Move C API into its own source file, and fix some build flags to mirror fix in 1.6.0 to run on old Atom processors.

This commit is contained in:
Adam Ierymenko 2020-10-14 18:10:59 -04:00
parent bc8aa6c359
commit 8f746f5099
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
13 changed files with 760 additions and 715 deletions

View file

@ -219,10 +219,13 @@ if(NOT PACKAGE_STATIC)
if (
CMAKE_SYSTEM_PROCESSOR MATCHES "x86_64" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "amd64" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "AMD64"
CMAKE_SYSTEM_PROCESSOR MATCHES "AMD64" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "X86_64" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "x64" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "X64"
)
message("++ Adding flags for processor ${CMAKE_SYSTEM_PROCESSOR}")
add_compile_options(-maes -mrdrnd -mpclmul -msse -msse2 -mssse3 -msse4 -msse4.1 -msse4.2)
add_compile_options(-maes -mrdrnd -mpclmul -msse -msse2)
endif()
if (

View file

@ -158,6 +158,8 @@ private:
uint64_t _a;
};
static_assert(sizeof(Address) == sizeof(uint64_t),"Address has unnecessary extra padding");
} // namespace ZeroTier
#endif

View file

@ -112,6 +112,9 @@ struct UniqueID
{ return (memcmp(data, b.data, 16) >= 0); }
};
static_assert(sizeof(SHA384Hash) == 48,"SHA384Hash contains unnecessary padding");
static_assert(sizeof(UniqueID) == 16,"UniqueID contains unnecessary padding");
} // namespace ZeroTier
#endif

704
core/CAPI.cpp Normal file
View file

@ -0,0 +1,704 @@
/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2025-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Constants.hpp"
#include "Node.hpp"
#include "Identity.hpp"
#include "Locator.hpp"
#include "Certificate.hpp"
extern "C" {
/********************************************************************************************************************/
// These macros make the idiom of passing buffers to outside code via the API work properly even
// if the first address of Buf does not overlap with its data field, since the C++ standard does
// not absolutely guarantee this.
#define _ZT_PTRTOBUF(p) ((ZeroTier::Buf *)( ((uintptr_t)(p)) - ((uintptr_t)&(((ZeroTier::Buf *)0)->unsafeData[0])) ))
#define _ZT_BUFTOPTR(b) ((void *)(&((b)->unsafeData[0])))
void *ZT_getBuffer()
{
// When external code requests a Buf, grab one from the pool (or freshly allocated)
// and return it with its reference count left at zero. It's the responsibility of
// external code to bring it back via freeBuffer() or one of the processX() calls.
// When this occurs it's either sent back to the pool with Buf's delete operator or
// wrapped in a SharedPtr<> to be passed into the core.
try {
return _ZT_BUFTOPTR(new ZeroTier::Buf());
} catch (...) {
return nullptr; // can only happen on out of memory condition
}
}
void ZT_freeBuffer(void *b)
{
if (b)
delete _ZT_PTRTOBUF(b);
}
struct p_queryResultBase
{
void (*freeFunction)(const void *);
};
void ZT_freeQueryResult(const void *qr)
{
if ((qr) && (reinterpret_cast<const p_queryResultBase *>(qr)->freeFunction))
reinterpret_cast<const p_queryResultBase *>(qr)->freeFunction(qr);
}
void ZT_version(int *major, int *minor, int *revision, int *build)
{
if (major)
*major = ZEROTIER_VERSION_MAJOR;
if (minor)
*minor = ZEROTIER_VERSION_MINOR;
if (revision)
*revision = ZEROTIER_VERSION_REVISION;
if (build)
*build = ZEROTIER_VERSION_BUILD;
}
/********************************************************************************************************************/
enum ZT_ResultCode ZT_Node_new(ZT_Node **node, void *uptr, void *tptr, const struct ZT_Node_Callbacks *callbacks, int64_t now)
{
*node = (ZT_Node *)0;
try {
*node = reinterpret_cast<ZT_Node *>(new ZeroTier::Node(uptr, tptr, callbacks, now));
return ZT_RESULT_OK;
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (std::runtime_error &exc) {
return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
void ZT_Node_delete(ZT_Node *node, void *tPtr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->shutdown(tPtr);
delete (reinterpret_cast<ZeroTier::Node *>(node));
} catch (...) {}
}
enum ZT_ResultCode ZT_Node_processWirePacket(
ZT_Node *node,
void *tptr,
int64_t now,
int64_t localSocket,
const struct sockaddr_storage *remoteAddress,
const void *packetData,
unsigned int packetLength,
int isZtBuffer,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
ZeroTier::SharedPtr< ZeroTier::Buf > buf((isZtBuffer) ? _ZT_PTRTOBUF(packetData) : new ZeroTier::Buf(packetData, packetLength & ZT_BUF_MEM_MASK));
return reinterpret_cast<ZeroTier::Node *>(node)->processWirePacket(tptr, now, localSocket, remoteAddress, buf, packetLength, nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
// "OK" since invalid packets are simply dropped, but the system is still up.
// We should never make it here, but if we did that would be the interpretation.
return ZT_RESULT_OK;
}
}
enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(
ZT_Node *node,
void *tptr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void *frameData,
unsigned int frameLength,
int isZtBuffer,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
ZeroTier::SharedPtr< ZeroTier::Buf > buf((isZtBuffer) ? _ZT_PTRTOBUF(frameData) : new ZeroTier::Buf(frameData, frameLength & ZT_BUF_MEM_MASK));
return reinterpret_cast<ZeroTier::Node *>(node)->processVirtualNetworkFrame(tptr, now, nwid, sourceMac, destMac, etherType, vlanId, buf, frameLength, nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node, void *tptr, int64_t now, volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processBackgroundTasks(tptr, now, nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_join(ZT_Node *node, uint64_t nwid, const ZT_Fingerprint *controllerFingerprint, void *uptr, void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->join(nwid, controllerFingerprint, uptr, tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_leave(ZT_Node *node, uint64_t nwid, void **uptr, void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->leave(nwid, uptr, tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node, void *tptr, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastSubscribe(tptr, nwid, multicastGroup, multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastUnsubscribe(nwid, multicastGroup, multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
uint64_t ZT_Node_address(ZT_Node *node)
{
return reinterpret_cast<ZeroTier::Node *>(node)->address();
}
const ZT_Identity *ZT_Node_identity(ZT_Node *node)
{
return (const ZT_Identity *)(&(reinterpret_cast<ZeroTier::Node *>(node)->identity()));
}
void ZT_Node_status(ZT_Node *node, ZT_NodeStatus *status)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->status(status);
} catch (...) {}
}
ZT_PeerList *ZT_Node_peers(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->peers();
} catch (...) {
return (ZT_PeerList *)0;
}
}
ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node, uint64_t nwid)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networkConfig(nwid);
} catch (...) {
return (ZT_VirtualNetworkConfig *)0;
}
}
ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networks();
} catch (...) {
return (ZT_VirtualNetworkList *)0;
}
}
int ZT_Node_tryPeer(
ZT_Node *node,
void *tptr,
const ZT_Fingerprint *fp,
const ZT_Endpoint *endpoint,
int retries)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->tryPeer(tptr, fp, endpoint, retries);
} catch (...) {
return 0;
}
}
enum ZT_CertificateError ZT_Node_addCertificate(
ZT_Node *node,
void *tptr,
int64_t now,
unsigned int localTrust,
const ZT_Certificate *cert,
const void *certData,
unsigned int certSize)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->addCertificate(tptr, now, localTrust, cert, certData, certSize);
} catch (...) {
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
}
}
ZT_SDK_API enum ZT_ResultCode ZT_Node_deleteCertificate(
ZT_Node *node,
void *tptr,
const void *serialNo)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->deleteCertificate(tptr, serialNo);
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
ZT_SDK_API ZT_CertificateList *ZT_Node_listCertificates(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->listCertificates();
} catch (...) {
return nullptr;
}
}
void ZT_Node_setNetworkUserPtr(ZT_Node *node, uint64_t nwid, void *ptr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setNetworkUserPtr(nwid, ptr);
} catch (...) {}
}
void ZT_Node_setInterfaceAddresses(ZT_Node *node, const ZT_InterfaceAddress *addrs, unsigned int addrCount)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setInterfaceAddresses(addrs, addrCount);
} catch (...) {}
}
enum ZT_ResultCode ZT_Node_addPeer(
ZT_Node *node,
void *tptr,
const ZT_Identity *id)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->addPeer(tptr, id);
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
int ZT_Node_sendUserMessage(ZT_Node *node, void *tptr, uint64_t dest, uint64_t typeId, const void *data, unsigned int len)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->sendUserMessage(tptr, dest, typeId, data, len);
} catch (...) {
return 0;
}
}
void ZT_Node_setController(ZT_Node *node, void *networkControllerInstance)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setController(networkControllerInstance);
} catch (...) {}
}
/********************************************************************************************************************/
ZT_Locator *ZT_Locator_create(
int64_t ts,
const ZT_Endpoint *endpoints,
const ZT_EndpointAttributes *endpointAttributes, // TODO: not used yet
unsigned int endpointCount,
const ZT_Identity *signer)
{
try {
if ((ts <= 0) || (!endpoints) || (endpointCount == 0) || (!signer))
return nullptr;
ZeroTier::Locator *loc = new ZeroTier::Locator();
for (unsigned int i = 0;i < endpointCount;++i)
loc->add(reinterpret_cast< const ZeroTier::Endpoint * >(endpoints)[i], ZeroTier::Locator::EndpointAttributes::DEFAULT);
if (!loc->sign(ts, *reinterpret_cast< const ZeroTier::Identity * >(signer))) {
delete loc;
return nullptr;
}
return reinterpret_cast<ZT_Locator *>(loc);
} catch (...) {
return nullptr;
}
}
ZT_Locator *ZT_Locator_fromString(const char *str)
{
try {
if (!str)
return nullptr;
ZeroTier::Locator *loc = new ZeroTier::Locator();
if (!loc->fromString(str)) {
delete loc;
return nullptr;
}
return reinterpret_cast<ZT_Locator *>(loc);
} catch ( ... ) {
return nullptr;
}
}
ZT_Locator *ZT_Locator_unmarshal(
const void *data,
unsigned int len)
{
try {
if ((!data) || (len == 0))
return nullptr;
ZeroTier::Locator *loc = new ZeroTier::Locator();
if (loc->unmarshal(reinterpret_cast<const uint8_t *>(data), (int) len) <= 0) {
delete loc;
return nullptr;
}
return reinterpret_cast<ZT_Locator *>(loc);
} catch (...) {
return nullptr;
}
}
int ZT_Locator_marshal(const ZT_Locator *loc, void *buf, unsigned int bufSize)
{
if ((!loc) || (bufSize < ZT_LOCATOR_MARSHAL_SIZE_MAX))
return -1;
return reinterpret_cast<const ZeroTier::Locator *>(loc)->marshal(reinterpret_cast<uint8_t *>(buf), (int) bufSize);
}
char *ZT_Locator_toString(
const ZT_Locator *loc,
char *buf,
int capacity)
{
if ((!loc) || (capacity < ZT_LOCATOR_STRING_SIZE_MAX))
return nullptr;
return reinterpret_cast<const ZeroTier::Locator *>(loc)->toString(buf);
}
const ZT_Fingerprint *ZT_Locator_fingerprint(const ZT_Locator *loc)
{
if (!loc)
return nullptr;
return (ZT_Fingerprint *) (&(reinterpret_cast<const ZeroTier::Locator *>(loc)->signer()));
}
int64_t ZT_Locator_timestamp(const ZT_Locator *loc)
{
if (!loc)
return 0;
return reinterpret_cast<const ZeroTier::Locator *>(loc)->timestamp();
}
unsigned int ZT_Locator_endpointCount(const ZT_Locator *loc)
{
return (loc) ? (unsigned int) (reinterpret_cast<const ZeroTier::Locator *>(loc)->endpoints().size()) : 0;
}
const ZT_Endpoint *ZT_Locator_endpoint(const ZT_Locator *loc, const unsigned int ep)
{
if (!loc)
return nullptr;
if (ep >= (unsigned int) (reinterpret_cast<const ZeroTier::Locator *>(loc)->endpoints().size()))
return nullptr;
return reinterpret_cast<const ZT_Endpoint *>(&(reinterpret_cast<const ZeroTier::Locator *>(loc)->endpoints()[ep]));
}
int ZT_Locator_verify(const ZT_Locator *loc, const ZT_Identity *signer)
{
if ((!loc) || (!signer))
return 0;
return reinterpret_cast<const ZeroTier::Locator *>(loc)->verify(*reinterpret_cast<const ZeroTier::Identity *>(signer)) ? 1 : 0;
}
void ZT_Locator_delete(ZT_Locator *loc)
{
if (loc)
delete reinterpret_cast<ZeroTier::Locator *>(loc);
}
/********************************************************************************************************************/
ZT_Identity *ZT_Identity_new(enum ZT_IdentityType type)
{
if ((type != ZT_IDENTITY_TYPE_C25519) && (type != ZT_IDENTITY_TYPE_P384))
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity();
id->generate((ZeroTier::Identity::Type)type);
return reinterpret_cast<ZT_Identity *>(id);
} catch (...) {
return nullptr;
}
}
ZT_Identity *ZT_Identity_fromString(const char *idStr)
{
if (!idStr)
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity();
if (!id->fromString(idStr)) {
delete id;
return nullptr;
}
return reinterpret_cast<ZT_Identity *>(id);
} catch (...) {
return nullptr;
}
}
int ZT_Identity_validate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->locallyValidate() ? 1 : 0;
}
unsigned int ZT_Identity_sign(const ZT_Identity *id, const void *data, unsigned int len, void *signature, unsigned int signatureBufferLength)
{
if (!id)
return 0;
if (signatureBufferLength < ZT_SIGNATURE_BUFFER_SIZE)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data, len, signature, signatureBufferLength);
}
int ZT_Identity_verify(const ZT_Identity *id, const void *data, unsigned int len, const void *signature, unsigned int sigLen)
{
if ((!id) || (!signature) || (!sigLen))
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data, len, signature, sigLen) ? 1 : 0;
}
enum ZT_IdentityType ZT_Identity_type(const ZT_Identity *id)
{
if (!id)
return (ZT_IdentityType)0;
return (enum ZT_IdentityType)reinterpret_cast<const ZeroTier::Identity *>(id)->type();
}
char *ZT_Identity_toString(const ZT_Identity *id, char *buf, int capacity, int includePrivate)
{
if ((!id) || (!buf) || (capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
return nullptr;
reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0, buf);
return buf;
}
int ZT_Identity_hasPrivate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->hasPrivate() ? 1 : 0;
}
uint64_t ZT_Identity_address(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->address();
}
const ZT_Fingerprint *ZT_Identity_fingerprint(const ZT_Identity *id)
{
if (!id)
return nullptr;
return &(reinterpret_cast<const ZeroTier::Identity *>(id)->fingerprint());
}
void ZT_Identity_delete(ZT_Identity *id)
{
if (id)
delete reinterpret_cast<ZeroTier::Identity *>(id);
}
/********************************************************************************************************************/
int ZT_Certificate_newSubjectUniqueId(
enum ZT_CertificateUniqueIdType type,
void *uniqueId,
int *uniqueIdSize,
void *uniqueIdPrivate,
int *uniqueIdPrivateSize)
{
try {
switch (type) {
case ZT_CERTIFICATE_UNIQUE_ID_TYPE_NIST_P_384:
if ((*uniqueIdSize < ZT_CERTIFICATE_UNIQUE_ID_TYPE_NIST_P_384_SIZE) || (*uniqueIdPrivateSize < ZT_CERTIFICATE_UNIQUE_ID_TYPE_NIST_P_384_PRIVATE_SIZE))
return ZT_RESULT_ERROR_BAD_PARAMETER;
*uniqueIdSize = ZT_CERTIFICATE_UNIQUE_ID_TYPE_NIST_P_384_SIZE;
*uniqueIdPrivateSize = ZT_CERTIFICATE_UNIQUE_ID_TYPE_NIST_P_384_PRIVATE_SIZE;
ZeroTier::Certificate::createSubjectUniqueId(reinterpret_cast<uint8_t *>(uniqueId), reinterpret_cast<uint8_t *>(uniqueIdPrivate));
return ZT_RESULT_OK;
}
return ZT_RESULT_ERROR_BAD_PARAMETER;
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
int ZT_Certificate_newCSR(
const ZT_Certificate_Subject *subject,
const void *uniqueId,
int uniqueIdSize,
const void *uniqueIdPrivate,
int uniqueIdPrivateSize,
void *csr,
int *csrSize)
{
try {
if (!subject)
return ZT_RESULT_ERROR_BAD_PARAMETER;
const ZeroTier::Vector< uint8_t > csrV(ZeroTier::Certificate::createCSR(*subject, uniqueId, uniqueIdSize, uniqueIdPrivate, uniqueIdPrivateSize));
if ((int)csrV.size() > *csrSize)
return ZT_RESULT_ERROR_BAD_PARAMETER;
ZeroTier::Utils::copy(csr, csrV.data(), (unsigned int)csrV.size());
*csrSize = (int)csrV.size();
return ZT_RESULT_OK;
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
int ZT_Certificate_sign(
const ZT_Certificate *cert,
const ZT_Identity *signer,
void *signedCert,
int *signedCertSize)
{
try {
if (!cert)
return ZT_RESULT_ERROR_BAD_PARAMETER;
ZeroTier::Certificate c(*cert);
if (!c.sign(*reinterpret_cast<const ZeroTier::Identity *>(signer)))
return ZT_RESULT_ERROR_INTERNAL;
const ZeroTier::Vector< uint8_t > enc(c.encode());
if ((int)enc.size() > *signedCertSize)
return ZT_RESULT_ERROR_BAD_PARAMETER;
ZeroTier::Utils::copy(signedCert, enc.data(), (unsigned int)enc.size());
*signedCertSize = (int)enc.size();
return ZT_RESULT_OK;
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_CertificateError ZT_Certificate_decode(
const ZT_Certificate **decodedCert,
const void *cert,
int certSize,
int verify)
{
try {
if ((!decodedCert) || (!cert) || (certSize <= 0))
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
*decodedCert = nullptr;
ZeroTier::Certificate *const c = new ZeroTier::Certificate();
if (!c->decode(cert, certSize)) {
delete c;
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
}
if (verify) {
const ZT_CertificateError err = c->verify();
if (err != ZT_CERTIFICATE_ERROR_NONE) {
delete c;
return err;
}
}
*decodedCert = c;
return ZT_CERTIFICATE_ERROR_NONE;
} catch (...) {
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
}
}
int ZT_Certificate_encode(
const ZT_Certificate *cert,
void *encoded,
int *encodedSize)
{
try {
if ((!cert) || (!encoded) || (!encodedSize))
return ZT_RESULT_ERROR_BAD_PARAMETER;
ZeroTier::Certificate c(*cert);
ZeroTier::Vector< uint8_t > enc(c.encode());
if ((int)enc.size() > *encodedSize)
return ZT_RESULT_ERROR_BAD_PARAMETER;
ZeroTier::Utils::copy(encoded, enc.data(), (unsigned int)enc.size());
*encodedSize = (int)enc.size();
return ZT_RESULT_OK;
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_CertificateError ZT_Certificate_verify(const ZT_Certificate *cert)
{
try {
if (!cert)
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
return ZeroTier::Certificate(*cert).verify();
} catch (...) {
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
}
}
const ZT_Certificate *ZT_Certificate_clone(const ZT_Certificate *cert)
{
try {
if (!cert)
return nullptr;
return (const ZT_Certificate *)(new ZeroTier::Certificate(*cert));
} catch (...) {
return nullptr;
}
}
void ZT_Certificate_delete(const ZT_Certificate *cert)
{
try {
if (cert)
delete (const ZeroTier::Certificate *)(cert);
} catch (...) {}
}
/********************************************************************************************************************/
} // extern "C"

View file

@ -63,6 +63,7 @@ set(core_src
AES.cpp
Buf.cpp
C25519.cpp
CAPI.cpp
CapabilityCredential.cpp
Certificate.cpp
Defaults.cpp

View file

@ -663,157 +663,3 @@ void Certificate::m_encodeSubject(const ZT_Certificate_Subject &s, Dictionary &d
}
} // namespace ZeroTier
extern "C" {
int ZT_Certificate_newSubjectUniqueId(
enum ZT_CertificateUniqueIdType type,
void *uniqueId,
int *uniqueIdSize,
void *uniqueIdPrivate,
int *uniqueIdPrivateSize)
{
try {
switch (type) {
case ZT_CERTIFICATE_UNIQUE_ID_TYPE_NIST_P_384:
if ((*uniqueIdSize < ZT_CERTIFICATE_UNIQUE_ID_TYPE_NIST_P_384_SIZE) || (*uniqueIdPrivateSize < ZT_CERTIFICATE_UNIQUE_ID_TYPE_NIST_P_384_PRIVATE_SIZE))
return ZT_RESULT_ERROR_BAD_PARAMETER;
*uniqueIdSize = ZT_CERTIFICATE_UNIQUE_ID_TYPE_NIST_P_384_SIZE;
*uniqueIdPrivateSize = ZT_CERTIFICATE_UNIQUE_ID_TYPE_NIST_P_384_PRIVATE_SIZE;
ZeroTier::Certificate::createSubjectUniqueId(reinterpret_cast<uint8_t *>(uniqueId), reinterpret_cast<uint8_t *>(uniqueIdPrivate));
return ZT_RESULT_OK;
}
return ZT_RESULT_ERROR_BAD_PARAMETER;
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
int ZT_Certificate_newCSR(
const ZT_Certificate_Subject *subject,
const void *uniqueId,
int uniqueIdSize,
const void *uniqueIdPrivate,
int uniqueIdPrivateSize,
void *csr,
int *csrSize)
{
try {
if (!subject)
return ZT_RESULT_ERROR_BAD_PARAMETER;
const ZeroTier::Vector< uint8_t > csrV(ZeroTier::Certificate::createCSR(*subject, uniqueId, uniqueIdSize, uniqueIdPrivate, uniqueIdPrivateSize));
if ((int)csrV.size() > *csrSize)
return ZT_RESULT_ERROR_BAD_PARAMETER;
ZeroTier::Utils::copy(csr, csrV.data(), (unsigned int)csrV.size());
*csrSize = (int)csrV.size();
return ZT_RESULT_OK;
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
int ZT_Certificate_sign(
const ZT_Certificate *cert,
const ZT_Identity *signer,
void *signedCert,
int *signedCertSize)
{
try {
if (!cert)
return ZT_RESULT_ERROR_BAD_PARAMETER;
ZeroTier::Certificate c(*cert);
if (!c.sign(*reinterpret_cast<const ZeroTier::Identity *>(signer)))
return ZT_RESULT_ERROR_INTERNAL;
const ZeroTier::Vector< uint8_t > enc(c.encode());
if ((int)enc.size() > *signedCertSize)
return ZT_RESULT_ERROR_BAD_PARAMETER;
ZeroTier::Utils::copy(signedCert, enc.data(), (unsigned int)enc.size());
*signedCertSize = (int)enc.size();
return ZT_RESULT_OK;
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_CertificateError ZT_Certificate_decode(
const ZT_Certificate **decodedCert,
const void *cert,
int certSize,
int verify)
{
try {
if ((!decodedCert) || (!cert) || (certSize <= 0))
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
*decodedCert = nullptr;
ZeroTier::Certificate *const c = new ZeroTier::Certificate();
if (!c->decode(cert, certSize)) {
delete c;
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
}
if (verify) {
const ZT_CertificateError err = c->verify();
if (err != ZT_CERTIFICATE_ERROR_NONE) {
delete c;
return err;
}
}
*decodedCert = c;
return ZT_CERTIFICATE_ERROR_NONE;
} catch (...) {
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
}
}
int ZT_Certificate_encode(
const ZT_Certificate *cert,
void *encoded,
int *encodedSize)
{
try {
if ((!cert) || (!encoded) || (!encodedSize))
return ZT_RESULT_ERROR_BAD_PARAMETER;
ZeroTier::Certificate c(*cert);
ZeroTier::Vector< uint8_t > enc(c.encode());
if ((int)enc.size() > *encodedSize)
return ZT_RESULT_ERROR_BAD_PARAMETER;
ZeroTier::Utils::copy(encoded, enc.data(), (unsigned int)enc.size());
*encodedSize = (int)enc.size();
return ZT_RESULT_OK;
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_CertificateError ZT_Certificate_verify(const ZT_Certificate *cert)
{
try {
if (!cert)
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
return ZeroTier::Certificate(*cert).verify();
} catch (...) {
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
}
}
const ZT_Certificate *ZT_Certificate_clone(const ZT_Certificate *cert)
{
try {
if (!cert)
return nullptr;
return (const ZT_Certificate *)(new ZeroTier::Certificate(*cert));
} catch (...) {
return nullptr;
}
}
void ZT_Certificate_delete(const ZT_Certificate *cert)
{
try {
if (cert)
delete (const ZeroTier::Certificate *)(cert);
} catch (...) {}
}
}

View file

@ -542,101 +542,3 @@ void Identity::m_computeHash()
}
} // namespace ZeroTier
extern "C" {
ZT_Identity *ZT_Identity_new(enum ZT_IdentityType type)
{
if ((type != ZT_IDENTITY_TYPE_C25519) && (type != ZT_IDENTITY_TYPE_P384))
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity();
id->generate((ZeroTier::Identity::Type)type);
return reinterpret_cast<ZT_Identity *>(id);
} catch (...) {
return nullptr;
}
}
ZT_Identity *ZT_Identity_fromString(const char *idStr)
{
if (!idStr)
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity();
if (!id->fromString(idStr)) {
delete id;
return nullptr;
}
return reinterpret_cast<ZT_Identity *>(id);
} catch (...) {
return nullptr;
}
}
int ZT_Identity_validate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->locallyValidate() ? 1 : 0;
}
unsigned int ZT_Identity_sign(const ZT_Identity *id, const void *data, unsigned int len, void *signature, unsigned int signatureBufferLength)
{
if (!id)
return 0;
if (signatureBufferLength < ZT_SIGNATURE_BUFFER_SIZE)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data, len, signature, signatureBufferLength);
}
int ZT_Identity_verify(const ZT_Identity *id, const void *data, unsigned int len, const void *signature, unsigned int sigLen)
{
if ((!id) || (!signature) || (!sigLen))
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data, len, signature, sigLen) ? 1 : 0;
}
enum ZT_IdentityType ZT_Identity_type(const ZT_Identity *id)
{
if (!id)
return (ZT_IdentityType)0;
return (enum ZT_IdentityType)reinterpret_cast<const ZeroTier::Identity *>(id)->type();
}
char *ZT_Identity_toString(const ZT_Identity *id, char *buf, int capacity, int includePrivate)
{
if ((!id) || (!buf) || (capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
return nullptr;
reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0, buf);
return buf;
}
int ZT_Identity_hasPrivate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->hasPrivate() ? 1 : 0;
}
uint64_t ZT_Identity_address(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->address();
}
const ZT_Fingerprint *ZT_Identity_fingerprint(const ZT_Identity *id)
{
if (!id)
return nullptr;
return &(reinterpret_cast<const ZeroTier::Identity *>(id)->fingerprint());
}
ZT_SDK_API void ZT_Identity_delete(ZT_Identity *id)
{
if (id)
delete reinterpret_cast<ZeroTier::Identity *>(id);
}
}

View file

@ -204,122 +204,3 @@ void Locator::m_sortEndpoints() noexcept
{ std::sort(m_endpoints.begin(), m_endpoints.end(), p_SortByEndpoint()); }
} // namespace ZeroTier
extern "C" {
ZT_Locator *ZT_Locator_create(
int64_t ts,
const ZT_Endpoint *endpoints,
const ZT_EndpointAttributes *endpointAttributes, // TODO: not used yet
unsigned int endpointCount,
const ZT_Identity *signer)
{
try {
if ((ts <= 0) || (!endpoints) || (endpointCount == 0) || (!signer))
return nullptr;
ZeroTier::Locator *loc = new ZeroTier::Locator();
for (unsigned int i = 0;i < endpointCount;++i)
loc->add(reinterpret_cast< const ZeroTier::Endpoint * >(endpoints)[i], ZeroTier::Locator::EndpointAttributes::DEFAULT);
if (!loc->sign(ts, *reinterpret_cast< const ZeroTier::Identity * >(signer))) {
delete loc;
return nullptr;
}
return reinterpret_cast<ZT_Locator *>(loc);
} catch (...) {
return nullptr;
}
}
ZT_Locator *ZT_Locator_fromString(const char *str)
{
try {
if (!str)
return nullptr;
ZeroTier::Locator *loc = new ZeroTier::Locator();
if (!loc->fromString(str)) {
delete loc;
return nullptr;
}
return reinterpret_cast<ZT_Locator *>(loc);
} catch ( ... ) {
return nullptr;
}
}
ZT_Locator *ZT_Locator_unmarshal(
const void *data,
unsigned int len)
{
try {
if ((!data) || (len == 0))
return nullptr;
ZeroTier::Locator *loc = new ZeroTier::Locator();
if (loc->unmarshal(reinterpret_cast<const uint8_t *>(data), (int) len) <= 0) {
delete loc;
return nullptr;
}
return reinterpret_cast<ZT_Locator *>(loc);
} catch (...) {
return nullptr;
}
}
int ZT_Locator_marshal(const ZT_Locator *loc, void *buf, unsigned int bufSize)
{
if ((!loc) || (bufSize < ZT_LOCATOR_MARSHAL_SIZE_MAX))
return -1;
return reinterpret_cast<const ZeroTier::Locator *>(loc)->marshal(reinterpret_cast<uint8_t *>(buf), (int) bufSize);
}
char *ZT_Locator_toString(
const ZT_Locator *loc,
char *buf,
int capacity)
{
if ((!loc) || (capacity < ZT_LOCATOR_STRING_SIZE_MAX))
return nullptr;
return reinterpret_cast<const ZeroTier::Locator *>(loc)->toString(buf);
}
const ZT_Fingerprint *ZT_Locator_fingerprint(const ZT_Locator *loc)
{
if (!loc)
return nullptr;
return (ZT_Fingerprint *) (&(reinterpret_cast<const ZeroTier::Locator *>(loc)->signer()));
}
int64_t ZT_Locator_timestamp(const ZT_Locator *loc)
{
if (!loc)
return 0;
return reinterpret_cast<const ZeroTier::Locator *>(loc)->timestamp();
}
unsigned int ZT_Locator_endpointCount(const ZT_Locator *loc)
{
return (loc) ? (unsigned int) (reinterpret_cast<const ZeroTier::Locator *>(loc)->endpoints().size()) : 0;
}
const ZT_Endpoint *ZT_Locator_endpoint(const ZT_Locator *loc, const unsigned int ep)
{
if (!loc)
return nullptr;
if (ep >= (unsigned int) (reinterpret_cast<const ZeroTier::Locator *>(loc)->endpoints().size()))
return nullptr;
return reinterpret_cast<const ZT_Endpoint *>(&(reinterpret_cast<const ZeroTier::Locator *>(loc)->endpoints()[ep]));
}
int ZT_Locator_verify(const ZT_Locator *loc, const ZT_Identity *signer)
{
if ((!loc) || (!signer))
return 0;
return reinterpret_cast<const ZeroTier::Locator *>(loc)->verify(*reinterpret_cast<const ZeroTier::Identity *>(signer)) ? 1 : 0;
}
void ZT_Locator_delete(ZT_Locator *loc)
{
if (loc)
delete reinterpret_cast<ZeroTier::Locator *>(loc);
}
} // C API functions

View file

@ -264,6 +264,8 @@ private:
uint64_t m_mac;
};
static_assert(sizeof(MAC) == sizeof(uint64_t),"MAC contains unnecessary padding");
} // namespace ZeroTier
#endif

View file

@ -840,320 +840,3 @@ void Node::ncSendError(uint64_t nwid, uint64_t requestPacketId, const Address &d
}
} // namespace ZeroTier
// C API --------------------------------------------------------------------------------------------------------------
extern "C" {
// These macros make the idiom of passing buffers to outside code via the API work properly even
// if the first address of Buf does not overlap with its data field, since the C++ standard does
// not absolutely guarantee this.
#define _ZT_PTRTOBUF(p) ((ZeroTier::Buf *)( ((uintptr_t)(p)) - ((uintptr_t)&(((ZeroTier::Buf *)0)->unsafeData[0])) ))
#define _ZT_BUFTOPTR(b) ((void *)(&((b)->unsafeData[0])))
void *ZT_getBuffer()
{
// When external code requests a Buf, grab one from the pool (or freshly allocated)
// and return it with its reference count left at zero. It's the responsibility of
// external code to bring it back via freeBuffer() or one of the processX() calls.
// When this occurs it's either sent back to the pool with Buf's delete operator or
// wrapped in a SharedPtr<> to be passed into the core.
try {
return _ZT_BUFTOPTR(new ZeroTier::Buf());
} catch (...) {
return nullptr; // can only happen on out of memory condition
}
}
void ZT_freeBuffer(void *b)
{
if (b)
delete _ZT_PTRTOBUF(b);
}
struct p_queryResultBase
{
void (*freeFunction)(const void *);
};
void ZT_freeQueryResult(const void *qr)
{
if ((qr) && (reinterpret_cast<const p_queryResultBase *>(qr)->freeFunction))
reinterpret_cast<const p_queryResultBase *>(qr)->freeFunction(qr);
}
enum ZT_ResultCode ZT_Node_new(ZT_Node **node, void *uptr, void *tptr, const struct ZT_Node_Callbacks *callbacks, int64_t now)
{
*node = (ZT_Node *)0;
try {
*node = reinterpret_cast<ZT_Node *>(new ZeroTier::Node(uptr, tptr, callbacks, now));
return ZT_RESULT_OK;
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (std::runtime_error &exc) {
return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
void ZT_Node_delete(ZT_Node *node, void *tPtr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->shutdown(tPtr);
delete (reinterpret_cast<ZeroTier::Node *>(node));
} catch (...) {}
}
enum ZT_ResultCode ZT_Node_processWirePacket(
ZT_Node *node,
void *tptr,
int64_t now,
int64_t localSocket,
const struct sockaddr_storage *remoteAddress,
const void *packetData,
unsigned int packetLength,
int isZtBuffer,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
ZeroTier::SharedPtr< ZeroTier::Buf > buf((isZtBuffer) ? _ZT_PTRTOBUF(packetData) : new ZeroTier::Buf(packetData, packetLength & ZT_BUF_MEM_MASK));
return reinterpret_cast<ZeroTier::Node *>(node)->processWirePacket(tptr, now, localSocket, remoteAddress, buf, packetLength, nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
// "OK" since invalid packets are simply dropped, but the system is still up.
// We should never make it here, but if we did that would be the interpretation.
return ZT_RESULT_OK;
}
}
enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(
ZT_Node *node,
void *tptr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void *frameData,
unsigned int frameLength,
int isZtBuffer,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
ZeroTier::SharedPtr< ZeroTier::Buf > buf((isZtBuffer) ? _ZT_PTRTOBUF(frameData) : new ZeroTier::Buf(frameData, frameLength & ZT_BUF_MEM_MASK));
return reinterpret_cast<ZeroTier::Node *>(node)->processVirtualNetworkFrame(tptr, now, nwid, sourceMac, destMac, etherType, vlanId, buf, frameLength, nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node, void *tptr, int64_t now, volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processBackgroundTasks(tptr, now, nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_join(ZT_Node *node, uint64_t nwid, const ZT_Fingerprint *controllerFingerprint, void *uptr, void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->join(nwid, controllerFingerprint, uptr, tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_leave(ZT_Node *node, uint64_t nwid, void **uptr, void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->leave(nwid, uptr, tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node, void *tptr, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastSubscribe(tptr, nwid, multicastGroup, multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastUnsubscribe(nwid, multicastGroup, multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
uint64_t ZT_Node_address(ZT_Node *node)
{
return reinterpret_cast<ZeroTier::Node *>(node)->address();
}
const ZT_Identity *ZT_Node_identity(ZT_Node *node)
{
return (const ZT_Identity *)(&(reinterpret_cast<ZeroTier::Node *>(node)->identity()));
}
void ZT_Node_status(ZT_Node *node, ZT_NodeStatus *status)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->status(status);
} catch (...) {}
}
ZT_PeerList *ZT_Node_peers(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->peers();
} catch (...) {
return (ZT_PeerList *)0;
}
}
ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node, uint64_t nwid)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networkConfig(nwid);
} catch (...) {
return (ZT_VirtualNetworkConfig *)0;
}
}
ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networks();
} catch (...) {
return (ZT_VirtualNetworkList *)0;
}
}
int ZT_Node_tryPeer(
ZT_Node *node,
void *tptr,
const ZT_Fingerprint *fp,
const ZT_Endpoint *endpoint,
int retries)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->tryPeer(tptr, fp, endpoint, retries);
} catch (...) {
return 0;
}
}
enum ZT_CertificateError ZT_Node_addCertificate(
ZT_Node *node,
void *tptr,
int64_t now,
unsigned int localTrust,
const ZT_Certificate *cert,
const void *certData,
unsigned int certSize)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->addCertificate(tptr, now, localTrust, cert, certData, certSize);
} catch (...) {
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
}
}
ZT_SDK_API enum ZT_ResultCode ZT_Node_deleteCertificate(
ZT_Node *node,
void *tptr,
const void *serialNo)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->deleteCertificate(tptr, serialNo);
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
ZT_SDK_API ZT_CertificateList *ZT_Node_listCertificates(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->listCertificates();
} catch (...) {
return nullptr;
}
}
void ZT_Node_setNetworkUserPtr(ZT_Node *node, uint64_t nwid, void *ptr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setNetworkUserPtr(nwid, ptr);
} catch (...) {}
}
void ZT_Node_setInterfaceAddresses(ZT_Node *node, const ZT_InterfaceAddress *addrs, unsigned int addrCount)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setInterfaceAddresses(addrs, addrCount);
} catch (...) {}
}
enum ZT_ResultCode ZT_Node_addPeer(
ZT_Node *node,
void *tptr,
const ZT_Identity *id)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->addPeer(tptr, id);
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
int ZT_Node_sendUserMessage(ZT_Node *node, void *tptr, uint64_t dest, uint64_t typeId, const void *data, unsigned int len)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->sendUserMessage(tptr, dest, typeId, data, len);
} catch (...) {
return 0;
}
}
void ZT_Node_setController(ZT_Node *node, void *networkControllerInstance)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setController(networkControllerInstance);
} catch (...) {}
}
void ZT_version(int *major, int *minor, int *revision, int *build)
{
if (major)
*major = ZEROTIER_VERSION_MAJOR;
if (minor)
*minor = ZEROTIER_VERSION_MINOR;
if (revision)
*revision = ZEROTIER_VERSION_REVISION;
if (build)
*build = ZEROTIER_VERSION_BUILD;
}
} // extern "C"

View file

@ -115,14 +115,6 @@
#include <mmintrin.h>
#endif
#if (defined(__ARM_NEON) || defined(__ARM_NEON__) || defined(ZT_ARCH_ARM_HAS_NEON))
#ifndef ZT_ARCH_ARM_HAS_NEON
#define ZT_ARCH_ARM_HAS_NEON 1
#endif
#include <arm_neon.h>
/*#include <arm_acle.h>*/
#endif
#if defined(ZT_ARCH_X64) || defined(i386) || defined(__i386) || defined(__i386__) || defined(__i486__) || defined(__i586__) || defined(__i686__) || defined(_M_IX86) || defined(__X86__) || defined(_X86_) || defined(__I86__) || defined(__INTEL__) || defined(__386)
#define ZT_ARCH_X86 1
#endif
@ -133,6 +125,20 @@
#endif
#endif
#if (defined(__ARM_NEON) || defined(__ARM_NEON__) || defined(ZT_ARCH_ARM_HAS_NEON))
#if (defined(__APPLE__) && !defined(__LP64__)) || (defined(__ANDROID__) && defined(__arm__))
#ifdef ZT_ARCH_ARM_HAS_NEON
#undef ZT_ARCH_ARM_HAS_NEON
#endif
#else
#ifndef ZT_ARCH_ARM_HAS_NEON
#define ZT_ARCH_ARM_HAS_NEON 1
#endif
#include <arm_neon.h>
/*#include <arm_acle.h>*/
#endif
#endif
#if defined(__SIZEOF_INT128__) || ((defined(ZT_ARCH_X64) || defined(__aarch64__)) && defined(__GNUC__))
#ifdef __SIZEOF_INT128__
#define ZT_HAVE_UINT128 1
@ -216,10 +222,9 @@ typedef unsigned uint128_t __attribute__((mode(TI)));
#endif
#endif
// Macro to print very verbose tracing information to standard error.
#define ZT_VA_ARGS(...) , ##__VA_ARGS__
#define ZT_DEBUG_SPEW
#ifdef ZT_DEBUG_SPEW
#define ZT_VA_ARGS(...) , ##__VA_ARGS__
#define ZT_SPEW(f,...) fprintf(stderr,"%s:%d(%s): " f ZT_EOL_S,__FILE__,__LINE__,__FUNCTION__ ZT_VA_ARGS(__VA_ARGS__))
#else
#define ZT_SPEW(f,...)

View file

@ -194,7 +194,6 @@ private:
SharedPtr< const Certificate > certificate;
unsigned int localTrust;
};
Map< SHA384Hash, p_CertEntry > m_certs;
Map< SHA384Hash, p_CertEntry > m_certsBySubjectUniqueID;
Map< Fingerprint, Map< SharedPtr< const Certificate >, unsigned int > > m_certsBySubjectIdentity;

View file

@ -38,9 +38,21 @@ namespace ZeroTier {
namespace Utils {
#ifdef ZT_ARCH_ARM_HAS_NEON
#ifdef ZT_ARCH_ARM_HAS_NEON /****************************************************************************************/
ARMCapabilities::ARMCapabilities() noexcept
{
#ifdef __APPLE__
this->aes = true;
this->crc32 = true;
this->pmull = true;
this->sha1 = true;
this->sha2 = true;
#else
#ifdef __LINUX__
#ifdef HWCAP2_AES
if (sizeof(void *) == 4) {
const long hwcaps2 = getauxval(AT_HWCAP2);
@ -60,13 +72,16 @@ ARMCapabilities::ARMCapabilities() noexcept
#ifdef HWCAP2_AES
}
#endif
#endif
#endif
}
const ARMCapabilities ARMCAP;
#endif
#ifdef ZT_ARCH_X64
#endif /*************************************************************************************************************/
#ifdef ZT_ARCH_X64 /*************************************************************************************************/
CPUIDRegisters::CPUIDRegisters() noexcept
{
uint32_t eax, ebx, ecx, edx;
@ -113,7 +128,7 @@ CPUIDRegisters::CPUIDRegisters() noexcept
}
const CPUIDRegisters CPUID;
#endif
#endif /*************************************************************************************************************/
const std::bad_alloc BadAllocException;
const std::out_of_range OutOfRangeException("access out of range");
@ -131,19 +146,18 @@ bool secureEq(const void *a, const void *b, unsigned int len) noexcept
void burn(volatile void *ptr, unsigned int len)
{
static volatile uintptr_t foo = 0;
Utils::zero((void *)ptr, len);
// This line is present to force the compiler not to optimize out the memory
// zeroing operation above, as burn() is used to erase secrets and other
// sensitive data.
if ((reinterpret_cast<volatile uint8_t *>(ptr)[0] | reinterpret_cast<volatile uint8_t *>(ptr)[len-1]) != 0)
burn(ptr, len);
// Force compiler not to optimize this function out by taking a volatile
// parameter and also updating a volatile variable.
foo += (uintptr_t)len ^ (uintptr_t)reinterpret_cast<volatile uint8_t *>(ptr)[0];
}
static unsigned long _Utils_itoa(unsigned long n, char *s)
static unsigned long s_decimalRecursive(unsigned long n, char *s)
{
if (n == 0)
return 0;
unsigned long pos = _Utils_itoa(n / 10, s);
unsigned long pos = s_decimalRecursive(n / 10, s);
if (pos >= 22) // sanity check,should be impossible
pos = 22;
s[pos] = (char)('0' + (n % 10));
@ -157,7 +171,7 @@ char *decimal(unsigned long n, char s[24]) noexcept
s[1] = (char)0;
return s;
}
s[_Utils_itoa(n, s)] = (char)0;
s[s_decimalRecursive(n, s)] = (char)0;
return s;
}
@ -353,7 +367,7 @@ void getSecureRandom(void *const buf, unsigned int bytes) noexcept
uint64_t getSecureRandomU64() noexcept
{
uint64_t tmp = 0;
uint64_t tmp;
getSecureRandom(&tmp, sizeof(tmp));
return tmp;
}