // namespace ZeroTier } // namespace ZeroTier

135
node/EphemeralKey.hpp Normal file
View file

@ -0,0 +1,135 @@
/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_EPHEMERALKEY_HPP
#define ZT_EPHEMERALKEY_HPP
#include "Constants.hpp"
#include "C25519.hpp"
#include "ECC384.hpp"
#include "SHA512.hpp"
#include "Utils.hpp"
#define ZT_EPHEMERALKEY_PUBLIC_SIZE (1 + ZT_C25519_ECDH_PUBLIC_KEY_SIZE + ZT_ECC384_PUBLIC_KEY_SIZE)
namespace ZeroTier {
/**
* Container for ephemeral key pair sets used in forward secrecy negotiation.
*
* The ephemeral public key consists of public key(s) prefixed by a type byte.
* In the current version there are two keys: a Curve25519 ECDH public key and
* a NIST P-384 public key. Both are sent, and key agreement is performed by
* agreeing with both and then hashing the results together with the long-lived
* identity shared secret to produce a shared symmetric ephemeral key.
*
* Unlike identities the private key never leaves this class. It dies when
* a new key pair is generated or when the node is shut down.
*
* Each peer holds a copy of its current ephemeral key. This is re-generated
* after one half ZT_SYMMETRIC_KEY_TTL or after the the symmetric key has
* been used one half of ZT_SYMMETRIC_KEY_TTL_MESSAGES times. Half the total
* TTL is chosen to provide plenty of margin.
*/
class EphemeralKey
{
public:
enum Type
{
TYPE_NIL = 0,
TYPE_C25519_P384 = ZT_CRYPTO_ALG_P384
};
/**
* The ephemeral public key(s)
*
* This is sent with HELLO or OK(HELLO) and is re-written when
* generate() is called. Its size is static.
*/
const uint8_t pub[ZT_EPHEMERALKEY_PUBLIC_SIZE];
/**
* Create an uninitialized ephemeral key (must call generate())
*/
ZT_INLINE EphemeralKey() noexcept :
pub({0})
{
Utils::memoryLock(this,sizeof(EphemeralKey));
}
ZT_INLINE ~EphemeralKey() noexcept
{
Utils::burn(m_priv,sizeof(m_priv));
Utils::memoryUnlock(this,sizeof(EphemeralKey));
}
/**
* @return True if this ephemeral key has been initialized with generate()
*/
ZT_INLINE operator bool() const noexcept { return pub[0] != (uint8_t)TYPE_NIL; }
/**
* Generate or re-generate key pair.
*/
ZT_INLINE void generate() noexcept
{
uint8_t *const p = const_cast<uint8_t *>(pub);
p[0] = (uint8_t)TYPE_C25519_P384;
C25519::generateC25519(p + 1,m_priv);
ECC384GenerateKey(p + 1 + ZT_C25519_ECDH_PUBLIC_KEY_SIZE,m_priv + ZT_C25519_ECDH_PRIVATE_KEY_SIZE);
}
/**
* Execute key agreement with another ephemeral public key set.
*
* Final key is produced by hashing the two ECDH keys followed by
* the identity secret key with SHA384.
*
* @param identityKey Raw identity key shared between this node and peer
* @param otherPub Other public key (prefixed by type)
* @param key Key buffer to fill with symmetric key
* @return True on success
*/
ZT_INLINE bool agree(const uint8_t identityKey[ZT_SYMMETRIC_KEY_SIZE],const uint8_t *otherPub,const unsigned int otherPubLength,uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) const noexcept
{
if ((otherPubLength < ZT_EPHEMERALKEY_PUBLIC_SIZE)||(otherPub[0] != (uint8_t)TYPE_C25519_P384))
return false;
uint8_t tmp[ZT_C25519_ECDH_SHARED_SECRET_SIZE + ZT_ECC384_SHARED_SECRET_SIZE];
C25519::agree(m_priv,otherPub + 1,tmp);
if (!ECC384ECDH(otherPub + 1 + ZT_C25519_ECDH_PUBLIC_KEY_SIZE,m_priv + ZT_C25519_ECDH_PRIVATE_KEY_SIZE,tmp + ZT_C25519_ECDH_SHARED_SECRET_SIZE))
return false;
SHA384(key,tmp,ZT_C25519_ECDH_SHARED_SECRET_SIZE + ZT_ECC384_SHARED_SECRET_SIZE,identityKey,ZT_SYMMETRIC_KEY_SIZE);
Utils::burn(tmp,ZT_C25519_ECDH_SHARED_SECRET_SIZE + ZT_ECC384_SHARED_SECRET_SIZE);
return true;
}
/**
* Check and see if an acknowledgement hash returned via OK(HELLO) matches our public key.
*
* @param ackHash Hash provided in OK(HELLO)
* @return True if this matches the hash of this ephemeral key
*/
ZT_INLINE bool acknowledged(const uint8_t ackHash[ZT_SHA384_DIGEST_SIZE]) const noexcept
{
uint8_t h[ZT_SHA384_DIGEST_SIZE];
SHA384(h,pub,ZT_EPHEMERALKEY_PUBLIC_SIZE);
return Utils::secureEq(ackHash,h,ZT_SHA384_DIGEST_SIZE);
}
private:
uint8_t m_priv[ZT_C25519_ECDH_PRIVATE_KEY_SIZE + ZT_ECC384_PRIVATE_KEY_SIZE];
};
} // namespace ZeroTier
#endif

View file

@ -346,21 +346,21 @@ int InetAddress::marshal(uint8_t data[ZT_INETADDRESS_MARSHAL_SIZE_MAX]) const no
int InetAddress::unmarshal(const uint8_t *restrict data,const int len) noexcept int InetAddress::unmarshal(const uint8_t *restrict data,const int len) noexcept
{ {
if (len <= 0)
return -1;
memoryZero(this); memoryZero(this);
if (unlikely(len <= 0))
return -1;
switch(data[0]) { switch(data[0]) {
case 0: case 0:
return 1; return 1;
case 4: case 4:
if (len < 7) if (unlikely(len < 7))
return -1; return -1;
as.sa_in.sin_family = AF_INET; as.sa_in.sin_family = AF_INET;
as.sa_in.sin_port = Utils::loadAsIsEndian<uint16_t>(data + 5); as.sa_in.sin_port = Utils::loadAsIsEndian<uint16_t>(data + 5);
as.sa_in.sin_addr.s_addr = Utils::loadAsIsEndian<uint32_t>(data + 1); as.sa_in.sin_addr.s_addr = Utils::loadAsIsEndian<uint32_t>(data + 1);
return 7; return 7;
case 6: case 6:
if (len < 19) if (unlikely(len < 19))
return -1; return -1;
as.sa_in6.sin6_family = AF_INET6; as.sa_in6.sin6_family = AF_INET6;
as.sa_in6.sin6_port = Utils::loadAsIsEndian<uint16_t>(data + 17); as.sa_in6.sin6_port = Utils::loadAsIsEndian<uint16_t>(data + 17);

View file

@ -195,6 +195,6 @@ typedef unsigned uint128_t __attribute__((mode(TI)));
#endif #endif
// Macro to print very verbose tracing information to standard error. // Macro to print very verbose tracing information to standard error.
#define ZT_SPEW(f,...) fprintf(stderr,"%s(%d): " f ZT_EOL_S,__FILE__,__LINE__,__VA_ARGS__) #define ZT_SPEW(f,...) fprintf(stderr,"%s:%d(%s): " f ZT_EOL_S,__FILE__,__LINE__,__FUNCTION__,__VA_ARGS__)
#endif #endif

View file

@ -27,6 +27,7 @@ namespace ZeroTier {
Peer::Peer(const RuntimeEnvironment *renv) : Peer::Peer(const RuntimeEnvironment *renv) :
RR(renv), RR(renv),
m_ephemeralPairTimestamp(0),
m_lastReceive(0), m_lastReceive(0),
m_lastSend(0), m_lastSend(0),
m_lastSentHello(), m_lastSentHello(),
@ -61,7 +62,7 @@ bool Peer::init(const Identity &peerIdentity)
uint8_t k[ZT_SYMMETRIC_KEY_SIZE]; uint8_t k[ZT_SYMMETRIC_KEY_SIZE];
if (!RR->identity.agree(peerIdentity,k)) if (!RR->identity.agree(peerIdentity,k))
return false; return false;
m_identityKey.set(new SymmetricKey(RR->node->now(),k,true)); m_identityKey.set(new SymmetricKey(RR->node->now(),k));
Utils::burn(k,sizeof(k)); Utils::burn(k,sizeof(k));
m_deriveSecondaryIdentityKeys(); m_deriveSecondaryIdentityKeys();
@ -113,7 +114,7 @@ void Peer::received(
// and other wacky stuff can change port number assignments. // and other wacky stuff can change port number assignments.
m_paths[i] = path; m_paths[i] = path;
return; return;
} else if (m_paths[i]->lastIn() > lastReceiveTimeMax) { } else if (m_paths[i]->lastIn() >= lastReceiveTimeMax) {
lastReceiveTimeMax = m_paths[i]->lastIn(); lastReceiveTimeMax = m_paths[i]->lastIn();
newPathIdx = i; newPathIdx = i;
} }
@ -193,9 +194,13 @@ void Peer::pulse(void *const tPtr,const int64_t now,const bool isRoot)
{ {
RWMutex::Lock l(m_lock); RWMutex::Lock l(m_lock);
// Determine if we need to send a full HELLO because we are refreshing ephemeral
// keys or it's simply been too long.
bool needHello = false; bool needHello = false;
if ((now - m_lastSentHello) >= ZT_PEER_HELLO_INTERVAL) { if ( ((now - m_ephemeralPairTimestamp) >= (ZT_SYMMETRIC_KEY_TTL / 2)) || ((m_ephemeralKeys[0])&&(m_ephemeralKeys[0]->odometer() >= (ZT_SYMMETRIC_KEY_TTL_MESSAGES / 2))) ) {
m_lastSentHello = now; m_ephemeralPair.generate();
needHello = true;
} else if ((now - m_lastSentHello) >= ZT_PEER_HELLO_INTERVAL) {
needHello = true; needHello = true;
} }
@ -217,9 +222,9 @@ void Peer::pulse(void *const tPtr,const int64_t now,const bool isRoot)
if (tryAtIndex > 0) { if (tryAtIndex > 0) {
--tryAtIndex; --tryAtIndex;
} else { } else {
if ((i->second.isInetAddr())&&(!i->second.inetAddr().ipsEqual(addr))) { if ((i->second.isInetAddr())&&(!i->second.ip().ipsEqual(addr))) {
RR->t->tryingNewPath(tPtr, 0x0a009444, m_id, i->second.inetAddr(), InetAddress::NIL, 0, 0, Identity::NIL); RR->t->tryingNewPath(tPtr, 0x0a009444, m_id, i->second.ip(), InetAddress::NIL, 0, 0, Identity::NIL);
sent(now,m_sendProbe(tPtr,-1,i->second.inetAddr(),now)); sent(now,m_sendProbe(tPtr,-1,i->second.ip(),now));
break; break;
} }
} }
@ -231,19 +236,22 @@ void Peer::pulse(void *const tPtr,const int64_t now,const bool isRoot)
// Attempt queued paths to try. // Attempt queued paths to try.
for(int k=0;(k<ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE)&&(!m_tryQueue.empty());++k) { for(int k=0;(k<ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE)&&(!m_tryQueue.empty());++k) {
// This is a global circular pointer that iterates through the list of
// endpoints to attempt.
if (m_tryQueuePtr == m_tryQueue.end()) if (m_tryQueuePtr == m_tryQueue.end())
m_tryQueuePtr = m_tryQueue.begin(); m_tryQueuePtr = m_tryQueue.begin();
// Delete timed out entries.
if ((now - m_tryQueuePtr->ts) > ZT_PATH_ALIVE_TIMEOUT) { if ((now - m_tryQueuePtr->ts) > ZT_PATH_ALIVE_TIMEOUT) {
m_tryQueue.erase(m_tryQueuePtr++); m_tryQueue.erase(m_tryQueuePtr++);
continue; continue;
} }
if (m_tryQueuePtr->target.isInetAddr()) { if (m_tryQueuePtr->target.isInetAddr()) {
// Make sure target does not overlap with any existing path. // Delete entries that duplicate existing alive paths.
bool duplicate = false; bool duplicate = false;
for(unsigned int i=0;i<m_alivePathCount;++i) { for(unsigned int i=0;i<m_alivePathCount;++i) {
if (m_paths[i]->address() == m_tryQueuePtr->target.inetAddr()) { if (m_paths[i]->address() == m_tryQueuePtr->target.ip()) {
duplicate = true; duplicate = true;
break; break;
} }
@ -268,27 +276,29 @@ void Peer::pulse(void *const tPtr,const int64_t now,const bool isRoot)
ports[b] = tmp; ports[b] = tmp;
} }
} }
InetAddress addr(m_tryQueuePtr->target.inetAddr()); InetAddress addr(m_tryQueuePtr->target.ip());
for (unsigned int i=0;i<ZT_NAT_T_BFG1024_PORTS_PER_ATTEMPT;++i) { for (unsigned int i=0;i<ZT_NAT_T_BFG1024_PORTS_PER_ATTEMPT;++i) {
addr.setPort(ports[i]); addr.setPort(ports[i]);
sent(now,m_sendProbe(tPtr,-1,addr,now)); sent(now,m_sendProbe(tPtr,-1,addr,now));
} }
} else { } else {
// Otherwise send a normal probe. // Otherwise send a normal probe.
sent(now,m_sendProbe(tPtr, -1, m_tryQueuePtr->target.inetAddr(), now)); sent(now,m_sendProbe(tPtr, -1, m_tryQueuePtr->target.ip(), now));
} }
} }
++m_tryQueuePtr; ++m_tryQueuePtr;
} }
// Do keepalive on all currently active paths. // Do keepalive on all currently active paths, sending HELLO to the first
// if needHello is true and sending small keepalives to others.
for(unsigned int i=0;i<m_alivePathCount;++i) { for(unsigned int i=0;i<m_alivePathCount;++i) {
if (needHello) { if (needHello) {
needHello = false; needHello = false;
const unsigned int bytes = hello(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), now); const unsigned int bytes = hello(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), now);
m_paths[i]->sent(now, bytes); m_paths[i]->sent(now, bytes);
sent(now,bytes); sent(now,bytes);
m_lastSentHello = now;
} else if ((now - m_paths[i]->lastOut()) >= ZT_PATH_KEEPALIVE_PERIOD) { } else if ((now - m_paths[i]->lastOut()) >= ZT_PATH_KEEPALIVE_PERIOD) {
m_paths[i]->send(RR, tPtr, &now, 1, now); m_paths[i]->send(RR, tPtr, &now, 1, now);
sent(now,1); sent(now,1);
@ -306,15 +316,26 @@ void Peer::pulse(void *const tPtr,const int64_t now,const bool isRoot)
via->sent(now,bytes); via->sent(now,bytes);
root->relayed(now,bytes); root->relayed(now,bytes);
sent(now,bytes); sent(now,bytes);
m_lastSentHello = now;
} }
} }
} }
} }
void Peer::tryDirectPath(const int64_t now,const Endpoint &ep,const bool breakSymmetricBFG1024) void Peer::contact(void *tPtr,const int64_t now,const Endpoint &ep,const bool breakSymmetricBFG1024)
{ {
static uint8_t foo = 0;
RWMutex::Lock l(m_lock); RWMutex::Lock l(m_lock);
if (ep.isInetAddr()&&ep.ip().isV4()) {
// For IPv4 addresses we send a tiny packet with a low TTL, which helps to
// traverse some NAT types. It has no effect otherwise. It's important to
// send this right away in case this is a coordinated attempt via RENDEZVOUS.
RR->node->putPacket(tPtr,-1,ep.ip(),&foo,1,2);
++foo;
}
// Check to see if this endpoint overlaps an existing queue item. If so, just update it.
for(List<p_TryQueueItem>::iterator i(m_tryQueue.begin());i!=m_tryQueue.end();++i) { for(List<p_TryQueueItem>::iterator i(m_tryQueue.begin());i!=m_tryQueue.end();++i) {
if (i->target == ep) { if (i->target == ep) {
i->ts = now; i->ts = now;
@ -323,6 +344,7 @@ void Peer::tryDirectPath(const int64_t now,const Endpoint &ep,const bool breakSy
} }
} }
// Add endpoint to endpoint attempt queue.
#ifdef __CPP11__ #ifdef __CPP11__
m_tryQueue.emplace_back(now, ep, breakSymmetricBFG1024); m_tryQueue.emplace_back(now, ep, breakSymmetricBFG1024);
#else #else
@ -456,7 +478,7 @@ int Peer::unmarshal(const uint8_t *restrict data,const int len) noexcept
RR->localCacheSymmetric.decrypt(data + 1,k); RR->localCacheSymmetric.decrypt(data + 1,k);
RR->localCacheSymmetric.decrypt(data + 17,k + 16); RR->localCacheSymmetric.decrypt(data + 17,k + 16);
RR->localCacheSymmetric.decrypt(data + 33,k + 32); RR->localCacheSymmetric.decrypt(data + 33,k + 32);
m_identityKey.set(new SymmetricKey(RR->node->now(),k,true)); m_identityKey.set(new SymmetricKey(RR->node->now(),k));
Utils::burn(k,sizeof(k)); Utils::burn(k,sizeof(k));
} }
@ -471,7 +493,7 @@ int Peer::unmarshal(const uint8_t *restrict data,const int len) noexcept
uint8_t k[ZT_SYMMETRIC_KEY_SIZE]; uint8_t k[ZT_SYMMETRIC_KEY_SIZE];
if (!RR->identity.agree(m_id,k)) if (!RR->identity.agree(m_id,k))
return -1; return -1;
m_identityKey.set(new SymmetricKey(RR->node->now(),k,true)); m_identityKey.set(new SymmetricKey(RR->node->now(),k));
Utils::burn(k,sizeof(k)); Utils::burn(k,sizeof(k));
} }
@ -505,6 +527,8 @@ int Peer::unmarshal(const uint8_t *restrict data,const int len) noexcept
m_vRevision = Utils::loadBigEndian<uint16_t>(data + p); p += 2; m_vRevision = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
p += 2 + (int)Utils::loadBigEndian<uint16_t>(data + p); p += 2 + (int)Utils::loadBigEndian<uint16_t>(data + p);
m_deriveSecondaryIdentityKeys();
return (p > len) ? -1 : p; return (p > len) ? -1 : p;
} }

View file

@ -28,6 +28,7 @@
#include "Locator.hpp" #include "Locator.hpp"
#include "Protocol.hpp" #include "Protocol.hpp"
#include "AES.hpp" #include "AES.hpp"
#include "EphemeralKey.hpp"
#include "SymmetricKey.hpp" #include "SymmetricKey.hpp"
#include "Containers.hpp" #include "Containers.hpp"
@ -226,13 +227,14 @@ public:
void pulse(void *tPtr,int64_t now,bool isRoot); void pulse(void *tPtr,int64_t now,bool isRoot);
/** /**
* Add a potential candidate direct path to the P2P "try" queue. * Attempt to contact this peer at a given endpoint.
* *
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param now Current time * @param now Current time
* @param ep Endpoint to attempt to contact * @param ep Endpoint to attempt to contact
* @param bfg1024 Use BFG1024 brute force symmetric NAT busting algorithm if applicable * @param bfg1024 Use BFG1024 brute force symmetric NAT busting algorithm if applicable
*/ */
void tryDirectPath(int64_t now,const Endpoint &ep,bool breakSymmetricBFG1024); void contact(void *tPtr,int64_t now,const Endpoint &ep,bool breakSymmetricBFG1024);
/** /**
* Reset paths within a given IP scope and address family * Reset paths within a given IP scope and address family
@ -467,6 +469,10 @@ private:
// Key for HELLO HMAC-SHA384 // Key for HELLO HMAC-SHA384
uint8_t m_helloMacKey[ZT_SYMMETRIC_KEY_SIZE]; uint8_t m_helloMacKey[ZT_SYMMETRIC_KEY_SIZE];
// Currently active ephemeral public key pair
EphemeralKey m_ephemeralPair;
int64_t m_ephemeralPairTimestamp;
// Current and previous ephemeral key // Current and previous ephemeral key
SharedPtr<SymmetricKey> m_ephemeralKeys[2]; SharedPtr<SymmetricKey> m_ephemeralKeys[2];

View file

@ -256,9 +256,8 @@
#define ZT_PROTO_HELLO_NODE_META_SOFTWARE_VERSION "v" #define ZT_PROTO_HELLO_NODE_META_SOFTWARE_VERSION "v"
#define ZT_PROTO_HELLO_NODE_META_PHYSICAL_DEST "d" #define ZT_PROTO_HELLO_NODE_META_PHYSICAL_DEST "d"
#define ZT_PROTO_HELLO_NODE_META_COMPLIANCE "c" #define ZT_PROTO_HELLO_NODE_META_COMPLIANCE "c"
#define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_C25519 "0" #define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_PUBLIC "e"
#define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_P384 "1" #define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_ACK "E"
#define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_REMOTE "R"
static_assert(ZT_PROTO_MAX_PACKET_LENGTH < ZT_BUF_MEM_SIZE,"maximum packet length won't fit in Buf"); static_assert(ZT_PROTO_MAX_PACKET_LENGTH < ZT_BUF_MEM_SIZE,"maximum packet length won't fit in Buf");
static_assert(ZT_PROTO_PACKET_ENCRYPTED_SECTION_START == (ZT_PROTO_MIN_PACKET_LENGTH-1),"encrypted packet section must start right before protocol verb at one less than minimum packet size"); static_assert(ZT_PROTO_PACKET_ENCRYPTED_SECTION_START == (ZT_PROTO_MIN_PACKET_LENGTH-1),"encrypted packet section must start right before protocol verb at one less than minimum packet size");
@ -324,7 +323,7 @@ enum Verb
* *
* LEGACY: for legacy reasons the MAC field of HELLO is a poly1305 * LEGACY: for legacy reasons the MAC field of HELLO is a poly1305
* MAC initialized in the same manner as 1.x. Since HMAC provides * MAC initialized in the same manner as 1.x. Since HMAC provides
* additional full 256-bit strength authentication this should not be * additional full 384-bit strength authentication this should not be
* a problem for FIPS. * a problem for FIPS.
* *
* Several legacy fields are present as well for the benefit of 1.x nodes. * Several legacy fields are present as well for the benefit of 1.x nodes.
@ -339,32 +338,26 @@ enum Verb
* ignore them due to the "encrypted zero" field indicating that the * ignore them due to the "encrypted zero" field indicating that the
* packet contains no more information. * packet contains no more information.
* *
* Dictionary fields: * Dictionary fields (defines start with ZT_PROTO_HELLO_NODE_META_):
*
* The following fields are always present in HELLO:
* *
* INSTANCE_ID - a 64-bit unique value generated on each node start * INSTANCE_ID - a 64-bit unique value generated on each node start
* LOCATOR - signed record enumerating this node's trusted contact points * LOCATOR - signed record enumerating this node's trusted contact points
* PROBE_TOKEN - 32-bit probe token * PROBE_TOKEN - 32-bit probe token
* EPHEMERAL_PUBLIC - Ephemeral public key(s)
* *
* The following fields are used to establish forward secrecy: * OK will contain EPHEMERAL_PUBLIC (of the sender) and:
* *
* EPHEMERAL_C25519 - C25519 ephemeral public key (32 bytes) * EPHEMERAL_ACK - SHA384 of EPHEMERAL_PUBLIC received
* EPHEMERAL_P384 - NIST P-384 ephemneral public key (49 bytes)
* EPHEMERAL_REMOTE - SHA-384 of keys we have for peer (absent if none)
* *
* The following optional fields may also be present: * The following optional fields may also be present:
* *
* NAME - arbitrary short user-defined name for this node * HOSTNAME - arbitrary short host name for this node
* CONTACT - arbitrary short contact information string for this node * CONTACT - arbitrary short contact information string for this node
* SOFTWARE_VENDOR - short name or description of vendor, such as a URL * SOFTWARE_VENDOR - short name or description of vendor, such as a URL
* SOFTWARE_VERSION - major, minor, revision, and build (packed 64-bit int) * SOFTWARE_VERSION - major, minor, revision, and build (packed 64-bit int)
* PHYSICAL_DEST - serialized Endpoint to which this message was sent * PHYSICAL_DEST - serialized Endpoint to which this message was sent
* COMPLIANCE - bit mask containing bits for e.g. a FIPS-compliant node * COMPLIANCE - bit mask containing bits for e.g. a FIPS-compliant node
* *
* The actual keys for these fields are in corresponding #defines by these
* names.
*
* The timestamp field in OK is echoed but the others represent the sender * The timestamp field in OK is echoed but the others represent the sender
* of the OK and are not echoes from HELLO. The dictionary in OK typically * of the OK and are not echoes from HELLO. The dictionary in OK typically
* only contains the EPHEMERAL fields, allowing the receiver of the OK to * only contains the EPHEMERAL fields, allowing the receiver of the OK to
@ -378,8 +371,14 @@ enum Verb
* <[...] dictionary> * <[...] dictionary>
* <[48] HMAC-SHA384 of plaintext packet> * <[48] HMAC-SHA384 of plaintext packet>
* *
* LEGACY: a legacy format OK will be sent to nodes with older protocol * Legacy OK payload (sent to pre-2.x nodes):
* versions. * <[8] timestamp echoed from original HELLO>
* <[1] protocol version of responding node>
* <[1] software major version>
* <[1] software minor version>
* <[2] software revision>
* <[...] physical destination address of packet>
* <[2] 16-bit zero length of additional fields>
*/ */
VERB_HELLO = 0x01, VERB_HELLO = 0x01,

View file

@ -33,7 +33,6 @@ public:
ZT_INLINE T *operator->() const noexcept { return m_ptr; } ZT_INLINE T *operator->() const noexcept { return m_ptr; }
ZT_INLINE T &operator*() const noexcept { return *m_ptr; } ZT_INLINE T &operator*() const noexcept { return *m_ptr; }
explicit ZT_INLINE operator bool() const noexcept { return (m_ptr != (T *)0); }
ZT_INLINE T *ptr() const noexcept { return m_ptr; } ZT_INLINE T *ptr() const noexcept { return m_ptr; }
ZT_INLINE void swap(const ScopedPtr &p) noexcept ZT_INLINE void swap(const ScopedPtr &p) noexcept
@ -43,6 +42,8 @@ public:
p.m_ptr = tmp; p.m_ptr = tmp;
} }
explicit ZT_INLINE operator bool() const noexcept { return (m_ptr != (T *)0); }
ZT_INLINE bool operator==(const ScopedPtr &p) const noexcept { return (m_ptr == p.m_ptr); } ZT_INLINE bool operator==(const ScopedPtr &p) const noexcept { return (m_ptr == p.m_ptr); }
ZT_INLINE bool operator!=(const ScopedPtr &p) const noexcept { return (m_ptr != p.m_ptr); } ZT_INLINE bool operator!=(const ScopedPtr &p) const noexcept { return (m_ptr != p.m_ptr); }
ZT_INLINE bool operator==(T *const p) const noexcept { return (m_ptr == p); } ZT_INLINE bool operator==(T *const p) const noexcept { return (m_ptr == p); }

View file

@ -24,10 +24,7 @@
namespace ZeroTier { namespace ZeroTier {
/** /**
* Container for symmetric keys and ciphers initialized with them * Container for symmetric keys and ciphers initialized with them.
*
* This container is responsible for tracking key TTL to maintain it
* below our security bounds and tell us when it's time to re-key.
*/ */
class SymmetricKey class SymmetricKey
{ {
@ -63,15 +60,13 @@ public:
* *
* @param ts Current time * @param ts Current time
* @param key 48-bit / 384-byte key * @param key 48-bit / 384-byte key
* @param perm If true this is a permanent key
*/ */
explicit ZT_INLINE SymmetricKey(const int64_t ts,const void *const key,const bool perm) noexcept : explicit ZT_INLINE SymmetricKey(const int64_t ts,const void *const key) noexcept :
secret(), secret(),
cipher(key), // uses first 256 bits of 384-bit key cipher(key), // AES-256 uses first 256 bits of 384-bit key
m_ts(ts), m_initialNonce(((((uint64_t)ts / 1000ULL) << 32U) & 0x7fffffff00000000ULL) | (Utils::random() & 0x00000000ffffffffULL)),
m_nonceBase(((((uint64_t)ts / 1000ULL) << 32U) & 0x7fffffff00000000ULL) | (Utils::random() & 0x00000000ffffffffULL)), m_nonce(m_initialNonce),
m_odometer(0), __refCount(0)
m_permanent(perm)
{ {
Utils::memoryLock(this,sizeof(SymmetricKey)); Utils::memoryLock(this,sizeof(SymmetricKey));
Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(const_cast<uint8_t *>(secret), key); Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(const_cast<uint8_t *>(secret), key);
@ -83,28 +78,6 @@ public:
Utils::memoryUnlock(this,sizeof(SymmetricKey)); Utils::memoryUnlock(this,sizeof(SymmetricKey));
} }
/**
* Check whether this symmetric key may be expiring soon
*
* @param now Current time
* @return True if re-keying should happen
*/
ZT_INLINE bool expiringSoon(const int64_t now) const noexcept
{
return (!m_permanent) && (((now - m_ts) >= (ZT_SYMMETRIC_KEY_TTL / 2)) || (m_odometer >= (ZT_SYMMETRIC_KEY_TTL_MESSAGES / 2)) );
}
/**
* Check whether this symmetric key is expired due to too much time or too many messages
*
* @param now Current time
* @return True if this symmetric key should no longer be used
*/
ZT_INLINE bool expired(const int64_t now) const noexcept
{
return (!m_permanent) && (((now - m_ts) >= ZT_SYMMETRIC_KEY_TTL) || (m_odometer >= ZT_SYMMETRIC_KEY_TTL_MESSAGES) );
}
/** /**
* Advance usage counter by one and return the next IV / packet ID. * Advance usage counter by one and return the next IV / packet ID.
* *
@ -114,15 +87,21 @@ public:
*/ */
ZT_INLINE uint64_t nextMessage(const Address sender,const Address receiver) noexcept ZT_INLINE uint64_t nextMessage(const Address sender,const Address receiver) noexcept
{ {
return (m_nonceBase + m_odometer++) ^ (((uint64_t)(sender > receiver)) << 63U); return m_nonce.fetch_add(1) ^ (((uint64_t)(sender > receiver)) << 63U);
}
/**
* @return Number of times nextMessage() has been called since object creation
*/
ZT_INLINE uint64_t odometer() const noexcept
{
return m_nonce.load() - m_initialNonce;
} }
private: private:
const int64_t m_ts; const uint64_t m_initialNonce;
const uint64_t m_nonceBase; std::atomic<uint64_t> m_nonce;
std::atomic<uint64_t> m_odometer;
std::atomic<int> __refCount; std::atomic<int> __refCount;
const bool m_permanent;
}; };
} // namespace ZeroTier } // namespace ZeroTier

View file

@ -21,6 +21,7 @@
#include "Address.hpp" #include "Address.hpp"
#include "MAC.hpp" #include "MAC.hpp"
#include "Containers.hpp" #include "Containers.hpp"
#include "Utils.hpp"
#define ZT_TRACE_F_VL1 0x01U #define ZT_TRACE_F_VL1 0x01U
#define ZT_TRACE_F_VL2 0x02U #define ZT_TRACE_F_VL2 0x02U

View file

@ -659,10 +659,7 @@ static ZT_INLINE void copy(void *const dest,const void *const src) noexcept
* @param src Source memory * @param src Source memory
* @param len Bytes to copy * @param len Bytes to copy
*/ */
static ZT_INLINE void copy(void *const dest,const void *const src,unsigned int len) noexcept static ZT_INLINE void copy(void *const dest,const void *const src,unsigned int len) noexcept { memcpy(dest,src,len); }
{
memcpy(dest,src,len);
}
/** /**
* Zero memory block whose size is known at compile time * Zero memory block whose size is known at compile time
@ -718,13 +715,14 @@ static ZT_INLINE void zero(void *const dest) noexcept
* @param dest Memory to zero * @param dest Memory to zero
* @param len Size in bytes * @param len Size in bytes
*/ */
static ZT_INLINE void zero(void *const dest,const unsigned int len) noexcept static ZT_INLINE void zero(void *const dest,const unsigned int len) noexcept { memset(dest,0,len); }
{
memset(dest,0,len);
}
/** /**
* Simple malloc/free based C++ STL allocator * Simple malloc/free based C++ STL allocator.
*
* This is used to make sure our containers don't use weird libc++
* allocators but instead use whatever malloc() is, which in turn
* can be overridden by things like jemaclloc or tcmalloc.
* *
* @tparam T Allocated type * @tparam T Allocated type
*/ */

View file

@ -83,27 +83,12 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
const SharedPtr<Path> path(RR->topology->path(localSocket,fromAddr)); const SharedPtr<Path> path(RR->topology->path(localSocket,fromAddr));
const int64_t now = RR->node->now(); const int64_t now = RR->node->now();
// Update path's last receive time (this is updated when anything is received at all, even if invalid or a keepalive) ZT_SPEW("%u bytes from %s (local socket %lld)",len,fromAddr.toString().c_str(),localSocket);
path->received(now,len); path->received(now,len);
try { // NOTE: likely/unlikely are used here to highlight the most common code path
// Handle short probes, which are used as a low-bandwidth way to initiate a real handshake. // for valid data packets. This may allow the compiler to generate very slightly
// These are subjected to a significant rate limit to prevent DOS or amplification attacks. // faster code for that path.
// The probe itself is a token passed via HELLO, so these are only used with peers we've
// already started communicating with.
if (unlikely(len == ZT_PROTO_PROBE_LENGTH)) {
PeerList peers(RR->topology->peersByProbeToken(data->lI32(0)));
for(unsigned int pi=0;pi<peers.size();++pi) {
if (peers[pi]->rateGateProbeRequest(now))
peers[pi]->hello(tPtr,localSocket,fromAddr,now);
}
return;
}
// Any other "runt" packets are discarded, though they still count toward a path's
// last receive time as they may be keepalives.
if (unlikely(len < ZT_PROTO_MIN_FRAGMENT_LENGTH))
return;
/* /*
* Packet format: * Packet format:
@ -117,6 +102,24 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
* [... verb-specific payload ...] * [... verb-specific payload ...]
*/ */
try {
// If this is too short to be a packet or fragment, check if it's a probe and
// if not simply drop it.
if (unlikely(len < ZT_PROTO_MIN_FRAGMENT_LENGTH)) {
if (len == ZT_PROTO_PROBE_LENGTH) {
const uint32_t probeToken = data->lI32(0);
PeerList peers(RR->topology->peersByProbeToken(probeToken));
ZT_SPEW("probe %.8x matches %u peers",(unsigned long)probeToken,peers.size());
for(unsigned int pi=0;pi<peers.size();++pi) {
if (peers[pi]->rateGateProbeRequest(now)) {
ZT_SPEW("HELLO -> %s(%s)",peers[pi]->address().toString().c_str(),fromAddr.toString().c_str());
peers[pi]->hello(tPtr,localSocket,fromAddr,now);
}
}
}
return;
}
static_assert((ZT_PROTO_PACKET_DESTINATION_INDEX + ZT_ADDRESS_LENGTH) < ZT_PROTO_MIN_FRAGMENT_LENGTH,"overflow"); static_assert((ZT_PROTO_PACKET_DESTINATION_INDEX + ZT_ADDRESS_LENGTH) < ZT_PROTO_MIN_FRAGMENT_LENGTH,"overflow");
Address destination(data->unsafeData + ZT_PROTO_PACKET_DESTINATION_INDEX); Address destination(data->unsafeData + ZT_PROTO_PACKET_DESTINATION_INDEX);
if (destination != RR->identity.address()) { if (destination != RR->identity.address()) {
@ -187,7 +190,7 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
} }
} else { } else {
// This is a single whole packet with no fragments. // This is a single whole packet with no fragments.
Buf::Slice &s = pktv.push(); Buf::Slice s = pktv.push();
s.b.swap(data); s.b.swap(data);
s.s = 0; s.s = 0;
s.e = len; s.e = len;
@ -199,23 +202,21 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
// ---------------------------------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------------------------------
const uint8_t *const hdr = pktv[0].b->unsafeData + pktv[0].s; const uint8_t *const hdr = pktv[0].b->unsafeData + pktv[0].s;
static_assert((ZT_PROTO_PACKET_SOURCE_INDEX + ZT_ADDRESS_LENGTH) < ZT_PROTO_MIN_PACKET_LENGTH,"overflow"); static_assert((ZT_PROTO_PACKET_SOURCE_INDEX + ZT_ADDRESS_LENGTH) < ZT_PROTO_MIN_PACKET_LENGTH,"overflow");
const Address source(hdr + ZT_PROTO_PACKET_SOURCE_INDEX); const Address source(hdr + ZT_PROTO_PACKET_SOURCE_INDEX);
static_assert(ZT_PROTO_PACKET_FLAGS_INDEX < ZT_PROTO_MIN_PACKET_LENGTH,"overflow"); static_assert(ZT_PROTO_PACKET_FLAGS_INDEX < ZT_PROTO_MIN_PACKET_LENGTH,"overflow");
const uint8_t hops = hdr[ZT_PROTO_PACKET_FLAGS_INDEX] & ZT_PROTO_FLAG_FIELD_HOPS_MASK; const uint8_t hops = hdr[ZT_PROTO_PACKET_FLAGS_INDEX] & ZT_PROTO_FLAG_FIELD_HOPS_MASK;
const uint8_t cipher = (hdr[ZT_PROTO_PACKET_FLAGS_INDEX] >> 3U) & 3U; const uint8_t cipher = (hdr[ZT_PROTO_PACKET_FLAGS_INDEX] >> 3U) & 3U;
const SharedPtr<Buf> pkt(new Buf()); SharedPtr<Buf> pkt(new Buf());
int pktSize = 0; int pktSize = 0;
bool authenticated = false;
static_assert(ZT_PROTO_PACKET_VERB_INDEX < ZT_PROTO_MIN_PACKET_LENGTH,"overflow"); static_assert(ZT_PROTO_PACKET_VERB_INDEX < ZT_PROTO_MIN_PACKET_LENGTH,"overflow");
if ( ((cipher == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)||(cipher == ZT_PROTO_CIPHER_SUITE__NONE)) && ((hdr[ZT_PROTO_PACKET_VERB_INDEX] & ZT_PROTO_VERB_MASK) == Protocol::VERB_HELLO) ) { if (unlikely( ((cipher == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE)||(cipher == ZT_PROTO_CIPHER_SUITE__NONE)) && ((hdr[ZT_PROTO_PACKET_VERB_INDEX] & ZT_PROTO_VERB_MASK) == Protocol::VERB_HELLO) )) {
// Handle unencrypted HELLO packets. // Handle unencrypted HELLO packets.
pktSize = pktv.mergeCopy(*pkt); pktSize = pktv.mergeCopy(*pkt);
if (unlikely(pktSize < ZT_PROTO_MIN_PACKET_LENGTH)) { if (unlikely(pktSize < ZT_PROTO_MIN_PACKET_LENGTH)) {
ZT_SPEW("discarding packet %.16llx from %s: assembled packet size: %d",packetId,fromAddr.toString().c_str(),pktSize); ZT_SPEW("discarding packet %.16llx from %s(%s): assembled packet size: %d",packetId,source.toString().c_str(),fromAddr.toString().c_str(),pktSize);
return; return;
} }
const SharedPtr<Peer> peer(m_HELLO(tPtr, path, *pkt, pktSize)); const SharedPtr<Peer> peer(m_HELLO(tPtr, path, *pkt, pktSize));
@ -228,6 +229,11 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
// Making it this far means the packet is not a plaintext HELLO, so do normal AEAD decrypt and packet handling. // Making it this far means the packet is not a plaintext HELLO, so do normal AEAD decrypt and packet handling.
// ---------------------------------------------------------------------------------------------------------------- // ----------------------------------------------------------------------------------------------------------------
// This remains zero if authentication fails. Otherwise it gets set to a bit mask
// indicating authentication and other security flags like encryption and forward
// secrecy status.
unsigned int auth = 0;
SharedPtr<Peer> peer(RR->topology->peer(tPtr,source)); SharedPtr<Peer> peer(RR->topology->peer(tPtr,source));
if (peer) { if (peer) {
switch(cipher) { switch(cipher) {
@ -239,7 +245,7 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
pktSize = pktv.mergeMap<p_PolyCopyFunction &>(*pkt,ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,s20cf); pktSize = pktv.mergeMap<p_PolyCopyFunction &>(*pkt,ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,s20cf);
if (unlikely(pktSize < ZT_PROTO_MIN_PACKET_LENGTH)) { if (unlikely(pktSize < ZT_PROTO_MIN_PACKET_LENGTH)) {
ZT_SPEW("discarding packet %.16llx from %s: assembled packet size: %d",packetId,fromAddr.toString().c_str(),pktSize); ZT_SPEW("discarding packet %.16llx from %s(%s): assembled packet size: %d",packetId,source.toString().c_str(),fromAddr.toString().c_str(),pktSize);
return; return;
} }
@ -247,11 +253,12 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
s20cf.poly1305.finish(mac); s20cf.poly1305.finish(mac);
static_assert((ZT_PROTO_PACKET_MAC_INDEX + 8) < ZT_PROTO_MIN_PACKET_LENGTH,"overflow"); static_assert((ZT_PROTO_PACKET_MAC_INDEX + 8) < ZT_PROTO_MIN_PACKET_LENGTH,"overflow");
if (unlikely(Utils::loadAsIsEndian<uint64_t>(hdr + ZT_PROTO_PACKET_MAC_INDEX) != mac[0])) { if (unlikely(Utils::loadAsIsEndian<uint64_t>(hdr + ZT_PROTO_PACKET_MAC_INDEX) != mac[0])) {
ZT_SPEW("discarding packet %.16llx from %s(%s): packet MAC failed (none/poly1305)",packetId,source.toString().c_str(),fromAddr.toString().c_str());
RR->t->incomingPacketDropped(tPtr,0xcc89c812,packetId,0,peer->identity(),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED); RR->t->incomingPacketDropped(tPtr,0xcc89c812,packetId,0,peer->identity(),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return; return;
} }
authenticated = true; auth = ZT_VL1_AUTH_RESULT_FLAG_AUTHENTICATED;
} break; } break;
case ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012: { case ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012: {
@ -261,7 +268,7 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
pktSize = pktv.mergeMap<p_SalsaPolyCopyFunction &>(*pkt,ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,s20cf); pktSize = pktv.mergeMap<p_SalsaPolyCopyFunction &>(*pkt,ZT_PROTO_PACKET_ENCRYPTED_SECTION_START,s20cf);
if (unlikely(pktSize < ZT_PROTO_MIN_PACKET_LENGTH)) { if (unlikely(pktSize < ZT_PROTO_MIN_PACKET_LENGTH)) {
ZT_SPEW("discarding packet %.16llx from %s: assembled packet size: %d",packetId,fromAddr.toString().c_str(),pktSize); ZT_SPEW("discarding packet %.16llx from %s(%s): assembled packet size: %d",packetId,source.toString().c_str(),fromAddr.toString().c_str(),pktSize);
return; return;
} }
@ -269,11 +276,12 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
s20cf.poly1305.finish(mac); s20cf.poly1305.finish(mac);
static_assert((ZT_PROTO_PACKET_MAC_INDEX + 8) < ZT_PROTO_MIN_PACKET_LENGTH,"overflow"); static_assert((ZT_PROTO_PACKET_MAC_INDEX + 8) < ZT_PROTO_MIN_PACKET_LENGTH,"overflow");
if (unlikely(Utils::loadAsIsEndian<uint64_t>(hdr + ZT_PROTO_PACKET_MAC_INDEX) != mac[0])) { if (unlikely(Utils::loadAsIsEndian<uint64_t>(hdr + ZT_PROTO_PACKET_MAC_INDEX) != mac[0])) {
ZT_SPEW("discarding packet %.16llx from %s(%s): packet MAC failed (salsa/poly1305)",packetId,source.toString().c_str(),fromAddr.toString().c_str());
RR->t->incomingPacketDropped(tPtr,0xcc89c812,packetId,0,peer->identity(),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED); RR->t->incomingPacketDropped(tPtr,0xcc89c812,packetId,0,peer->identity(),path->address(),hops,Protocol::VERB_NOP,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return; return;
} }
authenticated = true; auth = ZT_VL1_AUTH_RESULT_FLAG_AUTHENTICATED | ZT_VL1_AUTH_RESULT_FLAG_ENCRYPTED;
} break; } break;
case ZT_PROTO_CIPHER_SUITE__NONE: { case ZT_PROTO_CIPHER_SUITE__NONE: {
@ -290,90 +298,80 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
} }
} }
if (likely(authenticated)) { if (likely(auth != 0)) {
// If authentication was successful go on and process the packet. // If authentication was successful go on and process the packet.
#if 0
const Protocol::Verb verb = (Protocol::Verb)(ph->verb & ZT_PROTO_VERB_MASK);
// All verbs except HELLO require authentication before being handled. The HELLO if (unlikely(pktSize < ZT_PROTO_MIN_PACKET_LENGTH)) {
// handler does its own authentication. ZT_SPEW("discarding packet %.16llx from %s(%s): assembled packet size: %d",packetId,source.toString().c_str(),fromAddr.toString().c_str(),pktSize);
if (((!authenticated)||(!peer))&&(verb != Protocol::VERB_HELLO)) {
RR->t->incomingPacketDropped(tPtr,0x5b001099,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return; return;
} }
static_assert(ZT_PROTO_PACKET_VERB_INDEX < ZT_PROTO_MIN_PACKET_LENGTH,"overflow");
const uint8_t verbFlags = pkt->unsafeData[ZT_PROTO_PACKET_VERB_INDEX];
const Protocol::Verb verb = (Protocol::Verb)(verbFlags & ZT_PROTO_VERB_MASK);
// Decompress packet payload if compressed. For additional safety decompression is // Decompress packet payload if compressed. For additional safety decompression is
// only performed on packets whose MACs have already been validated. (Only HELLO is // only performed on packets whose MACs have already been validated. (Only HELLO is
// sent without this, and HELLO doesn't benefit from compression.) // sent without this, and HELLO doesn't benefit from compression.)
if ((ph->verb & ZT_PROTO_VERB_FLAG_COMPRESSED) != 0) { if (((verbFlags & ZT_PROTO_VERB_FLAG_COMPRESSED) != 0)&&(pktSize > ZT_PROTO_PACKET_PAYLOAD_START)) {
if (!authenticated) { SharedPtr<Buf> dec(new Buf());
RR->t->incomingPacketDropped(tPtr,0x390bcd0a,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET); Utils::copy<ZT_PROTO_PACKET_PAYLOAD_START>(dec->unsafeData,pkt->unsafeData);
return;
}
SharedPtr<Buf> nb(new Buf());
const int uncompressedLen = LZ4_decompress_safe( const int uncompressedLen = LZ4_decompress_safe(
reinterpret_cast<const char *>(pkt.b->unsafeData + ZT_PROTO_PACKET_PAYLOAD_START), reinterpret_cast<const char *>(pkt->unsafeData + ZT_PROTO_PACKET_PAYLOAD_START),
reinterpret_cast<char *>(nb->unsafeData), reinterpret_cast<char *>(dec->unsafeData + ZT_PROTO_PACKET_PAYLOAD_START),
(int)(packetSize - ZT_PROTO_PACKET_PAYLOAD_START), pktSize - ZT_PROTO_PACKET_PAYLOAD_START,
ZT_BUF_MEM_SIZE - ZT_PROTO_PACKET_PAYLOAD_START); ZT_BUF_MEM_SIZE - ZT_PROTO_PACKET_PAYLOAD_START);
if ((uncompressedLen > 0)&&(uncompressedLen <= (ZT_BUF_MEM_SIZE - ZT_PROTO_PACKET_PAYLOAD_START))) { if (likely((uncompressedLen > 0)&&(uncompressedLen <= (ZT_BUF_MEM_SIZE - ZT_PROTO_PACKET_PAYLOAD_START)))) {
pkt.b.swap(nb); pkt.swap(dec);
pkt.e = packetSize = (unsigned int)uncompressedLen; ZT_SPEW("decompressed packet: %d -> %d",pktSize,ZT_PROTO_PACKET_PAYLOAD_START + uncompressedLen);
pktSize = ZT_PROTO_PACKET_PAYLOAD_START + uncompressedLen;
} else { } else {
RR->t->incomingPacketDropped(tPtr,0xee9e4392,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_INVALID_COMPRESSED_DATA); RR->t->incomingPacketDropped(tPtr,0xee9e4392,packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_INVALID_COMPRESSED_DATA);
return; return;
} }
} }
/* // NOTE: HELLO is normally sent in the clear (in terms of our usual AEAD modes) and is handled
* Important notes: // above. We will try to process it here, but if so it'll still get re-authenticated via HELLO's
* // own internal authentication logic as usual. It would be abnormal to make it here with HELLO
* All verbs except HELLO assume that authenticated is true and peer is non-NULL. // but not invalid.
* This is checked above. HELLO will accept either case and always performs its
* own secondary validation. The path argument is never NULL.
*
* VL1 and VL2 are conceptually separate layers of the ZeroTier protocol. In the
* code they are almost entirely logically separate. To make the code easier to
* understand the handlers for VL2 data paths have been moved to a VL2 class.
*/
bool ok = true; // set to false if a packet turns out to be invalid bool ok = true;
Protocol::Verb inReVerb = Protocol::VERB_NOP; // set via result parameter to _ERROR and _OK Protocol::Verb inReVerb = Protocol::VERB_NOP;
switch(verb) { switch(verb) {
case Protocol::VERB_NOP: break; case Protocol::VERB_NOP: break;
case Protocol::VERB_HELLO: ok = (bool)(m_HELLO(tPtr, path, *pkt.b, (int) packetSize)); break; case Protocol::VERB_HELLO: ok = (bool)(m_HELLO(tPtr, path, *pkt, pktSize)); break;
case Protocol::VERB_ERROR: ok = m_ERROR(tPtr, path, peer, *pkt.b, (int) packetSize, inReVerb); break; case Protocol::VERB_ERROR: ok = m_ERROR(tPtr, auth, path, peer, *pkt, pktSize, inReVerb); break;
case Protocol::VERB_OK: ok = m_OK(tPtr, path, peer, *pkt.b, (int) packetSize, inReVerb); break; case Protocol::VERB_OK: ok = m_OK(tPtr, auth, path, peer, *pkt, pktSize, inReVerb); break;
case Protocol::VERB_WHOIS: ok = m_WHOIS(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_WHOIS: ok = m_WHOIS(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_RENDEZVOUS: ok = m_RENDEZVOUS(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_RENDEZVOUS: ok = m_RENDEZVOUS(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_FRAME: ok = RR->vl2->m_FRAME(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_FRAME: ok = RR->vl2->m_FRAME(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_EXT_FRAME: ok = RR->vl2->m_EXT_FRAME(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_EXT_FRAME: ok = RR->vl2->m_EXT_FRAME(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_ECHO: ok = m_ECHO(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_ECHO: ok = m_ECHO(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_MULTICAST_LIKE: ok = RR->vl2->m_MULTICAST_LIKE(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_MULTICAST_LIKE: ok = RR->vl2->m_MULTICAST_LIKE(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_NETWORK_CREDENTIALS: ok = RR->vl2->m_NETWORK_CREDENTIALS(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_NETWORK_CREDENTIALS: ok = RR->vl2->m_NETWORK_CREDENTIALS(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_NETWORK_CONFIG_REQUEST: ok = RR->vl2->m_NETWORK_CONFIG_REQUEST(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_NETWORK_CONFIG_REQUEST: ok = RR->vl2->m_NETWORK_CONFIG_REQUEST(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_NETWORK_CONFIG: ok = RR->vl2->m_NETWORK_CONFIG(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_NETWORK_CONFIG: ok = RR->vl2->m_NETWORK_CONFIG(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_MULTICAST_GATHER: ok = RR->vl2->m_MULTICAST_GATHER(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_MULTICAST_GATHER: ok = RR->vl2->m_MULTICAST_GATHER(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_MULTICAST_FRAME_deprecated: ok = RR->vl2->m_MULTICAST_FRAME_deprecated(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_MULTICAST_FRAME_deprecated: ok = RR->vl2->m_MULTICAST_FRAME_deprecated(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_PUSH_DIRECT_PATHS: ok = m_PUSH_DIRECT_PATHS(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_PUSH_DIRECT_PATHS: ok = m_PUSH_DIRECT_PATHS(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_USER_MESSAGE: ok = m_USER_MESSAGE(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_USER_MESSAGE: ok = m_USER_MESSAGE(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_MULTICAST: ok = RR->vl2->m_MULTICAST(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_MULTICAST: ok = RR->vl2->m_MULTICAST(tPtr, auth, path, peer, *pkt, pktSize); break;
case Protocol::VERB_ENCAP: ok = m_ENCAP(tPtr, path, peer, *pkt.b, (int) packetSize); break; case Protocol::VERB_ENCAP: ok = m_ENCAP(tPtr, auth, path, peer, *pkt, pktSize); break;
default: default:
RR->t->incomingPacketDropped(tPtr,0xeeeeeff0,ph->packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_UNRECOGNIZED_VERB); RR->t->incomingPacketDropped(tPtr,0xeeeeeff0,packetId,0,identityFromPeerPtr(peer),path->address(),hops,verb,ZT_TRACE_PACKET_DROP_REASON_UNRECOGNIZED_VERB);
break; break;
} }
if (ok) if (likely(ok))
peer->received(tPtr,path,hops,ph->packetId,packetSize - ZT_PROTO_PACKET_PAYLOAD_START,verb,inReVerb); peer->received(tPtr,path,hops,packetId,pktSize - ZT_PROTO_PACKET_PAYLOAD_START,verb,inReVerb);
#endif
} else { } else {
// If decryption and authentication were not successful, try to look up identities. // If decryption and authentication were not successful, try to look up identities.
// This is rate limited by virtue of the retry rate limit timer. // This is rate limited by virtue of the retry rate limit timer.
if (pktSize <= 0) if (pktSize <= 0)
pktSize = pktv.mergeCopy(*pkt); pktSize = pktv.mergeCopy(*pkt);
if (pktSize >= ZT_PROTO_MIN_PACKET_LENGTH) { if (pktSize >= ZT_PROTO_MIN_PACKET_LENGTH) {
ZT_SPEW("authentication failed or no peers match, queueing WHOIS for %s",source.toString().c_str());
bool sendPending; bool sendPending;
{ {
Mutex::Lock wl(m_whoisQueue_l); Mutex::Lock wl(m_whoisQueue_l);
@ -392,7 +390,7 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
} }
} }
void VL1::m_relay(void *tPtr, const SharedPtr<Path> &path, const Address &destination, SharedPtr<Buf> &data, unsigned int len) void VL1::m_relay(void *tPtr, const SharedPtr<Path> &path, Address destination, SharedPtr<Buf> &pkt, int pktSize)
{ {
} }
@ -444,19 +442,16 @@ SharedPtr<Peer> VL1::m_HELLO(void *tPtr, const SharedPtr<Path> &path, Buf &pkt,
const uint64_t packetId = Utils::loadAsIsEndian<uint64_t>(pkt.unsafeData + ZT_PROTO_PACKET_ID_INDEX); const uint64_t packetId = Utils::loadAsIsEndian<uint64_t>(pkt.unsafeData + ZT_PROTO_PACKET_ID_INDEX);
const uint64_t mac = Utils::loadAsIsEndian<uint64_t>(pkt.unsafeData + ZT_PROTO_PACKET_MAC_INDEX); const uint64_t mac = Utils::loadAsIsEndian<uint64_t>(pkt.unsafeData + ZT_PROTO_PACKET_MAC_INDEX);
// Get hops field and then mask hops to zero for MAC checking.
const uint8_t hops = pkt.unsafeData[ZT_PROTO_PACKET_FLAGS_INDEX] & ZT_PROTO_FLAG_FIELD_HOPS_MASK; const uint8_t hops = pkt.unsafeData[ZT_PROTO_PACKET_FLAGS_INDEX] & ZT_PROTO_FLAG_FIELD_HOPS_MASK;
pkt.unsafeData[ZT_PROTO_PACKET_FLAGS_INDEX] &= ~ZT_PROTO_FLAG_FIELD_HOPS_MASK;
const uint8_t protoVersion = pkt.lI8<ZT_PROTO_PACKET_PAYLOAD_START>; const uint8_t protoVersion = pkt.lI8<ZT_PROTO_PACKET_PAYLOAD_START>();
unsigned int versionMajor = pkt.lI8<ZT_PROTO_PACKET_PAYLOAD_START + 1>(); // LEGACY unsigned int versionMajor = pkt.lI8<ZT_PROTO_PACKET_PAYLOAD_START + 1>(); // LEGACY
unsigned int versionMinor = pkt.lI8<ZT_PROTO_PACKET_PAYLOAD_START + 2>(); // LEGACY unsigned int versionMinor = pkt.lI8<ZT_PROTO_PACKET_PAYLOAD_START + 2>(); // LEGACY
unsigned int versionRev = pkt.lI16<ZT_PROTO_PACKET_PAYLOAD_START + 3>(); // LEGACY unsigned int versionRev = pkt.lI16<ZT_PROTO_PACKET_PAYLOAD_START + 3>(); // LEGACY
const uint64_t timestamp = pkt.lI64<ZT_PROTO_PACKET_PAYLOAD_START + 5>(); const uint64_t timestamp = pkt.lI64<ZT_PROTO_PACKET_PAYLOAD_START + 5>();
int p = ZT_PROTO_PACKET_PAYLOAD_START + 13; int p = ZT_PROTO_PACKET_PAYLOAD_START + 13;
// Get identity and verify that it matches the sending address in the packet.
Identity id; Identity id;
if (unlikely(pkt.rO(p,id) < 0)) { if (unlikely(pkt.rO(p,id) < 0)) {
RR->t->incomingPacketDropped(tPtr,0x707a9810,packetId,0,Identity::NIL,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT); RR->t->incomingPacketDropped(tPtr,0x707a9810,packetId,0,Identity::NIL,path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
@ -467,6 +462,7 @@ SharedPtr<Peer> VL1::m_HELLO(void *tPtr, const SharedPtr<Path> &path, Buf &pkt,
return SharedPtr<Peer>(); return SharedPtr<Peer>();
} }
// Get the peer that matches this identity, or learn a new one if we don't know it.
SharedPtr<Peer> peer(RR->topology->peer(tPtr,id.address(),true)); SharedPtr<Peer> peer(RR->topology->peer(tPtr,id.address(),true));
if (peer) { if (peer) {
if (peer->identity() != id) { if (peer->identity() != id) {
@ -492,14 +488,21 @@ SharedPtr<Peer> VL1::m_HELLO(void *tPtr, const SharedPtr<Path> &path, Buf &pkt,
if (protoVersion >= 11) { if (protoVersion >= 11) {
// V2.x and newer use HMAC-SHA384 for HELLO, which offers a larger security margin // V2.x and newer use HMAC-SHA384 for HELLO, which offers a larger security margin
// to guard key exchange and connection setup than typical AEAD. // to guard key exchange and connection setup than typical AEAD. The packet MAC
// field is ignored, and eventually it'll be undefined.
uint8_t hmac[ZT_HMACSHA384_LEN]; uint8_t hmac[ZT_HMACSHA384_LEN];
if (unlikely(packetSize < ZT_HMACSHA384_LEN)) {
RR->t->incomingPacketDropped(tPtr,0xab9c9891,packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return SharedPtr<Peer>();
}
packetSize -= ZT_HMACSHA384_LEN;
pkt.unsafeData[ZT_PROTO_PACKET_FLAGS_INDEX] &= ~ZT_PROTO_FLAG_FIELD_HOPS_MASK; // mask hops to 0
Utils::storeAsIsEndian<uint64_t>(pkt.unsafeData + ZT_PROTO_PACKET_MAC_INDEX,0); // set MAC field to 0
HMACSHA384(peer->identityHelloHmacKey(),pkt.unsafeData,packetSize,hmac); HMACSHA384(peer->identityHelloHmacKey(),pkt.unsafeData,packetSize,hmac);
if (unlikely((packetSize < ZT_HMACSHA384_LEN)||(!Utils::secureEq(hmac,(pkt.unsafeData + packetSize) - ZT_HMACSHA384_LEN,ZT_HMACSHA384_LEN)))) { if (unlikely(!Utils::secureEq(hmac,pkt.unsafeData + packetSize,ZT_HMACSHA384_LEN))) {
RR->t->incomingPacketDropped(tPtr,0x707a9891,packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED); RR->t->incomingPacketDropped(tPtr,0x707a9891,packetId,0,identityFromPeerPtr(peer),path->address(),hops,Protocol::VERB_HELLO,ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return SharedPtr<Peer>(); return SharedPtr<Peer>();
} }
packetSize -= ZT_HMACSHA384_LEN; // trim this off the end since we're done with it
} else { } else {
// Older versions use Poly1305 MAC (but no whole packet encryption) for HELLO. // Older versions use Poly1305 MAC (but no whole packet encryption) for HELLO.
if (likely(packetSize > ZT_PROTO_PACKET_ENCRYPTED_SECTION_START)) { if (likely(packetSize > ZT_PROTO_PACKET_ENCRYPTED_SECTION_START)) {
@ -532,7 +535,11 @@ SharedPtr<Peer> VL1::m_HELLO(void *tPtr, const SharedPtr<Path> &path, Buf &pkt,
return SharedPtr<Peer>(); return SharedPtr<Peer>();
} }
if ((protoVersion >= 11)&&((p + 12) < packetSize)) { const SharedPtr<SymmetricKey> key(peer->identityKey());
if (protoVersion >= 11) {
// V2.x and newer supports an encrypted section and has a new OK format.
if ((p + 12) < packetSize) {
uint64_t ctrNonce[2]; uint64_t ctrNonce[2];
ctrNonce[0] = Utils::loadAsIsEndian<uint64_t>(pkt.unsafeData + p); ctrNonce[0] = Utils::loadAsIsEndian<uint64_t>(pkt.unsafeData + p);
#if __BYTE_ORDER == __BIG_ENDIAN #if __BYTE_ORDER == __BIG_ENDIAN
@ -541,10 +548,9 @@ SharedPtr<Peer> VL1::m_HELLO(void *tPtr, const SharedPtr<Path> &path, Buf &pkt,
ctrNonce[1] = Utils::loadAsIsEndian<uint32_t>(pkt.unsafeData + p + 8); ctrNonce[1] = Utils::loadAsIsEndian<uint32_t>(pkt.unsafeData + p + 8);
#endif #endif
p += 12; p += 12;
AES::CTR ctr(peer->identityHelloDictionaryEncryptionCipher()); AES::CTR ctr(peer->identityHelloDictionaryEncryptionCipher());
ctr.init(reinterpret_cast<uint8_t *>(ctrNonce),pkt.unsafeData + p); ctr.init(reinterpret_cast<uint8_t *>(ctrNonce),pkt.unsafeData + p);
ctr.crypt(pkt.unsafeData + p,(packetSize - p) - ZT_HMACSHA384_LEN); ctr.crypt(pkt.unsafeData + p,packetSize - p);
ctr.finish(); ctr.finish();
const unsigned int dictSize = pkt.rI16(p); const unsigned int dictSize = pkt.rI16(p);
@ -574,11 +580,33 @@ SharedPtr<Peer> VL1::m_HELLO(void *tPtr, const SharedPtr<Path> &path, Buf &pkt,
} }
} }
Protocol::newPacket(pkt,key->nextMessage(RR->identity.address(),peer->address()),peer->address(),RR->identity.address(),Protocol::VERB_OK);
p = ZT_PROTO_PACKET_PAYLOAD_START;
pkt.wI8(p,Protocol::VERB_HELLO);
pkt.wI64(p,packetId);
pkt.wI64(p,timestamp);
pkt.wI8(p,(uint8_t)protoVersion);
} else {
// V1.x has nothing more for this version to parse, and has an older OK format.
Protocol::newPacket(pkt,key->nextMessage(RR->identity.address(),peer->address()),peer->address(),RR->identity.address(),Protocol::VERB_OK);
p = ZT_PROTO_PACKET_PAYLOAD_START;
pkt.wI8(p,Protocol::VERB_HELLO);
pkt.wI64(p,packetId);
pkt.wI64(p,timestamp);
pkt.wI8(p,(uint8_t)protoVersion);
pkt.wI8(p,(uint8_t)versionMajor);
pkt.wI8(p,(uint8_t)versionMinor);
pkt.wI16(p,(uint16_t)versionRev);
pkt.wO(p,path->address());
pkt.wI16(p,0);
}
peer->setRemoteVersion(protoVersion,versionMajor,versionMinor,versionRev); peer->setRemoteVersion(protoVersion,versionMajor,versionMinor,versionRev);
} }
bool VL1::m_ERROR(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize, Protocol::Verb &inReVerb) bool VL1::m_ERROR(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize, Protocol::Verb &inReVerb)
{ {
#if 0
if (packetSize < (int)sizeof(Protocol::ERROR::Header)) { if (packetSize < (int)sizeof(Protocol::ERROR::Header)) {
RR->t->incomingPacketDropped(tPtr,0x3beb1947,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_ERROR,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET); RR->t->incomingPacketDropped(tPtr,0x3beb1947,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_ERROR,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false; return false;
@ -622,7 +650,7 @@ bool VL1::m_ERROR(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer>
return true; return true;
} }
bool VL1::m_OK(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize, Protocol::Verb &inReVerb) bool VL1::m_OK(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize, Protocol::Verb &inReVerb)
{ {
if (packetSize < (int)sizeof(Protocol::OK::Header)) { if (packetSize < (int)sizeof(Protocol::OK::Header)) {
RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET); RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
@ -653,10 +681,12 @@ bool VL1::m_OK(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &p
} }
return true; return true;
#endif
} }
bool VL1::m_WHOIS(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL1::m_WHOIS(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
#if 0
if (packetSize < (int)sizeof(Protocol::OK::Header)) { if (packetSize < (int)sizeof(Protocol::OK::Header)) {
RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET); RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false; return false;
@ -705,10 +735,12 @@ bool VL1::m_WHOIS(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer>
} }
return true; return true;
#endif
} }
bool VL1::m_RENDEZVOUS(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL1::m_RENDEZVOUS(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
#if 0
if (RR->topology->isRoot(peer->identity())) { if (RR->topology->isRoot(peer->identity())) {
if (packetSize < (int)sizeof(Protocol::RENDEZVOUS)) { if (packetSize < (int)sizeof(Protocol::RENDEZVOUS)) {
RR->t->incomingPacketDropped(tPtr,0x43e90ab3,Protocol::packetId(pkt,packetSize),0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_RENDEZVOUS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET); RR->t->incomingPacketDropped(tPtr,0x43e90ab3,Protocol::packetId(pkt,packetSize),0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_RENDEZVOUS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
@ -751,10 +783,12 @@ bool VL1::m_RENDEZVOUS(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<
} }
} }
return true; return true;
#endif
} }
bool VL1::m_ECHO(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL1::m_ECHO(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
#if 0
const uint64_t packetId = Protocol::packetId(pkt,packetSize); const uint64_t packetId = Protocol::packetId(pkt,packetSize);
const uint64_t now = RR->node->now(); const uint64_t now = RR->node->now();
if (packetSize < (int)sizeof(Protocol::Header)) { if (packetSize < (int)sizeof(Protocol::Header)) {
@ -787,10 +821,12 @@ bool VL1::m_ECHO(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer>
} }
return true; return true;
#endif
} }
bool VL1::m_PUSH_DIRECT_PATHS(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL1::m_PUSH_DIRECT_PATHS(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
#if 0
if (packetSize < (int)sizeof(Protocol::PUSH_DIRECT_PATHS)) { if (packetSize < (int)sizeof(Protocol::PUSH_DIRECT_PATHS)) {
RR->t->incomingPacketDropped(tPtr,0x1bb1bbb1,Protocol::packetId(pkt,packetSize),0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET); RR->t->incomingPacketDropped(tPtr,0x1bb1bbb1,Protocol::packetId(pkt,packetSize),0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false; return false;
@ -876,15 +912,16 @@ bool VL1::m_PUSH_DIRECT_PATHS(void *tPtr, const SharedPtr<Path> &path, const Sha
// TODO: add to a peer try-queue // TODO: add to a peer try-queue
return true; return true;
#endif
} }
bool VL1::m_USER_MESSAGE(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL1::m_USER_MESSAGE(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
// TODO // TODO
return true; return true;
} }
bool VL1::m_ENCAP(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL1::m_ENCAP(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
// TODO: not implemented yet // TODO: not implemented yet
return true; return true;

View file

@ -25,6 +25,10 @@
#define ZT_VL1_MAX_WHOIS_WAITING_PACKETS 32 #define ZT_VL1_MAX_WHOIS_WAITING_PACKETS 32
#define ZT_VL1_AUTH_RESULT_FLAG_AUTHENTICATED 0x01U
#define ZT_VL1_AUTH_RESULT_FLAG_ENCRYPTED 0x02U
#define ZT_VL1_AUTH_RESULT_FLAG_FORWARD_SECRET 0x04U
namespace ZeroTier { namespace ZeroTier {
class RuntimeEnvironment; class RuntimeEnvironment;
@ -61,22 +65,19 @@ public:
private: private:
const RuntimeEnvironment *RR; const RuntimeEnvironment *RR;
// Code to handle relaying of packets to other nodes. void m_relay(void *tPtr, const SharedPtr<Path> &path, Address destination, SharedPtr<Buf> &pkt, int pktSize);
void m_relay(void *tPtr, const SharedPtr<Path> &path, const Address &destination, SharedPtr<Buf> &data, unsigned int len);
// Send any pending WHOIS requests.
void m_sendPendingWhois(void *tPtr, int64_t now); void m_sendPendingWhois(void *tPtr, int64_t now);
// Handlers for VL1 verbs -- for clarity's sake VL2 verbs are in the VL2 class.
SharedPtr<Peer> m_HELLO(void *tPtr, const SharedPtr<Path> &path, Buf &pkt, int packetSize); SharedPtr<Peer> m_HELLO(void *tPtr, const SharedPtr<Path> &path, Buf &pkt, int packetSize);
bool m_ERROR(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize, Protocol::Verb &inReVerb);
bool m_OK(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize, Protocol::Verb &inReVerb); bool m_ERROR(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize, Protocol::Verb &inReVerb);
bool m_WHOIS(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_OK(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize, Protocol::Verb &inReVerb);
bool m_RENDEZVOUS(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_WHOIS(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_ECHO(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_RENDEZVOUS(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_PUSH_DIRECT_PATHS(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_ECHO(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_USER_MESSAGE(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_PUSH_DIRECT_PATHS(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_ENCAP(void *tPtr, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_USER_MESSAGE(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_ENCAP(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, const SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
Defragmenter<ZT_MAX_PACKET_FRAGMENTS> m_inputPacketAssembler; Defragmenter<ZT_MAX_PACKET_FRAGMENTS> m_inputPacketAssembler;

View file

@ -27,43 +27,43 @@ VL2::VL2(const RuntimeEnvironment *renv)
{ {
} }
void VL2::onLocalEthernet(void *const tPtr,const SharedPtr<Network> &network,const MAC &from,const MAC &to,const unsigned int etherType,unsigned int vlanId,SharedPtr<Buf> &data,unsigned int len) void VL2::onLocalEthernet(void *const tPtr,const unsigned int auth,const SharedPtr<Network> &network,const MAC &from,const MAC &to,const unsigned int etherType,unsigned int vlanId,SharedPtr<Buf> &data,unsigned int len)
{ {
} }
bool VL2::m_FRAME(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL2::m_FRAME(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
} }
bool VL2::m_EXT_FRAME(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL2::m_EXT_FRAME(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
} }
bool VL2::m_MULTICAST_LIKE(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL2::m_MULTICAST_LIKE(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
} }
bool VL2::m_NETWORK_CREDENTIALS(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL2::m_NETWORK_CREDENTIALS(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
} }
bool VL2::m_NETWORK_CONFIG_REQUEST(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL2::m_NETWORK_CONFIG_REQUEST(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
} }
bool VL2::m_NETWORK_CONFIG(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL2::m_NETWORK_CONFIG(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
} }
bool VL2::m_MULTICAST_GATHER(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL2::m_MULTICAST_GATHER(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
} }
bool VL2::m_MULTICAST_FRAME_deprecated(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL2::m_MULTICAST_FRAME_deprecated(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
} }
bool VL2::m_MULTICAST(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize) bool VL2::m_MULTICAST(void *tPtr,const unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize)
{ {
} }

View file

@ -53,15 +53,15 @@ public:
void onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,SharedPtr<Buf> &data,unsigned int len); void onLocalEthernet(void *tPtr,const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,SharedPtr<Buf> &data,unsigned int len);
protected: protected:
bool m_FRAME(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_FRAME(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_EXT_FRAME(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_EXT_FRAME(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_MULTICAST_LIKE(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_MULTICAST_LIKE(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_NETWORK_CREDENTIALS(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_NETWORK_CREDENTIALS(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_NETWORK_CONFIG_REQUEST(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_NETWORK_CONFIG_REQUEST(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_NETWORK_CONFIG(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_NETWORK_CONFIG(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_MULTICAST_GATHER(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_MULTICAST_GATHER(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_MULTICAST_FRAME_deprecated(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_MULTICAST_FRAME_deprecated(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
bool m_MULTICAST(void *tPtr, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize); bool m_MULTICAST(void *tPtr, unsigned int auth, const SharedPtr<Path> &path, SharedPtr<Peer> &peer, Buf &pkt, int packetSize);
private: private:
}; };