Refactoring protocol marshal/unmarshal code...

This commit is contained in:
Adam Ierymenko 2020-01-24 21:16:07 -08:00
parent e9656ecf11
commit 91ce4c4ea6
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
16 changed files with 1538 additions and 678 deletions

View file

@ -18,7 +18,7 @@
#include "Mutex.hpp"
#include "LZ4.hpp"
#if (defined(_MSC_VER) || defined(__GNUC__) || defined(__clang)) && (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
#if defined(__GCC__) && (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
#define ZT_PACKET_USE_ATOMIC_INTRINSICS
#endif
#ifndef ZT_PACKET_USE_ATOMIC_INTRINSICS
@ -137,7 +137,7 @@ static unsigned long long s_packetIdCtr = s_initPacketID();
static std::atomic<unsigned long long> s_packetIdCtr(s_initPacketID());
#endif
uint64_t Packet::nextPacketId()
uint64_t getPacketId()
{
#ifdef ZT_PACKET_USE_ATOMIC_INTRINSICS
return __sync_add_and_fetch(&s_packetIdCtr,1ULL);

View file

@ -234,41 +234,6 @@
#define ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_FLAGS (ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_ADI + 4)
#define ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS (ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_FLAGS + 1)
/**
* Signed locator for this node
*/
#define ZT_PROTO_NODE_META_LOCATOR "l"
/**
* Ephemeral C25519 public key
*/
#define ZT_PROTO_NODE_META_EPHEMERAL_KEY_C25519 "e0"
/**
* Ephemeral NIST P-384 public key
*/
#define ZT_PROTO_NODE_META_EPHEMERAL_KEY_P384 "e1"
/**
* Addresses of ZeroTier nodes to whom this node will relay or one entry for 0000000000 if promiscuous.
*/
#define ZT_PROTO_NODE_META_WILL_RELAY_TO "r"
/**
* X coordinate of your node (sent in OK(HELLO))
*/
#define ZT_PROTO_NODE_META_LOCATION_X "gX"
/**
* Y coordinate of your node (sent in OK(HELLO))
*/
#define ZT_PROTO_NODE_META_LOCATION_Y "gY"
/**
* Z coordinate of your node (sent in OK(HELLO))
*/
#define ZT_PROTO_NODE_META_LOCATION_Z "gZ"
// ---------------------------------------------------------------------------
namespace ZeroTier {
@ -878,6 +843,9 @@ public:
* "dumb" relaying. The latter is faster but secure relaying has roles
* where endpoint privacy is desired. Multiply nested ENCAP packets
* could allow ZeroTier to act as an onion router.
*
* When encapsulated packets are forwarded they do have their hop count
* field incremented.
*/
VERB_ENCAP = 0x17

View file

@ -149,39 +149,6 @@ void AES::_encryptSW(const uint8_t in[16],uint8_t out[16]) const
writeuint32_t(out + 12,(Te2[(t3 >> 24)] & 0xff000000) ^ (Te3[(t0 >> 16) & 0xff] & 0x00ff0000) ^ (Te0[(t1 >> 8) & 0xff] & 0x0000ff00) ^ (Te1[(t2) & 0xff] & 0x000000ff) ^ rk[59]);
}
void AES::_ctrSW(const uint8_t iv[16],const void *in,unsigned int len,void *out) const
{
uint64_t ctr[2],cenc[2];
memcpy(ctr,iv,16);
uint64_t bctr = Utils::ntoh(ctr[1]);
const uint8_t *i = (const uint8_t *)in;
uint8_t *o = (uint8_t *)out;
while (len >= 16) {
_encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
ctr[1] = Utils::hton(++bctr);
#ifdef ZT_NO_UNALIGNED_ACCESS
for(unsigned int k=0;k<16;++k)
*(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
#else
*((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[0];
o += 8;
i += 8;
*((uint64_t *)o) = *((const uint64_t *)i) ^ cenc[1];
o += 8;
i += 8;
#endif
len -= 16;
}
if (len) {
_encryptSW((const uint8_t *)ctr,(uint8_t *)cenc);
for(unsigned int k=0;k<len;++k)
*(o++) = *(i++) ^ ((uint8_t *)cenc)[k];
}
}
#if (defined(__GNUC__) || defined(__clang)) && (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64) || defined(__aarch64__))
#if defined(__SIZEOF_INT128__)
@ -616,147 +583,6 @@ void AES::_gmac_aesni(const uint8_t iv[12],const uint8_t *in,const unsigned int
_mm_storeu_si128((__m128i *)out,_mm_xor_si128(y,t));
}
#define ZT_AES_CTR_AESNI_ROUND(kk) c0 = _mm_aesenc_si128(c0,kk); c1 = _mm_aesenc_si128(c1,kk); c2 = _mm_aesenc_si128(c2,kk); c3 = _mm_aesenc_si128(c3,kk)
void AES::_ctr_aesni(const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out) const
{
/* Because our CTR supports full 128-bit nonces, we must do a full 128-bit (big-endian)
* increment to be compatible with canonical NIST-certified CTR implementations. That's
* because it's possible to have a lot of bit saturation in the least significant 64
* bits, which could on rare occasions actually cause a 64-bit wrap. If this happened
* without carry it would result in incompatibility and quietly dropped packets. The
* probability is low, so this would be a one in billions packet loss bug that would
* probably never be found.
*
* This crazy code does a branch-free 128-bit increment by adding a one or a zero to
* the most significant 64 bits of the 128-bit vector based on whether the add we want
* to do to the least significant 64 bits would overflow. This can be computed by
* NOTing those bits and comparing with what we want to add, since NOT is the same
* as subtracting from uint64_max. This generates branch-free ASM on x64 with most
* good compilers. */
__m128i swap128 = _mm_set_epi8(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15);
__m128i ctr0 = _mm_shuffle_epi8(_mm_loadu_si128((__m128i *)iv),swap128);
uint64_t notctr0msq = ~((uint64_t)_mm_extract_epi64(ctr0,0));
__m128i ctr1 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 1ULL),1LL)),swap128);
__m128i ctr2 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 2ULL),2LL)),swap128);
__m128i ctr3 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 3ULL),3LL)),swap128);
ctr0 = _mm_shuffle_epi8(ctr0,swap128);
__m128i k0 = _k.ni.k[0];
__m128i k1 = _k.ni.k[1];
while (len >= 64) {
__m128i ka = _k.ni.k[2];
__m128i c0 = _mm_xor_si128(ctr0,k0);
__m128i c1 = _mm_xor_si128(ctr1,k0);
__m128i c2 = _mm_xor_si128(ctr2,k0);
__m128i c3 = _mm_xor_si128(ctr3,k0);
ctr0 = _mm_shuffle_epi8(ctr0,swap128);
notctr0msq = ~((uint64_t)_mm_extract_epi64(ctr0,0));
ctr1 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 5ULL),5LL)),swap128);
ctr2 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 6ULL),6LL)),swap128);
ctr3 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 7ULL),7LL)),swap128);
ctr0 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)(notctr0msq < 4ULL),4LL)),swap128);
__m128i kb = _k.ni.k[3];
ZT_AES_CTR_AESNI_ROUND(k1);
__m128i kc = _k.ni.k[4];
ZT_AES_CTR_AESNI_ROUND(ka);
__m128i kd = _k.ni.k[5];
ZT_AES_CTR_AESNI_ROUND(kb);
ka = _k.ni.k[6];
ZT_AES_CTR_AESNI_ROUND(kc);
kb = _k.ni.k[7];
ZT_AES_CTR_AESNI_ROUND(kd);
kc = _k.ni.k[8];
ZT_AES_CTR_AESNI_ROUND(ka);
kd = _k.ni.k[9];
ZT_AES_CTR_AESNI_ROUND(kb);
ka = _k.ni.k[10];
ZT_AES_CTR_AESNI_ROUND(kc);
kb = _k.ni.k[11];
ZT_AES_CTR_AESNI_ROUND(kd);
kc = _k.ni.k[12];
ZT_AES_CTR_AESNI_ROUND(ka);
kd = _k.ni.k[13];
ZT_AES_CTR_AESNI_ROUND(kb);
ka = _k.ni.k[14];
ZT_AES_CTR_AESNI_ROUND(kc);
ZT_AES_CTR_AESNI_ROUND(kd);
_mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,ka)));
_mm_storeu_si128((__m128i *)(out + 16),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 16)),_mm_aesenclast_si128(c1,ka)));
_mm_storeu_si128((__m128i *)(out + 32),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 32)),_mm_aesenclast_si128(c2,ka)));
_mm_storeu_si128((__m128i *)(out + 48),_mm_xor_si128(_mm_loadu_si128((const __m128i *)(in + 48)),_mm_aesenclast_si128(c3,ka)));
in += 64;
out += 64;
len -= 64;
}
__m128i k2 = _k.ni.k[2];
__m128i k3 = _k.ni.k[3];
__m128i k4 = _k.ni.k[4];
__m128i k5 = _k.ni.k[5];
__m128i k6 = _k.ni.k[6];
__m128i k7 = _k.ni.k[7];
while (len >= 16) {
__m128i c0 = _mm_xor_si128(ctr0,k0);
ctr0 = _mm_shuffle_epi8(ctr0,swap128);
ctr0 = _mm_shuffle_epi8(_mm_add_epi64(ctr0,_mm_set_epi64x((long long)((~((uint64_t)_mm_extract_epi64(ctr0,0))) < 1ULL),1LL)),swap128);
c0 = _mm_aesenc_si128(c0,k1);
c0 = _mm_aesenc_si128(c0,k2);
c0 = _mm_aesenc_si128(c0,k3);
c0 = _mm_aesenc_si128(c0,k4);
c0 = _mm_aesenc_si128(c0,k5);
c0 = _mm_aesenc_si128(c0,k6);
__m128i ka = _k.ni.k[8];
c0 = _mm_aesenc_si128(c0,k7);
__m128i kb = _k.ni.k[9];
c0 = _mm_aesenc_si128(c0,ka);
ka = _k.ni.k[10];
c0 = _mm_aesenc_si128(c0,kb);
kb = _k.ni.k[11];
c0 = _mm_aesenc_si128(c0,ka);
ka = _k.ni.k[12];
c0 = _mm_aesenc_si128(c0,kb);
kb = _k.ni.k[13];
c0 = _mm_aesenc_si128(c0,ka);
ka = _k.ni.k[14];
c0 = _mm_aesenc_si128(c0,kb);
_mm_storeu_si128((__m128i *)out,_mm_xor_si128(_mm_loadu_si128((const __m128i *)in),_mm_aesenclast_si128(c0,ka)));
in += 16;
out += 16;
len -= 16;
}
if (len) {
__m128i c0 = _mm_xor_si128(ctr0,k0);
k0 = _k.ni.k[8];
c0 = _mm_aesenc_si128(c0,k1);
c0 = _mm_aesenc_si128(c0,k2);
k1 = _k.ni.k[9];
c0 = _mm_aesenc_si128(c0,k3);
c0 = _mm_aesenc_si128(c0,k4);
k2 = _k.ni.k[10];
c0 = _mm_aesenc_si128(c0,k5);
c0 = _mm_aesenc_si128(c0,k6);
k3 = _k.ni.k[11];
c0 = _mm_aesenc_si128(c0,k7);
c0 = _mm_aesenc_si128(c0,k0);
k0 = _k.ni.k[12];
c0 = _mm_aesenc_si128(c0,k1);
c0 = _mm_aesenc_si128(c0,k2);
k1 = _k.ni.k[13];
c0 = _mm_aesenc_si128(c0,k3);
c0 = _mm_aesenc_si128(c0,k0);
k2 = _k.ni.k[14];
c0 = _mm_aesenc_si128(c0,k1);
c0 = _mm_aesenclast_si128(c0,k2);
uint8_t tmp[16];
_mm_storeu_si128((__m128i *)tmp,c0);
for(unsigned int i=0;i<len;++i)
out[i] = in[i] ^ tmp[i];
}
}
#endif // ZT_AES_AESNI
} // namespace ZeroTier

View file

@ -37,7 +37,7 @@ class AES
{
public:
ZT_ALWAYS_INLINE AES() {}
ZT_ALWAYS_INLINE AES(const uint8_t key[32]) { this->init(key); }
explicit ZT_ALWAYS_INLINE AES(const uint8_t key[32]) { this->init(key); }
ZT_ALWAYS_INLINE ~AES() { Utils::burn(&_k,sizeof(_k)); }
/**
@ -71,46 +71,9 @@ public:
_encryptSW(in,out);
}
/**
* Compute GMAC-AES256 (GCM without ciphertext)
*
* @param iv 96-bit IV
* @param in Input data
* @param len Length of input
* @param out 128-bit authorization tag from GMAC
*/
ZT_ALWAYS_INLINE void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const
ZT_ALWAYS_INLINE void gcm(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16],uint8_t tag[16]) const
{
#ifdef ZT_AES_AESNI
if (likely(Utils::CPUID.aes)) {
_gmac_aesni(iv,(const uint8_t *)in,len,out);
return;
}
#endif
_gmacSW(iv,(const uint8_t *)in,len,out);
}
/**
* Encrypt or decrypt (they're the same) using AES256-CTR
*
* The counter here is a 128-bit big-endian that starts at the IV. The code only
* increments the least significant 64 bits, making it only safe to use for a
* maximum of 2^64-1 bytes (much larger than we ever do).
*
* @param iv 128-bit CTR IV
* @param in Input plaintext or ciphertext
* @param len Length of input
* @param out Output plaintext or ciphertext
*/
ZT_ALWAYS_INLINE void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const
{
#ifdef ZT_AES_AESNI
if (likely(Utils::CPUID.aes)) {
_ctr_aesni(iv,(const uint8_t *)in,len,(uint8_t *)out);
return;
}
#endif
_ctrSW(iv,in,len,out);
// TODO
}
private:
@ -122,7 +85,6 @@ private:
void _initSW(const uint8_t key[32]);
void _encryptSW(const uint8_t in[16],uint8_t out[16]) const;
void _ctrSW(const uint8_t iv[16],const void *in,unsigned int len,void *out) const;
void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const;
/**************************************************************************/
@ -258,7 +220,6 @@ private:
}
void _gmac_aesni(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const;
void _ctr_aesni(const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out) const;
#endif /* ZT_AES_AESNI ******************************************************/
};

View file

@ -26,7 +26,6 @@
#include "Constants.hpp"
#include "Utils.hpp"
#include "Buffer.hpp"
namespace ZeroTier {
@ -37,65 +36,31 @@ class Address
{
public:
ZT_ALWAYS_INLINE Address() : _a(0) {}
explicit ZT_ALWAYS_INLINE Address(const uint8_t b[5]) : _a(((uint64_t)b[0] << 32U) | ((uint64_t)b[1] << 24U) | ((uint64_t)b[2] << 16U) | ((uint64_t)b[3] << 8U) | (uint64_t)b[4]) {}
explicit ZT_ALWAYS_INLINE Address(const uint64_t a) : _a(a & 0xffffffffffULL) {}
/**
* @param bits Raw address -- 5 bytes, big-endian byte order
* @param len Length of array
*/
ZT_ALWAYS_INLINE Address(const void *bits,unsigned int len) { setTo(bits,len); }
ZT_ALWAYS_INLINE Address &operator=(const uint64_t a) { _a = (a & 0xffffffffffULL); return *this; }
/**
* @param bits Raw address -- 5 bytes, big-endian byte order
* @param len Length of array
*/
ZT_ALWAYS_INLINE void setTo(const void *bits,const unsigned int len)
ZT_ALWAYS_INLINE void setTo(const uint8_t b[5])
{
if (len < ZT_ADDRESS_LENGTH) {
_a = 0;
return;
}
const unsigned char *b = (const unsigned char *)bits;
uint64_t a = ((uint64_t)*b++) << 32;
a |= ((uint64_t)*b++) << 24;
a |= ((uint64_t)*b++) << 16;
a |= ((uint64_t)*b++) << 8;
a |= ((uint64_t)*b);
_a = a;
_a = ((uint64_t)b[0] << 32U) | ((uint64_t)b[1] << 24U) | ((uint64_t)b[2] << 16U) | ((uint64_t)b[3] << 8U) | (uint64_t)b[4];
}
/**
* @param bits Buffer to hold 5-byte address in big-endian byte order
* @param len Length of array
*/
ZT_ALWAYS_INLINE void copyTo(void *const bits,const unsigned int len) const
ZT_ALWAYS_INLINE void copyTo(uint8_t b[5]) const
{
if (len < ZT_ADDRESS_LENGTH)
return;
unsigned char *b = (unsigned char *)bits;
*(b++) = (unsigned char)((_a >> 32) & 0xff);
*(b++) = (unsigned char)((_a >> 24) & 0xff);
*(b++) = (unsigned char)((_a >> 16) & 0xff);
*(b++) = (unsigned char)((_a >> 8) & 0xff);
*b = (unsigned char)(_a & 0xff);
}
/**
* Append to a buffer in big-endian byte order
*
* @param b Buffer to append to
*/
template<unsigned int C>
ZT_ALWAYS_INLINE void appendTo(Buffer<C> &b) const
{
unsigned char *p = (unsigned char *)b.appendField(ZT_ADDRESS_LENGTH);
*(p++) = (unsigned char)((_a >> 32) & 0xff);
*(p++) = (unsigned char)((_a >> 24) & 0xff);
*(p++) = (unsigned char)((_a >> 16) & 0xff);
*(p++) = (unsigned char)((_a >> 8) & 0xff);
*p = (unsigned char)(_a & 0xff);
b[0] = (uint8_t)(_a >> 32U);
b[1] = (uint8_t)(_a >> 24U);
b[2] = (uint8_t)(_a >> 16U);
b[3] = (uint8_t)(_a >> 8U);
b[4] = (uint8_t)_a;
}
/**
@ -131,9 +96,6 @@ public:
ZT_ALWAYS_INLINE uint8_t operator[](unsigned int i) const { return (uint8_t)(_a >> (32 - (i * 8))); }
ZT_ALWAYS_INLINE operator bool() const { return (_a != 0); }
ZT_ALWAYS_INLINE operator unsigned int() const { return (unsigned int)_a; }
ZT_ALWAYS_INLINE operator unsigned long() const { return (unsigned long)_a; }
ZT_ALWAYS_INLINE operator unsigned long long() const { return (unsigned long long)_a; }
ZT_ALWAYS_INLINE void zero() { _a = 0; }

View file

@ -77,6 +77,9 @@ extern std::atomic<uintptr_t> Buf_pool;
* union as 'fields.' This must be a basic plain data type and must be no larger than
* ZT_BUF_MEM_SIZE. It's typically a packed struct.
*
* Buf instances with different template parameters can freely be cast to one another
* as there is no actual difference in size or layout.
*
* @tparam U Type to overlap with data bytes in data union (can't be larger than ZT_BUF_MEM_SIZE)
*/
template<typename U = void>
@ -86,12 +89,10 @@ class Buf
private:
// Direct construction isn't allowed; use get().
ZT_ALWAYS_INLINE Buf()
{}
ZT_ALWAYS_INLINE Buf() {}
template<typename X>
ZT_ALWAYS_INLINE Buf(const Buf<X> &b)
{ memcpy(data.bytes,b.data.bytes,ZT_BUF_MEM_SIZE); }
ZT_ALWAYS_INLINE Buf(const Buf<X> &b) { memcpy(data.bytes,b.data.bytes,ZT_BUF_MEM_SIZE); }
public:
static void operator delete(void *ptr,std::size_t sz)
@ -203,8 +204,7 @@ public:
* @param ii Iterator to check
* @return True if iterator has read past the size of the buffer
*/
static ZT_ALWAYS_INLINE bool writeOverflow(const int &ii)
{ return ((ii - ZT_BUF_MEM_SIZE) > 0); }
static ZT_ALWAYS_INLINE bool writeOverflow(const int &ii) { return ((ii - ZT_BUF_MEM_SIZE) > 0); }
/**
* Check for overflow beyond the size of the data that should be in the buffer
@ -216,8 +216,7 @@ public:
* @param size Size of data that should be in buffer
* @return True if iterator has read past the size of the data
*/
static ZT_ALWAYS_INLINE bool readOverflow(const int &ii,const unsigned int size)
{ return ((ii - (int)size) > 0); }
static ZT_ALWAYS_INLINE bool readOverflow(const int &ii,const unsigned int size) { return ((ii - (int)size) > 0); }
template<typename X>
ZT_ALWAYS_INLINE Buf &operator=(const Buf<X> &b) const
@ -226,6 +225,24 @@ public:
return *this;
}
/**
* Shortcut to cast between buffers whose data can be viewed through a different struct type
*
* @tparam X A packed struct or other primitive type that should be placed in the data union
* @return Reference to this Buf templated with the supplied parameter
*/
template<typename X>
ZT_ALWAYS_INLINE Buf<X> &view() { return *reinterpret_cast< Buf<X> * >(this); }
/**
* Shortcut to cast between buffers whose data can be viewed through a different struct type
*
* @tparam X A packed struct or other primitive type that should be placed in the data union
* @return Reference to this Buf templated with the supplied parameter
*/
template<typename X>
ZT_ALWAYS_INLINE const Buf<X> &view() const { return *reinterpret_cast< Buf<X> * >(this); }
/**
* Zero memory
*
@ -241,8 +258,8 @@ public:
*/
ZT_ALWAYS_INLINE uint8_t rI8(int &ii) const
{
const unsigned int s = (unsigned int)ii++;
return data.bytes[s & ZT_BUF_MEM_MASK];
const int s = ii++;
return data.bytes[(unsigned int)s & ZT_BUF_MEM_MASK];
}
/**
@ -432,8 +449,8 @@ public:
*/
ZT_ALWAYS_INLINE void wI(int &ii,uint8_t n)
{
const unsigned int s = (unsigned int)ii++;
data[s & ZT_BUF_MEM_MASK] = n;
const int s = ii++;
data[(unsigned int)s & ZT_BUF_MEM_MASK] = n;
}
/**
@ -508,7 +525,7 @@ public:
template<typename T>
ZT_ALWAYS_INLINE void wO(int &ii,T &t)
{
const unsigned int s = (unsigned int)ii;
const int s = ii;
if ((s + T::marshalSizeMax()) <= ZT_BUF_MEM_SIZE) {
int ms = t.marshal(data.bytes + s);
if (ms > 0)
@ -546,7 +563,7 @@ public:
*/
ZT_ALWAYS_INLINE void wB(int &ii,const void *const bytes,const unsigned int len)
{
unsigned int s = (unsigned int)ii;
const int s = ii;
if ((ii += (int)len) <= ZT_BUF_MEM_SIZE)
memcpy(data.bytes + s,bytes,len);
}

View file

@ -6,7 +6,6 @@ set(core_headers
Address.hpp
AtomicCounter.hpp
Buf.hpp
Buffer.hpp
C25519.hpp
Capability.hpp
CertificateOfMembership.hpp
@ -28,10 +27,10 @@ set(core_headers
NetworkConfig.hpp
Node.hpp
OS.hpp
Packet.hpp
Path.hpp
Peer.hpp
Poly1305.hpp
Protocol.hpp
RingBuffer.hpp
RuntimeEnvironment.hpp
Salsa20.hpp
@ -64,10 +63,10 @@ set(core_src
Network.cpp
NetworkConfig.cpp
Node.cpp
Packet.cpp
Path.cpp
Peer.cpp
Poly1305.cpp
Protocol.cpp
Salsa20.cpp
SelfAwareness.cpp
SHA512.cpp

View file

@ -12,19 +12,21 @@
/****/
#include "Capability.hpp"
#include "Utils.hpp"
#include "Constants.hpp"
#include "MAC.hpp"
namespace ZeroTier {
bool Capability::sign(const Identity &from,const Address &to)
{
uint8_t buf[ZT_CAPABILITY_MARSHAL_SIZE_MAX + 16];
try {
for(unsigned int i=0;((i<_maxCustodyChainLength)&&(i<ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH));++i) {
if (!(_custody[i].to)) {
Buffer<(sizeof(Capability) * 2)> tmp;
this->serialize(tmp,true);
_custody[i].to = to;
_custody[i].from = from.address();
_custody[i].signatureLength = from.sign(tmp.data(),tmp.size(),_custody[i].signature,sizeof(_custody[i].signature));
_custody[i].signatureLength = from.sign(buf,(unsigned int)marshal(buf,true),_custody[i].signature,sizeof(_custody[i].signature));
return true;
}
}
@ -32,4 +34,330 @@ bool Capability::sign(const Identity &from,const Address &to)
return false;
}
int Capability::marshal(uint8_t data[ZT_CAPABILITY_MARSHAL_SIZE_MAX],const bool forSign) const
{
int p = 0;
if (forSign) {
for(int k=0;k<8;++k)
data[p++] = 0x7f;
}
Utils::storeBigEndian<uint64_t>(data + p,_nwid); p += 8;
Utils::storeBigEndian<uint64_t>(data + p,(uint64_t)_ts); p += 8;
Utils::storeBigEndian<uint32_t>(data + p,_id); p += 4;
Utils::storeBigEndian<uint16_t>(data + p,(uint16_t)_ruleCount); p += 2;
p += Capability::marshalVirtualNetworkRules(data + 22,_rules,_ruleCount);
data[p++] = (uint8_t)_maxCustodyChainLength;
if (!forSign) {
for(unsigned int i=0;;++i) {
if ((i < _maxCustodyChainLength)&&(i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)&&(_custody[i].to)) {
_custody[i].to.copyTo(data + p); p += ZT_ADDRESS_LENGTH;
_custody[i].from.copyTo(data + p); p += ZT_ADDRESS_LENGTH;
data[p++] = 1;
Utils::storeBigEndian<uint16_t>(data + p,(uint16_t)_custody[i].signatureLength); p += 2;
for(unsigned int k=0;k<_custody[i].signatureLength;++k)
data[p++] = _custody[i].signature[k];
} else {
for(int k=0;k<ZT_ADDRESS_LENGTH;++k)
data[p++] = 0;
break;
}
}
}
data[p++] = 0;
data[p++] = 0; // uint16_t size of additional fields, currently 0
if (forSign) {
for(int k=0;k<8;++k)
data[p++] = 0x7f;
}
return p;
}
int Capability::unmarshal(const uint8_t *data,int len)
{
if (len < 22)
return -1;
_nwid = Utils::loadBigEndian<uint64_t>(data);
_ts = (int64_t)Utils::loadBigEndian<uint64_t>(data + 8);
_id = Utils::loadBigEndian<uint32_t>(data + 16);
const unsigned int rc = Utils::loadBigEndian<uint16_t>(data + 20);;
if (rc > ZT_MAX_CAPABILITY_RULES)
return -1;
const int rulesLen = unmarshalVirtualNetworkRules(data + 22,len - 22,_rules,_ruleCount,rc);
if (rulesLen < 0)
return rulesLen;
int p = 22 + rulesLen;
if (p >= len)
return -1;
_maxCustodyChainLength = data[p++];
for(unsigned int i=0;;++i) {
if ((p + ZT_ADDRESS_LENGTH) > len)
return -1;
const Address to(data + p); p += ZT_ADDRESS_LENGTH;
if (!to) break;
if ((i >= _maxCustodyChainLength)||(i >= ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH))
return -1;
_custody[i].to = to;
if ((p + ZT_ADDRESS_LENGTH) > len)
return -1;
_custody[i].from.setTo(data + p); p += ZT_ADDRESS_LENGTH + 1;
if ((p + 2) > len)
return -1;
const unsigned int sl = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
_custody[i].signatureLength = sl;
if ((sl > sizeof(_custody[i].signature))||((p + (int)sl) > len))
return -1;
memcpy(_custody[i].signature,data + p,sl); p += (int)sl;
}
if ((p + 2) > len)
return -1;
p += 2 + Utils::loadBigEndian<uint16_t>(data + p);
if (p > len)
return -1;
return p;
}
int Capability::marshalVirtualNetworkRules(uint8_t data[ZT_VIRTUALNETWORKRULE_MARSHAL_SIZE_MAX],const ZT_VirtualNetworkRule *const rules,const unsigned int ruleCount)
{
int p = 0;
for(unsigned int i=0;i<ruleCount;++i) {
data[p++] = rules[i].t;
switch((ZT_VirtualNetworkRuleType)(rules[i].t & 0x3fU)) {
default:
data[p++] = 0;
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
data[p++] = 14;
Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.fwd.address); p += 8;
Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.fwd.flags); p += 4;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.fwd.length); p += 2;
break;
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
data[p++] = 5;
Address(rules[i].v.zt).copyTo(data + p); p += ZT_ADDRESS_LENGTH;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
data[p++] = 2;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.vlanId); p += 2;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
data[p++] = 1;
data[p++] = rules[i].v.vlanPcp;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
data[p++] = 1;
data[p++] = rules[i].v.vlanDei;
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
data[p++] = 6;
MAC(rules[i].v.mac).copyTo(data + p); p += 6;
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
data[p++] = 5;
data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[0];
data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[1];
data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[2];
data[p++] = reinterpret_cast<const uint8_t *>(&(rules[i].v.ipv4.ip))[3];
data[p++] = rules[i].v.ipv4.mask;
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
data[p++] = 17;
for(int k=0;k<16;++k)
data[p++] = rules[i].v.ipv6.ip[k];
data[p++] = rules[i].v.ipv6.mask;
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
data[p++] = 3;
data[p++] = rules[i].v.ipTos.mask;
data[p++] = rules[i].v.ipTos.value[0];
data[p++] = rules[i].v.ipTos.value[1];
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
data[p++] = 1;
data[p++] = rules[i].v.ipProtocol;
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
data[p++] = 2;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.etherType); p += 2;
break;
case ZT_NETWORK_RULE_MATCH_ICMP:
data[p++] = 3;
data[p++] = rules[i].v.icmp.type;
data[p++] = rules[i].v.icmp.code;
data[p++] = rules[i].v.icmp.flags;
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
data[p++] = 4;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.port[0]); p += 2;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.port[1]); p += 2;
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
data[p++] = 8;
Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.characteristics); p += 8;
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
data[p++] = 4;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.frameSize[0]); p += 2;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.frameSize[1]); p += 2;
break;
case ZT_NETWORK_RULE_MATCH_RANDOM:
data[p++] = 4;
Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.randomProbability); p += 4;
break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
data[p++] = 8;
Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.tag.id); p += 4;
Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.tag.value); p += 4;
break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
data[p++] = 19;
Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.intRange.start); p += 8;
Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.intRange.start + (uint64_t)rules[i].v.intRange.end); p += 8;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.intRange.idx); p += 2;
data[p++] = rules[i].v.intRange.format;
break;
}
}
return p;
}
int Capability::unmarshalVirtualNetworkRules(const uint8_t *const data,const int len,ZT_VirtualNetworkRule *const rules,unsigned int &ruleCount,const unsigned int maxRuleCount)
{
int p = 0;
unsigned int rc = 0;
while (rc < maxRuleCount) {
if (p >= len)
return -1;
rules[ruleCount].t = data[p++];
const int fieldLen = (int)data[p++];
if ((p + fieldLen) > len)
return -1;
switch((ZT_VirtualNetworkRuleType)(rules[ruleCount].t & 0x3f)) {
default:
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
if ((p + 14) > len) return -1;
rules[ruleCount].v.fwd.address = Utils::loadBigEndian<uint64_t>(data + p); p += 8;
rules[ruleCount].v.fwd.flags = Utils::loadBigEndian<uint32_t>(data + p); p += 4;
rules[ruleCount].v.fwd.length = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
break;
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
if ((p + ZT_ADDRESS_LENGTH) > len) return -1;
rules[ruleCount].v.zt = Address(data + p).toInt(); p += ZT_ADDRESS_LENGTH;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
if ((p + 2) > len) return -1;
rules[ruleCount].v.vlanId = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
if ((p + 1) > len) return -1;
rules[ruleCount].v.vlanPcp = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
if ((p + 1) > len) return -1;
rules[ruleCount].v.vlanDei = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
if ((p + 6) > len) return -1;
memcpy(rules[ruleCount].v.mac,data + p,6); p += 6;
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
if ((p + 5) > len) return -1;
memcpy(&(rules[ruleCount].v.ipv4.ip),data + p,4); p += 4;
rules[ruleCount].v.ipv4.mask = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
if ((p + 17) > len) return -1;
memcpy(rules[ruleCount].v.ipv6.ip,data + p,16); p += 16;
rules[ruleCount].v.ipv6.mask = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
if ((p + 3) > len) return -1;
rules[ruleCount].v.ipTos.mask = data[p++];
rules[ruleCount].v.ipTos.value[0] = data[p++];
rules[ruleCount].v.ipTos.value[1] = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
if ((p + 1) > len) return -1;
rules[ruleCount].v.ipProtocol = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
if ((p + 2) > len) return -1;
rules[ruleCount].v.etherType = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
break;
case ZT_NETWORK_RULE_MATCH_ICMP:
if ((p + 3) > len) return -1;
rules[ruleCount].v.icmp.type = data[p++];
rules[ruleCount].v.icmp.code = data[p++];
rules[ruleCount].v.icmp.flags = data[p++];
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
if ((p + 4) > len) return -1;
rules[ruleCount].v.port[0] = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
rules[ruleCount].v.port[1] = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
if ((p + 8) > len) return -1;
rules[ruleCount].v.characteristics = Utils::loadBigEndian<uint64_t>(data + p); p += 8;
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
if ((p + 4) > len) return -1;
rules[ruleCount].v.frameSize[0] = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
rules[ruleCount].v.frameSize[1] = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
break;
case ZT_NETWORK_RULE_MATCH_RANDOM:
if ((p + 4) > len) return -1;
rules[ruleCount].v.randomProbability = Utils::loadBigEndian<uint32_t>(data + p); p += 4;
break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
if ((p + 4) > len) return -1;
rules[ruleCount].v.tag.id = Utils::loadBigEndian<uint32_t>(data + p); p += 4;
rules[ruleCount].v.tag.value = Utils::loadBigEndian<uint32_t>(data + p); p += 4;
break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
if ((p + 19) > len) return -1;
rules[ruleCount].v.intRange.start = Utils::loadBigEndian<uint64_t>(data + p); p += 8;
rules[ruleCount].v.intRange.end = (uint32_t)(Utils::loadBigEndian<uint64_t>(data + p) - rules[ruleCount].v.intRange.start); p += 8;
rules[ruleCount].v.intRange.idx = Utils::loadBigEndian<uint16_t>(data + p); p += 2;
rules[ruleCount].v.intRange.format = data[p++];
break;
}
p += fieldLen;
++rc;
}
ruleCount = rc;
return p;
}
} // namespace ZeroTier

View file

@ -23,9 +23,13 @@
#include "Address.hpp"
#include "C25519.hpp"
#include "Utils.hpp"
#include "Buffer.hpp"
#include "Identity.hpp"
#define ZT_VIRTUALNETWORKRULE_MARSHAL_SIZE_MAX 21
#define ZT_CAPABILITY__CUSTODY_CHAIN_ITEM_MARSHAL_SIZE_MAX (5 + 5 + 2 + ZT_SIGNATURE_BUFFER_SIZE)
#define ZT_CAPABILITY_MARSHAL_SIZE_MAX (8 + 8 + 4 + 1 + 2 + (ZT_VIRTUALNETWORKRULE_MARSHAL_SIZE_MAX * ZT_MAX_CAPABILITY_RULES) + 2 + (ZT_CAPABILITY__CUSTODY_CHAIN_ITEM_MARSHAL_SIZE_MAX * ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH))
namespace ZeroTier {
class RuntimeEnvironment;
@ -79,7 +83,7 @@ public:
* @param rules Network flow rules for this capability
* @param ruleCount Number of flow rules
*/
ZT_ALWAYS_INLINE Capability(uint32_t id,uint64_t nwid,int64_t ts,unsigned int mccl,const ZT_VirtualNetworkRule *rules,unsigned int ruleCount) :
ZT_ALWAYS_INLINE Capability(const uint32_t id,const uint64_t nwid,const int64_t ts,const unsigned int mccl,const ZT_VirtualNetworkRule *const rules,const unsigned int ruleCount) :
_nwid(nwid),
_ts(ts),
_id(id),
@ -121,7 +125,7 @@ public:
ZT_ALWAYS_INLINE Address issuedTo() const
{
Address i2;
for(unsigned int i=0;i<ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH;++i) {
for(int i=0;i<ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH;++i) {
if (!_custody[i].to)
return i2;
else i2 = _custody[i].to;
@ -151,297 +155,12 @@ public:
*/
ZT_ALWAYS_INLINE Credential::VerifyResult verify(const RuntimeEnvironment *RR,void *tPtr) const { return _verify(RR,tPtr,*this); }
template<unsigned int C>
static inline void serializeRules(Buffer<C> &b,const ZT_VirtualNetworkRule *rules,unsigned int ruleCount)
{
for(unsigned int i=0;i<ruleCount;++i) {
// Each rule consists of its 8-bit type followed by the size of that type's
// field followed by field data. The inclusion of the size will allow non-supported
// rules to be ignored but still parsed.
b.append((uint8_t)rules[i].t);
switch((ZT_VirtualNetworkRuleType)(rules[i].t & 0x3f)) {
default:
b.append((uint8_t)0);
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
b.append((uint8_t)14);
b.append((uint64_t)rules[i].v.fwd.address);
b.append((uint32_t)rules[i].v.fwd.flags);
b.append((uint16_t)rules[i].v.fwd.length); // unused for redirect
break;
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
b.append((uint8_t)5);
Address(rules[i].v.zt).appendTo(b);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
b.append((uint8_t)2);
b.append((uint16_t)rules[i].v.vlanId);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.vlanPcp);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.vlanDei);
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
b.append((uint8_t)6);
b.append(rules[i].v.mac,6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
b.append((uint8_t)5);
b.append(&(rules[i].v.ipv4.ip),4);
b.append((uint8_t)rules[i].v.ipv4.mask);
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
b.append((uint8_t)17);
b.append(rules[i].v.ipv6.ip,16);
b.append((uint8_t)rules[i].v.ipv6.mask);
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
b.append((uint8_t)3);
b.append((uint8_t)rules[i].v.ipTos.mask);
b.append((uint8_t)rules[i].v.ipTos.value[0]);
b.append((uint8_t)rules[i].v.ipTos.value[1]);
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
b.append((uint8_t)1);
b.append((uint8_t)rules[i].v.ipProtocol);
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
b.append((uint8_t)2);
b.append((uint16_t)rules[i].v.etherType);
break;
case ZT_NETWORK_RULE_MATCH_ICMP:
b.append((uint8_t)3);
b.append((uint8_t)rules[i].v.icmp.type);
b.append((uint8_t)rules[i].v.icmp.code);
b.append((uint8_t)rules[i].v.icmp.flags);
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
b.append((uint8_t)4);
b.append((uint16_t)rules[i].v.port[0]);
b.append((uint16_t)rules[i].v.port[1]);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
b.append((uint8_t)8);
b.append((uint64_t)rules[i].v.characteristics);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
b.append((uint8_t)4);
b.append((uint16_t)rules[i].v.frameSize[0]);
b.append((uint16_t)rules[i].v.frameSize[1]);
break;
case ZT_NETWORK_RULE_MATCH_RANDOM:
b.append((uint8_t)4);
b.append((uint32_t)rules[i].v.randomProbability);
break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
b.append((uint8_t)8);
b.append((uint32_t)rules[i].v.tag.id);
b.append((uint32_t)rules[i].v.tag.value);
break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
b.append((uint8_t)19);
b.append((uint64_t)rules[i].v.intRange.start);
b.append((uint64_t)(rules[i].v.intRange.start + (uint64_t)rules[i].v.intRange.end)); // more future-proof
b.append((uint16_t)rules[i].v.intRange.idx);
b.append((uint8_t)rules[i].v.intRange.format);
break;
}
}
}
static ZT_ALWAYS_INLINE int marshalSizeMax() { return ZT_CAPABILITY_MARSHAL_SIZE_MAX; }
int marshal(uint8_t data[ZT_CAPABILITY_MARSHAL_SIZE_MAX],bool forSign = false) const;
int unmarshal(const uint8_t *data,int len);
template<unsigned int C>
static inline void deserializeRules(const Buffer<C> &b,unsigned int &p,ZT_VirtualNetworkRule *rules,unsigned int &ruleCount,const unsigned int maxRuleCount)
{
while ((ruleCount < maxRuleCount)&&(p < b.size())) {
rules[ruleCount].t = (uint8_t)b[p++];
const unsigned int fieldLen = (unsigned int)b[p++];
switch((ZT_VirtualNetworkRuleType)(rules[ruleCount].t & 0x3f)) {
default:
break;
case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT:
rules[ruleCount].v.fwd.address = b.template at<uint64_t>(p);
rules[ruleCount].v.fwd.flags = b.template at<uint32_t>(p + 8);
rules[ruleCount].v.fwd.length = b.template at<uint16_t>(p + 12);
break;
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
rules[ruleCount].v.zt = Address(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH).toInt();
break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID:
rules[ruleCount].v.vlanId = b.template at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
rules[ruleCount].v.vlanPcp = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
rules[ruleCount].v.vlanDei = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST:
memcpy(rules[ruleCount].v.mac,b.field(p,6),6);
break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
memcpy(&(rules[ruleCount].v.ipv4.ip),b.field(p,4),4);
rules[ruleCount].v.ipv4.mask = (uint8_t)b[p + 4];
break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
memcpy(rules[ruleCount].v.ipv6.ip,b.field(p,16),16);
rules[ruleCount].v.ipv6.mask = (uint8_t)b[p + 16];
break;
case ZT_NETWORK_RULE_MATCH_IP_TOS:
rules[ruleCount].v.ipTos.mask = (uint8_t)b[p];
rules[ruleCount].v.ipTos.value[0] = (uint8_t)b[p+1];
rules[ruleCount].v.ipTos.value[1] = (uint8_t)b[p+2];
break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
rules[ruleCount].v.ipProtocol = (uint8_t)b[p];
break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
rules[ruleCount].v.etherType = b.template at<uint16_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_ICMP:
rules[ruleCount].v.icmp.type = (uint8_t)b[p];
rules[ruleCount].v.icmp.code = (uint8_t)b[p+1];
rules[ruleCount].v.icmp.flags = (uint8_t)b[p+2];
break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
rules[ruleCount].v.port[0] = b.template at<uint16_t>(p);
rules[ruleCount].v.port[1] = b.template at<uint16_t>(p + 2);
break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
rules[ruleCount].v.characteristics = b.template at<uint64_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
rules[ruleCount].v.frameSize[0] = b.template at<uint16_t>(p);
rules[ruleCount].v.frameSize[1] = b.template at<uint16_t>(p + 2);
break;
case ZT_NETWORK_RULE_MATCH_RANDOM:
rules[ruleCount].v.randomProbability = b.template at<uint32_t>(p);
break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL:
case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
rules[ruleCount].v.tag.id = b.template at<uint32_t>(p);
rules[ruleCount].v.tag.value = b.template at<uint32_t>(p + 4);
break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
rules[ruleCount].v.intRange.start = b.template at<uint64_t>(p);
rules[ruleCount].v.intRange.end = (uint32_t)(b.template at<uint64_t>(p + 8) - rules[ruleCount].v.intRange.start);
rules[ruleCount].v.intRange.idx = b.template at<uint16_t>(p + 16);
rules[ruleCount].v.intRange.format = (uint8_t)b[p + 18];
break;
}
p += fieldLen;
++ruleCount;
}
}
template<unsigned int C>
inline void serialize(Buffer<C> &b,const bool forSign = false) const
{
if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
// These are the same between Tag and Capability
b.append(_nwid);
b.append(_ts);
b.append(_id);
b.append((uint16_t)_ruleCount);
serializeRules(b,_rules,_ruleCount);
b.append((uint8_t)_maxCustodyChainLength);
if (!forSign) {
for(unsigned int i=0;;++i) {
if ((i < _maxCustodyChainLength)&&(i < ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH)&&(_custody[i].to)) {
_custody[i].to.appendTo(b);
_custody[i].from.appendTo(b);
b.append((uint8_t)1);
b.append((uint16_t)_custody[i].signatureLength);
b.append(_custody[i].signature,_custody[i].signatureLength);
} else {
b.append((unsigned char)0,ZT_ADDRESS_LENGTH); // zero 'to' terminates chain
break;
}
}
}
// This is the size of any additional fields, currently 0.
b.append((uint16_t)0);
if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
}
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
{
*this = Capability();
unsigned int p = startAt;
_nwid = b.template at<uint64_t>(p); p += 8;
_ts = b.template at<uint64_t>(p); p += 8;
_id = b.template at<uint32_t>(p); p += 4;
const unsigned int rc = b.template at<uint16_t>(p); p += 2;
if (rc > ZT_MAX_CAPABILITY_RULES)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
deserializeRules(b,p,_rules,_ruleCount,rc);
_maxCustodyChainLength = (unsigned int)b[p++];
if ((_maxCustodyChainLength < 1)||(_maxCustodyChainLength > ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH))
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
for(unsigned int i=0;;++i) {
const Address to(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
if (!to)
break;
if ((i >= _maxCustodyChainLength)||(i >= ZT_MAX_CAPABILITY_CUSTODY_CHAIN_LENGTH))
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
_custody[i].to = to;
_custody[i].from.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH); p += ZT_ADDRESS_LENGTH;
if (b[p++] == 1) {
_custody[i].signatureLength = b.template at<uint16_t>(p);
if (_custody[i].signatureLength > sizeof(_custody[i].signature))
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
p += 2;
memcpy(_custody[i].signature,b.field(p,_custody[i].signatureLength),_custody[i].signatureLength); p += _custody[i].signatureLength;
} else {
p += 2 + b.template at<uint16_t>(p);
}
}
p += 2 + b.template at<uint16_t>(p);
if (p > b.size())
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
return (p - startAt);
}
static int marshalVirtualNetworkRules(uint8_t data[ZT_VIRTUALNETWORKRULE_MARSHAL_SIZE_MAX],const ZT_VirtualNetworkRule *rules,unsigned int ruleCount);
static int unmarshalVirtualNetworkRules(const uint8_t *data,int len,ZT_VirtualNetworkRule *rules,unsigned int &ruleCount,unsigned int maxRuleCount);
// Provides natural sort order by ID
ZT_ALWAYS_INLINE bool operator<(const Capability &c) const { return (_id < c._id); }

View file

@ -52,9 +52,9 @@
#define ZT_DEFAULT_MTU 2800
/**
* Maximum number of packet fragments we'll support (protocol limit: 16)
* Maximum number of packet fragments we'll support (11 is the maximum that will fit in a Buf)
*/
#define ZT_MAX_PACKET_FRAGMENTS 12
#define ZT_MAX_PACKET_FRAGMENTS 11
/**
* Size of RX queue in packets

View file

@ -94,7 +94,7 @@ void Identity::generate(const Type t)
char *const genmem = new char[ZT_IDENTITY_GEN_MEMORY];
do {
C25519::generateSatisfying(_Identity_generate_cond(digest,genmem),_pub.c25519,_priv.c25519);
_address.setTo(digest + 59,ZT_ADDRESS_LENGTH); // last 5 bytes are address
_address.setTo(digest + 59); // last 5 bytes are address
} while (_address.isReserved());
delete [] genmem;
@ -379,7 +379,7 @@ bool Identity::fromString(const char *str)
int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate) const
{
_address.copyTo(data,ZT_ADDRESS_LENGTH);
_address.copyTo(data);
switch(_type) {
case C25519:

View file

@ -32,8 +32,6 @@ class MAC
{
public:
ZT_ALWAYS_INLINE MAC() : _m(0ULL) {}
ZT_ALWAYS_INLINE MAC(const MAC &m) : _m(m._m) {}
ZT_ALWAYS_INLINE MAC(const unsigned char a,const unsigned char b,const unsigned char c,const unsigned char d,const unsigned char e,const unsigned char f) :
_m( ((((uint64_t)a) & 0xffULL) << 40U) |
((((uint64_t)b) & 0xffULL) << 32U) |
@ -41,7 +39,7 @@ public:
((((uint64_t)d) & 0xffULL) << 16U) |
((((uint64_t)e) & 0xffULL) << 8U) |
(((uint64_t)f) & 0xffULL) ) {}
ZT_ALWAYS_INLINE MAC(const void *bits,unsigned int len) { setTo(bits,len); }
ZT_ALWAYS_INLINE MAC(const uint8_t b[6]) { setTo(b); }
ZT_ALWAYS_INLINE MAC(const Address &ztaddr,uint64_t nwid) { fromAddress(ztaddr,nwid); }
ZT_ALWAYS_INLINE MAC(const uint64_t m) : _m(m & 0xffffffffffffULL) {}
@ -64,30 +62,17 @@ public:
* @param bits Raw MAC in big-endian byte order
* @param len Length, must be >= 6 or result is zero
*/
ZT_ALWAYS_INLINE void setTo(const void *bits,unsigned int len)
ZT_ALWAYS_INLINE void setTo(const uint8_t b[6])
{
if (len < 6) {
_m = 0ULL;
return;
}
const uint8_t *const b = (const uint8_t *)bits;
_m = (uint64_t)b[0] << 40U;
_m |= (uint64_t)b[1] << 32U;
_m |= (uint64_t)b[2] << 24U;
_m |= (uint64_t)b[3] << 16U;
_m |= (uint64_t)b[4] << 8U;
_m |= (uint64_t)b[5];
_m = ((uint64_t)b[0] << 40U) | ((uint64_t)b[1] << 32U) | ((uint64_t)b[2] << 24U) | ((uint64_t)b[3] << 16U) | ((uint64_t)b[4] << 8U) | (uint64_t)b[5];
}
/**
* @param buf Destination buffer for MAC in big-endian byte order
* @param len Length of buffer, must be >= 6 or nothing is copied
*/
ZT_ALWAYS_INLINE void copyTo(void *buf,unsigned int len) const
ZT_ALWAYS_INLINE void copyTo(uint8_t b[6]) const
{
if (len < 6)
return;
uint8_t *const b = (uint8_t *)buf;
b[0] = (uint8_t)(_m >> 40U);
b[1] = (uint8_t)(_m >> 32U);
b[2] = (uint8_t)(_m >> 24U);
@ -96,23 +81,6 @@ public:
b[5] = (uint8_t)_m;
}
/**
* Append to a buffer in big-endian byte order
*
* @param b Buffer to append to
*/
template<unsigned int C>
ZT_ALWAYS_INLINE void appendTo(Buffer<C> &b) const
{
uint8_t *p = (uint8_t *)b.appendField(6);
*(p++) = (unsigned char)((_m >> 40) & 0xff);
*(p++) = (unsigned char)((_m >> 32) & 0xff);
*(p++) = (unsigned char)((_m >> 24) & 0xff);
*(p++) = (unsigned char)((_m >> 16) & 0xff);
*(p++) = (unsigned char)((_m >> 8) & 0xff);
*p = (unsigned char)(_m & 0xff);
}
/**
* @return True if this is broadcast (all 0xff)
*/
@ -131,13 +99,13 @@ public:
*/
ZT_ALWAYS_INLINE void fromAddress(const Address &ztaddr,uint64_t nwid)
{
uint64_t m = ((uint64_t)firstOctetForNetwork(nwid)) << 40;
uint64_t m = ((uint64_t)firstOctetForNetwork(nwid)) << 40U;
m |= ztaddr.toInt(); // a is 40 bits
m ^= ((nwid >> 8) & 0xff) << 32;
m ^= ((nwid >> 16) & 0xff) << 24;
m ^= ((nwid >> 24) & 0xff) << 16;
m ^= ((nwid >> 32) & 0xff) << 8;
m ^= (nwid >> 40) & 0xff;
m ^= ((nwid >> 8U) & 0xffU) << 32U;
m ^= ((nwid >> 16U) & 0xffU) << 24U;
m ^= ((nwid >> 24U) & 0xffU) << 16U;
m ^= ((nwid >> 32U) & 0xffU) << 8U;
m ^= (nwid >> 40U) & 0xffU;
_m = m;
}
@ -151,11 +119,11 @@ public:
ZT_ALWAYS_INLINE Address toAddress(uint64_t nwid) const
{
uint64_t a = _m & 0xffffffffffULL; // least significant 40 bits of MAC are formed from address
a ^= ((nwid >> 8) & 0xff) << 32; // ... XORed with bits 8-48 of the nwid in little-endian byte order, so unmask it
a ^= ((nwid >> 16) & 0xff) << 24;
a ^= ((nwid >> 24) & 0xff) << 16;
a ^= ((nwid >> 32) & 0xff) << 8;
a ^= (nwid >> 40) & 0xff;
a ^= ((nwid >> 8U) & 0xffU) << 32U; // ... XORed with bits 8-48 of the nwid in little-endian byte order, so unmask it
a ^= ((nwid >> 16U) & 0xffU) << 24U;
a ^= ((nwid >> 24U) & 0xffU) << 16U;
a ^= ((nwid >> 32U) & 0xffU) << 8U;
a ^= (nwid >> 40U) & 0xffU;
return Address(a);
}
@ -165,7 +133,7 @@ public:
*/
static ZT_ALWAYS_INLINE unsigned char firstOctetForNetwork(uint64_t nwid)
{
unsigned char a = ((unsigned char)(nwid & 0xfe) | 0x02); // locally administered, not multicast, from LSB of network ID
const uint8_t a = ((uint8_t)(nwid & 0xfeU) | 0x02U); // locally administered, not multicast, from LSB of network ID
return ((a == 0x52) ? 0x32 : a); // blacklist 0x52 since it's used by KVM, libvirt, and other popular virtualization engines... seems de-facto standard on Linux
}
@ -205,11 +173,6 @@ public:
return buf;
}
ZT_ALWAYS_INLINE MAC &operator=(const MAC &m)
{
_m = m._m;
return *this;
}
ZT_ALWAYS_INLINE MAC &operator=(const uint64_t m)
{
_m = m & 0xffffffffffffULL;

185
node/Protocol.cpp Normal file
View file

@ -0,0 +1,185 @@
/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Protocol.hpp"
#include "Buf.hpp"
#include "Utils.hpp"
#if defined(__GCC__) && (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64))
#define ZT_PACKET_USE_ATOMIC_INTRINSICS
#endif
#ifndef ZT_PACKET_USE_ATOMIC_INTRINSICS
#include <atomic>
#endif
namespace ZeroTier {
namespace Protocol {
namespace {
const uint8_t ZEROES32[32] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 };
/**
* Deterministically mangle a 256-bit crypto key based on packet
*
* This uses extra data from the packet to mangle the secret, giving us an
* effective IV that is somewhat more than 64 bits. This is "free" for
* Salsa20 since it has negligible key setup time so using a different
* key each time is fine.
*
* @param in Input key (32 bytes)
* @param out Output buffer (32 bytes)
*/
ZT_ALWAYS_INLINE void _salsa20MangleKey(const uint8_t *const in,uint8_t *const out,const Buf< Header<> > &packet,const unsigned int packetSize)
{
// IV and source/destination addresses. Using the addresses divides the
// key space into two halves-- A->B and B->A (since order will change).
for(int i=0;i<18;++i) // 8 + (ZT_ADDRESS_LENGTH * 2) == 18
out[i] = in[i] ^ packet.data.bytes[i];
// Flags, but with hop count masked off. Hop count is altered by forwarding
// nodes. It's one of the only parts of a packet modifiable by people
// without the key.
out[18] = in[18] ^ (packet.data.fields.flags & 0xf8U);
// Raw packet size in bytes -- thus each packet size defines a new
// key space.
out[19] = in[19] ^ (uint8_t)packetSize;
out[20] = in[20] ^ (uint8_t)(packetSize >> 8U); // little endian
// Rest of raw key is used unchanged
for(int i=21;i<32;++i)
out[i] = in[i];
}
unsigned long long _initPacketID()
{
unsigned long long tmp = 0;
Utils::getSecureRandom(&tmp,sizeof(tmp));
tmp >>= 31U;
tmp |= (((uint64_t)time(nullptr)) & 0xffffffffULL) << 33U;
return tmp;
}
#ifdef ZT_PACKET_USE_ATOMIC_INTRINSICS
unsigned long long _packetIdCtr = _initPacketID();
#else
static std::atomic<unsigned long long> _packetIdCtr(_initPacketID());
#endif
} // anonymous namespace
void armor(Buf< Header<> > &packet,const unsigned int packetSize,const uint8_t key[ZT_PEER_SECRET_KEY_LENGTH],const uint8_t cipherSuite)
{
packet.data.fields.flags = (packet.data.fields.flags & 0xc7U) | ((cipherSuite << 3U) & 0x38U); // FFCCCHHH
if (cipherSuite == ZT_PROTO_CIPHER_SUITE__AES_GCM) {
// TODO
} else if (cipherSuite != ZT_PROTO_CIPHER_SUITE__NONE) {
uint8_t mangledKey[ZT_PEER_SECRET_KEY_LENGTH],macKey[ZT_POLY1305_KEY_LEN];
uint64_t mac[2];
_salsa20MangleKey(key,mangledKey,packet,packetSize);
Salsa20 s20(mangledKey,&(packet.data.fields.packetId));
s20.crypt12(ZEROES32,macKey,sizeof(macKey));
uint8_t *payload = packet.data.bytes + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START;
const unsigned int payloadLen = packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START;
if (cipherSuite == ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012)
s20.crypt12(payload,payload,payloadLen);
poly1305(mac,payload,payloadLen,macKey);
packet.data.fields.mac = mac[0];
}
}
int dearmor(Buf< Header<> > &packet,const unsigned int packetSize,const uint8_t key[ZT_PEER_SECRET_KEY_LENGTH])
{
const int cipherSuite = (int)(packet.data.fields.flags & 0x38U);
if (cipherSuite == ZT_PROTO_CIPHER_SUITE__AES_GCM) {
// TODO
} else if (cipherSuite != ZT_PROTO_CIPHER_SUITE__NONE) {
uint8_t mangledKey[ZT_PEER_SECRET_KEY_LENGTH],macKey[ZT_POLY1305_KEY_LEN];
uint64_t mac[2];
_salsa20MangleKey(key,mangledKey,packet,packetSize);
Salsa20 s20(mangledKey,&(packet.data.fields.packetId));
s20.crypt12(ZEROES32,macKey,sizeof(macKey));
uint8_t *payload = packet.data.bytes + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START;
const unsigned int payloadLen = packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START;
if (cipherSuite == ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012)
s20.crypt12(payload,payload,payloadLen);
poly1305(mac,payload,payloadLen,macKey);
if (packet.data.fields.mac != mac[0])
return -1;
}
return cipherSuite;
}
unsigned int compress(Buf< Header<> > &packet,const unsigned int packetSize)
{
uint8_t tmp[ZT_BUF_MEM_SIZE + 32];
if ((packet.data.fields.verb & ZT_PROTO_VERB_FLAG_COMPRESSED) != 0) // sanity check for multiple calls to compress()
return packetSize;
const unsigned int uncompressedLen = packetSize - ZT_PROTO_PACKET_PAYLOAD_START;
const int compressedLen = LZ4_compress_fast(
reinterpret_cast<const char *>(packet.data.bytes + ZT_PROTO_PACKET_PAYLOAD_START),
reinterpret_cast<char *>(tmp),
(int)uncompressedLen,
sizeof(tmp) - ZT_PROTO_PACKET_PAYLOAD_START,
2);
if ((compressedLen > 0)&&(compressedLen < uncompressedLen)) {
packet.data.fields.verb |= ZT_PROTO_VERB_FLAG_COMPRESSED;
memcpy(packet.data.bytes + ZT_PROTO_PACKET_PAYLOAD_START,tmp,compressedLen);
return (unsigned int)compressedLen + ZT_PROTO_PACKET_PAYLOAD_START;
}
return packetSize;
}
int uncompress(Buf< Header<> > &packet,const unsigned int packetSize)
{
uint8_t tmp[ZT_BUF_MEM_SIZE];
if ((packet.data.fields.verb & ZT_PROTO_VERB_FLAG_COMPRESSED) == 0)
return (int)packetSize;
const int uncompressedLen = LZ4_decompress_safe(
reinterpret_cast<const char *>(packet.data.bytes + ZT_PROTO_PACKET_PAYLOAD_START),
reinterpret_cast<char *>(tmp),
(int)(packetSize - ZT_PROTO_PACKET_PAYLOAD_START),
sizeof(tmp) - ZT_PROTO_PACKET_PAYLOAD_START);
if ((uncompressedLen > 0)&&(uncompressedLen <= (sizeof(tmp) - ZT_PROTO_PACKET_PAYLOAD_START))) {
packet.data.fields.verb &= (uint8_t)(~((uint8_t)ZT_PROTO_VERB_FLAG_COMPRESSED));
memcpy(packet.data.bytes + ZT_PROTO_PACKET_PAYLOAD_START,tmp,uncompressedLen);
return uncompressedLen + ZT_PROTO_PACKET_PAYLOAD_START;
}
return -1;
}
uint64_t getPacketId()
{
#ifdef ZT_PACKET_USE_ATOMIC_INTRINSICS
return __sync_add_and_fetch(&_packetIdCtr,1ULL);
#else
return ++_packetIdCtr;
#endif
}
} // namespace Protocol
} // namespace ZeroTier

928
node/Protocol.hpp Normal file
View file

@ -0,0 +1,928 @@
/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_PROTOCOL_HPP
#define ZT_PROTOCOL_HPP
#include "Constants.hpp"
#include "AES.hpp"
#include "Salsa20.hpp"
#include "Poly1305.hpp"
#include "LZ4.hpp"
#include "Buf.hpp"
/**
* Protocol version -- incremented only for major changes
*
* 1 - 0.2.0 ... 0.2.5
* 2 - 0.3.0 ... 0.4.5
* + Added signature and originating peer to multicast frame
* + Double size of multicast frame bloom filter
* 3 - 0.5.0 ... 0.6.0
* + Yet another multicast redesign
* + New crypto completely changes key agreement cipher
* 4 - 0.6.0 ... 1.0.6
* + BREAKING CHANGE: New identity format based on hashcash design
* 5 - 1.1.0 ... 1.1.5
* + Supports echo
* + Supports in-band world (root server definition) updates
* + Clustering! (Though this will work with protocol v4 clients.)
* + Otherwise backward compatible with protocol v4
* 6 - 1.1.5 ... 1.1.10
* + Network configuration format revisions including binary values
* 7 - 1.1.10 ... 1.1.17
* + Introduce trusted paths for local SDN use
* 8 - 1.1.17 ... 1.2.0
* + Multipart network configurations for large network configs
* + Tags and Capabilities
* + inline push of CertificateOfMembership deprecated
* 9 - 1.2.0 ... 1.2.14
* 10 - 1.4.0 ... 1.6.0
* + Multipath capability and load balancing
* 11 - 2.0.0 ... CURRENT
* + Peer-to-peer multicast replication
* + Old planet/moon stuff is DEAD!
* + AES encryption support
* + NIST P-384 (type 1) identities
* + Ephemeral keys
*/
#define ZT_PROTO_VERSION 11
/**
* Packet buffer size (can be changed)
*/
#define ZT_PROTO_MAX_PACKET_LENGTH (ZT_MAX_PACKET_FRAGMENTS * ZT_DEFAULT_PHYSMTU)
/**
* Minimum viable packet length (a.k.a. header length)
*/
#define ZT_PROTO_MIN_PACKET_LENGTH 28
/**
* Index at which the encrypted section of a packet begins
*/
#define ZT_PROTO_PACKET_ENCRYPTED_SECTION_START 27
/**
* Index at which packet payload begins (after verb)
*/
#define ZT_PROTO_PACKET_PAYLOAD_START 28
/**
* Maximum hop count allowed by packet structure (3 bits, 0-7)
*
* This is a protocol constant. It's the maximum allowed by the length
* of the hop counter -- three bits. See node/Constants.hpp for the
* pragmatic forwarding limit, which is typically lower.
*/
#define ZT_PROTO_MAX_HOPS 7
/**
* NONE/Poly1305 (using Salsa20/12 to generate poly1305 key)
*/
#define ZT_PROTO_CIPHER_SUITE__POLY1305_NONE 0
/**
* Salsa2012/Poly1305
*/
#define ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012 1
/**
* No encryption or authentication at all
*
* For trusted paths the MAC field is the trusted path ID.
*/
#define ZT_PROTO_CIPHER_SUITE__NONE 2
/**
* AES-GCM with AES-256
*/
#define ZT_PROTO_CIPHER_SUITE__AES_GCM 3
/**
* Magic number indicating a fragment
*/
#define ZT_PACKET_FRAGMENT_INDICATOR 0xff
/**
* Minimum viable fragment length
*/
#define ZT_PROTO_MIN_FRAGMENT_LENGTH 16
/**
* Index at which packet fragment payload starts
*/
#define ZT_PROTO_PACKET_FRAGMENT_PAYLOAD_START_AT 16
/**
* Header flag indicating that a packet is fragmented and more fragments should be expected
*/
#define ZT_PROTO_FLAG_FRAGMENTED 0x40
/**
* Verb flag indicating payload is compressed with LZ4
*/
#define ZT_PROTO_VERB_FLAG_COMPRESSED 0x80
/**
* Signed locator for this node
*/
#define ZT_PROTO_HELLO_NODE_META_LOCATOR "l"
/**
* Ephemeral C25519 public key
*/
#define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_KEY_C25519 "e0"
/**
* Ephemeral NIST P-384 public key
*/
#define ZT_PROTO_HELLO_NODE_META_EPHEMERAL_KEY_P384 "e1"
/**
* Addresses of ZeroTier nodes to whom this node will relay or one entry for 0000000000 if promiscuous.
*/
#define ZT_PROTO_HELLO_NODE_META_WILL_RELAY_TO "r"
/**
* X coordinate of your node (sent in OK(HELLO))
*/
#define ZT_PROTO_HELLO_NODE_META_LOCATION_X "gX"
/**
* Y coordinate of your node (sent in OK(HELLO))
*/
#define ZT_PROTO_HELLO_NODE_META_LOCATION_Y "gY"
/**
* Z coordinate of your node (sent in OK(HELLO))
*/
#define ZT_PROTO_HELLO_NODE_META_LOCATION_Z "gZ"
/****************************************************************************/
/*
* Packet format:
* <[8] 64-bit packet ID / crypto IV>
* <[5] destination ZT address>
* <[5] source ZT address>
* <[1] flags/cipher/hops>
* <[8] 64-bit MAC (or trusted path ID in trusted path mode)>
* [... -- begin encryption envelope -- ...]
* <[1] encrypted flags (MS 3 bits) and verb (LS 5 bits)>
* [... verb-specific payload ...]
*
* Packets smaller than 28 bytes are invalid and silently discarded.
*
* The flags/cipher/hops bit field is: FFCCCHHH where C is a 3-bit cipher
* selection allowing up to 7 cipher suites, F is outside-envelope flags,
* and H is hop count.
*
* The three-bit hop count is the only part of a packet that is mutable in
* transit without invalidating the MAC. All other bits in the packet are
* immutable. This is because intermediate nodes can increment the hop
* count up to 7 (protocol max).
*
* For unencrypted packets, MAC is computed on plaintext. Only HELLO is ever
* sent in the clear, as it's the "here is my public key" message.
*
* Fragments are sent if a packet is larger than UDP MTU. The first fragment
* is sent with its normal header with the fragmented flag set. Remaining
* fragments are sent this way.
*
* The fragmented bit indicates that there is at least one fragment. Fragments
* themselves contain the total, so the receiver must "learn" this from the
* first fragment it receives.
*
* Fragments are sent with the following format:
* <[8] packet ID of packet whose fragment this belongs to>
* <[5] destination ZT address>
* <[1] 0xff, a reserved address, signals that this isn't a normal packet>
* <[1] total fragments (most significant 4 bits), fragment no (LS 4 bits)>
* <[1] ZT hop count (top 5 bits unused and must be zero)>
* <[...] fragment data>
*
* The protocol supports a maximum of 16 fragments. If a fragment is received
* before its main packet header, it should be cached for a brief period of
* time to see if its parent arrives. Loss of any fragment constitutes packet
* loss; there is no retransmission mechanism. The receiver must wait for full
* receipt to authenticate and decrypt; there is no per-fragment MAC. (But if
* fragments are corrupt, the MAC will fail for the whole assembled packet.)
*/
namespace ZeroTier {
namespace Protocol {
/**
* Packet verb (message type)
*/
enum Verb
{
VERB_NOP = 0x00,
/**
* Announcement of a node's existence and vitals:
* <[1] protocol version>
* <[1] software major version>
* <[1] software minor version>
* <[2] software revision>
* <[8] timestamp for determining latency>
* <[...] binary serialized identity>
* <[...] physical destination address of packet>
* [... begin encrypted region ...]
* <[2] 16-bit reserved (legacy) field, always 0>
* <[2] 16-bit length of meta-data dictionary>
* <[...] meta-data dictionary>
* [... end encrypted region ...]
* <[48] HMAC-SHA384 of all fields to this point (as plaintext)>
*
* HELLO is sent with authentication but without the usual encryption so
* that peers can exchange identities.
*
* Destination address is the actual wire address to which the packet
* was sent. See InetAddress::serialize() for format.
*
* Starting at "begin encrypted section" the reset of the packet is
* encrypted with Salsa20/12. This is not the normal packet encryption
* and is technically not necessary as nothing in HELLO is secret. It
* exists merely to shield meta-data info from passive listeners to
* slightly improve privacy, and for backward compatibility with older
* nodes that required it.
*
* HELLO (and its OK response) ends with a large 384-bit HMAC to allow
* identity exchanges to be authenticated with additional strength beyond
* ordinary packet authentication.
*
* OK payload:
* <[8] HELLO timestamp field echo>
* <[1] protocol version>
* <[1] software major version>
* <[1] software minor version>
* <[2] software revision>
* <[...] physical destination address of packet>
* <[2] 16-bit reserved (legacy) field, always 0>
* <[2] 16-bit length of meta-data dictionary>
* <[...] meta-data dictionary>
* <[48] HMAC-SHA384 of all fields to this point (as plaintext)>
*
* With the exception of the timestamp, the other fields pertain to the
* respondent who is sending OK and are not echoes.
*
* ERROR has no payload.
*/
VERB_HELLO = 0x01,
/**
* Error response:
* <[1] in-re verb>
* <[8] in-re packet ID>
* <[1] error code>
* <[...] error-dependent payload>
*
* If this is not in response to a single packet then verb can be
* NOP and packet ID can be zero.
*/
VERB_ERROR = 0x02,
/**
* Success response:
* <[1] in-re verb>
* <[8] in-re packet ID>
* <[...] request-specific payload>
*/
VERB_OK = 0x03,
/**
* Query an identity by address:
* <[5] address to look up>
* [<[...] additional addresses to look up>
*
* OK response payload:
* <[...] identity>
* <[...] locator>
* [... additional identity/locator pairs]
*
* If the address is not found, no response is generated. The semantics
* of WHOIS is similar to ARP and NDP in that persistent retrying can
* be performed.
*
* It is possible for an identity but a null/empty locator to be returned
* if no locator is known for a node. Older versions will also send no
* locator field at all.
*/
VERB_WHOIS = 0x04,
/**
* Relay-mediated NAT traversal or firewall punching initiation:
* <[1] flags (unused, currently 0)>
* <[5] ZeroTier address of peer that might be found at this address>
* <[2] 16-bit protocol address port>
* <[1] protocol address length (4 for IPv4, 16 for IPv6)>
* <[...] protocol address (network byte order)>
*
* An upstream node can send this to inform both sides of a relay of
* information they might use to establish a direct connection.
*
* Upon receipt a peer sends HELLO to establish a direct link.
*
* No OK or ERROR is generated.
*/
VERB_RENDEZVOUS = 0x05,
/**
* ZT-to-ZT unicast ethernet frame (shortened EXT_FRAME):
* <[8] 64-bit network ID>
* <[2] 16-bit ethertype>
* <[...] ethernet payload>
*
* MAC addresses are derived from the packet's source and destination
* ZeroTier addresses. This is a shortened EXT_FRAME that elides full
* Ethernet framing and other optional flags and features when they
* are not necessary.
*
* ERROR may be generated if a membership certificate is needed for a
* closed network. Payload will be network ID.
*/
VERB_FRAME = 0x06,
/**
* Full Ethernet frame with MAC addressing and optional fields:
* <[8] 64-bit network ID>
* <[1] flags>
* <[6] destination MAC or all zero for destination node>
* <[6] source MAC or all zero for node of origin>
* <[2] 16-bit ethertype>
* <[...] ethernet payload>
*
* Flags:
* 0x01 - Certificate of network membership attached (DEPRECATED)
* 0x02 - Most significant bit of subtype (see below)
* 0x04 - Middle bit of subtype (see below)
* 0x08 - Least significant bit of subtype (see below)
* 0x10 - ACK requested in the form of OK(EXT_FRAME)
*
* Subtypes (0..7):
* 0x0 - Normal frame (bridging can be determined by checking MAC)
* 0x1 - TEEd outbound frame
* 0x2 - REDIRECTed outbound frame
* 0x3 - WATCHed outbound frame (TEE with ACK, ACK bit also set)
* 0x4 - TEEd inbound frame
* 0x5 - REDIRECTed inbound frame
* 0x6 - WATCHed inbound frame
* 0x7 - (reserved for future use)
*
* An extended frame carries full MAC addressing, making it a
* superset of VERB_FRAME. If 0x20 is set then p2p or hub and
* spoke multicast propagation is requested.
*
* OK payload (if ACK flag is set):
* <[8] 64-bit network ID>
* <[1] flags>
* <[6] destination MAC or all zero for destination node>
* <[6] source MAC or all zero for node of origin>
* <[2] 16-bit ethertype>
*/
VERB_EXT_FRAME = 0x07,
/**
* ECHO request (a.k.a. ping):
* <[...] arbitrary payload>
*
* This generates OK with a copy of the transmitted payload. No ERROR
* is generated. Response to ECHO requests is optional and ECHO may be
* ignored if a node detects a possible flood.
*/
VERB_ECHO = 0x08,
/**
* Announce interest in multicast group(s):
* <[8] 64-bit network ID>
* <[6] multicast Ethernet address>
* <[4] multicast additional distinguishing information (ADI)>
* [... additional tuples of network/address/adi ...]
*
* LIKEs may be sent to any peer, though a good implementation should
* restrict them to peers on the same network they're for and to network
* controllers and root servers. In the current network, root servers
* will provide the service of final multicast cache.
*/
VERB_MULTICAST_LIKE = 0x09,
/**
* Network credentials push:
* [<[...] one or more certificates of membership>]
* <[1] 0x00, null byte marking end of COM array>
* <[2] 16-bit number of capabilities>
* <[...] one or more serialized Capability>
* <[2] 16-bit number of tags>
* <[...] one or more serialized Tags>
* <[2] 16-bit number of revocations>
* <[...] one or more serialized Revocations>
* <[2] 16-bit number of certificates of ownership>
* <[...] one or more serialized CertificateOfOwnership>
*
* This can be sent by anyone at any time to push network credentials.
* These will of course only be accepted if they are properly signed.
* Credentials can be for any number of networks.
*
* The use of a zero byte to terminate the COM section is for legacy
* backward compatibility. Newer fields are prefixed with a length.
*
* OK/ERROR are not generated.
*/
VERB_NETWORK_CREDENTIALS = 0x0a,
/**
* Network configuration request:
* <[8] 64-bit network ID>
* <[2] 16-bit length of request meta-data dictionary>
* <[...] string-serialized request meta-data>
* <[8] 64-bit revision of netconf we currently have>
* <[8] 64-bit timestamp of netconf we currently have>
*
* This message requests network configuration from a node capable of
* providing it.
*
* Responses to this are always whole configs intended for the recipient.
* For patches and other updates a NETWORK_CONFIG is sent instead.
*
* It would be valid and correct as of 1.2.0 to use NETWORK_CONFIG always,
* but OK(NETWORK_CONFIG_REQUEST) should be sent for compatibility.
*
* OK response payload:
* <[8] 64-bit network ID>
* <[2] 16-bit length of network configuration dictionary chunk>
* <[...] network configuration dictionary (may be incomplete)>
* [ ... end of legacy single chunk response ... ]
* <[1] 8-bit flags>
* <[8] 64-bit config update ID (should never be 0)>
* <[4] 32-bit total length of assembled dictionary>
* <[4] 32-bit index of chunk>
* [ ... end signed portion ... ]
* <[1] 8-bit chunk signature type>
* <[2] 16-bit length of chunk signature>
* <[...] chunk signature>
*
* The chunk signature signs the entire payload of the OK response.
* Currently only one signature type is supported: ed25519 (1).
*
* Each config chunk is signed to prevent memory exhaustion or
* traffic crowding DOS attacks against config fragment assembly.
*
* If the packet is from the network controller it is permitted to end
* before the config update ID or other chunking related or signature
* fields. This is to support older controllers that don't include
* these fields and may be removed in the future.
*
* ERROR response payload:
* <[8] 64-bit network ID>
*/
VERB_NETWORK_CONFIG_REQUEST = 0x0b,
/**
* Network configuration data push:
* <[8] 64-bit network ID>
* <[2] 16-bit length of network configuration dictionary chunk>
* <[...] network configuration dictionary (may be incomplete)>
* <[1] 8-bit flags>
* <[8] 64-bit config update ID (should never be 0)>
* <[4] 32-bit total length of assembled dictionary>
* <[4] 32-bit index of chunk>
* [ ... end signed portion ... ]
* <[1] 8-bit chunk signature type>
* <[2] 16-bit length of chunk signature>
* <[...] chunk signature>
*
* This is a direct push variant for network config updates. It otherwise
* carries the same payload as OK(NETWORK_CONFIG_REQUEST) and has the same
* semantics.
*
* The legacy mode missing the additional chunking fields is not supported
* here.
*
* Flags:
* 0x01 - Use fast propagation
*
* An OK should be sent if the config is successfully received and
* accepted.
*
* OK payload:
* <[8] 64-bit network ID>
* <[8] 64-bit config update ID>
*/
VERB_NETWORK_CONFIG = 0x0c,
/**
* Request endpoints for multicast distribution:
* <[8] 64-bit network ID>
* <[1] flags>
* <[6] MAC address of multicast group being queried>
* <[4] 32-bit ADI for multicast group being queried>
* <[4] 32-bit requested max number of multicast peers>
*
* This message asks a peer for additional known endpoints that have
* LIKEd a given multicast group. It's sent when the sender wishes
* to send multicast but does not have the desired number of recipient
* peers.
*
* OK response payload: (multiple OKs can be generated)
* <[8] 64-bit network ID>
* <[6] MAC address of multicast group being queried>
* <[4] 32-bit ADI for multicast group being queried>
* <[4] 32-bit total number of known members in this multicast group>
* <[2] 16-bit number of members enumerated in this packet>
* <[...] series of 5-byte ZeroTier addresses of enumerated members>
*
* ERROR is not generated; queries that return no response are dropped.
*/
VERB_MULTICAST_GATHER = 0x0d,
/** *** DEPRECATED ***
* Multicast frame:
* <[8] 64-bit network ID>
* <[1] flags>
* [<[4] 32-bit implicit gather limit>]
* [<[6] source MAC>]
* <[6] destination MAC (multicast address)>
* <[4] 32-bit multicast ADI (multicast address extension)>
* <[2] 16-bit ethertype>
* <[...] ethernet payload>
*
* Flags:
* 0x01 - Network certificate of membership attached (DEPRECATED)
* 0x02 - Implicit gather limit field is present
* 0x04 - Source MAC is specified -- otherwise it's computed from sender
* 0x08 - Please replicate (sent to multicast replicators)
*
* OK and ERROR responses are optional. OK may be generated if there are
* implicit gather results or if the recipient wants to send its own
* updated certificate of network membership to the sender. ERROR may be
* generated if a certificate is needed or if multicasts to this group
* are no longer wanted (multicast unsubscribe).
*
* OK response payload:
* <[8] 64-bit network ID>
* <[6] MAC address of multicast group>
* <[4] 32-bit ADI for multicast group>
* <[1] flags>
* [<[...] network certificate of membership (DEPRECATED)>]
* [<[...] implicit gather results if flag 0x01 is set>]
*
* OK flags (same bits as request flags):
* 0x01 - OK includes certificate of network membership (DEPRECATED)
* 0x02 - OK includes implicit gather results
*
* ERROR response payload:
* <[8] 64-bit network ID>
* <[6] multicast group MAC>
* <[4] 32-bit multicast group ADI>
*/
VERB_MULTICAST_FRAME_deprecated = 0x0e,
/**
* Push of potential endpoints for direct communication:
* <[2] 16-bit number of paths>
* <[...] paths>
*
* Path record format:
* <[1] 8-bit path flags (always 0, currently unused)>
* <[2] length of extended path characteristics or 0 for none>
* <[...] extended path characteristics>
* <[1] address type>
* <[1] address length in bytes>
* <[...] address>
*
* The receiver may, upon receiving a push, attempt to establish a
* direct link to one or more of the indicated addresses. It is the
* responsibility of the sender to limit which peers it pushes direct
* paths to to those with whom it has a trust relationship. The receiver
* must obey any restrictions provided such as exclusivity or blacklists.
* OK responses to this message are optional.
*
* Note that a direct path push does not imply that learned paths can't
* be used unless they are blacklisted explicitly or unless flag 0x01
* is set.
*
* OK and ERROR are not generated.
*/
VERB_PUSH_DIRECT_PATHS = 0x10,
/**
* A message with arbitrary user-definable content:
* <[8] 64-bit arbitrary message type ID>
* [<[...] message payload>]
*
* This can be used to send arbitrary messages over VL1. It generates no
* OK or ERROR and has no special semantics outside of whatever the user
* (via the ZeroTier core API) chooses to give it.
*
* Message type IDs less than or equal to 65535 are reserved for use by
* ZeroTier, Inc. itself. We recommend making up random ones for your own
* implementations.
*/
VERB_USER_MESSAGE = 0x14,
/**
* Encapsulate a ZeroTier packet for multicast distribution:
* [... begin signed portion ...]
* <[1] 8-bit flags>
* <[5] 40-bit ZeroTier address of sender>
* <[2] 16-bit length of inner payload>
* <[1] inner payload verb>
* <[...] inner payload data>
* [... end signed portion ...]
* <[2] 16-bit length of signature or 0 if un-signed>
* [<[...] optional signature of multicast>]
* <[...] address (min prefix) list>
*/
VERB_MULTICAST = 0x16,
/**
* Encapsulate a full ZeroTier packet in another:
* <[...] raw encapsulated packet>
*
* Encapsulation exists to enable secure relaying as opposed to the usual
* "dumb" relaying. The latter is faster but secure relaying has roles
* where endpoint privacy is desired. Multiply nested ENCAP packets
* could allow ZeroTier to act as an onion router.
*
* When encapsulated packets are forwarded they do have their hop count
* field incremented.
*/
VERB_ENCAP = 0x17
// protocol max: 0x1f
};
/**
* Error codes used in ERROR packets.
*/
enum ErrorCode
{
/* Invalid request */
ERROR_INVALID_REQUEST = 0x01,
/* Bad/unsupported protocol version */
ERROR_BAD_PROTOCOL_VERSION = 0x02,
/* Unknown object queried */
ERROR_OBJ_NOT_FOUND = 0x03,
/* Verb or use case not supported/enabled by this node */
ERROR_UNSUPPORTED_OPERATION = 0x05,
/* Network access denied; updated credentials needed */
ERROR_NEED_MEMBERSHIP_CERTIFICATE = 0x06,
/* Tried to join network, but you're not a member */
ERROR_NETWORK_ACCESS_DENIED_ = 0x07, /* extra _ at end to avoid Windows name conflict */
/* Cannot deliver a forwarded ZeroTier packet (e.g. hops exceeded, no routes) */
ERROR_CANNOT_DELIVER = 0x09
};
/**
* EXT_FRAME subtypes, which are packed into three bits in the flags field.
*/
enum ExtFrameSubtype
{
EXT_FRAME_SUBTYPE_NORMAL = 0x0,
EXT_FRAME_SUBTYPE_TEE_OUTBOUND = 0x1,
EXT_FRAME_SUBTYPE_REDIRECT_OUTBOUND = 0x2,
EXT_FRAME_SUBTYPE_WATCH_OUTBOUND = 0x3,
EXT_FRAME_SUBTYPE_TEE_INBOUND = 0x4,
EXT_FRAME_SUBTYPE_REDIRECT_INBOUND = 0x5,
EXT_FRAME_SUBTYPE_WATCH_INBOUND = 0x6
};
/**
* EXT_FRAME flags
*/
enum ExtFrameFlag
{
EXT_FRAME_FLAG_COM_ATTACHED_deprecated = 0x01,
// bits 0x02, 0x04, and 0x08 are occupied by the ExtFrameSubtype
EXT_FRAME_FLAG_ACK_REQUESTED = 0x10
};
/****************************************************************************/
/*
* These are bit-packed structures for rapid parsing of packets or at least
* the fixed size headers thereof. Not all packet types have these as some
* are full of variable length fields are are more easily parsed through
* incremental decoding.
*
* All fields larger than one byte are in big-endian byte order on the wire.
*/
ZT_PACKED_STRUCT(struct HELLO {
uint8_t versionProtocol;
uint8_t versionMajor;
uint8_t versionMinor;
uint16_t versionRev;
uint64_t timestamp;
});
ZT_PACKED_STRUCT(struct RENDEZVOUS {
uint8_t flags;
uint8_t peerAddress[5];
uint16_t port;
uint8_t addressLength;
uint8_t address[16];
});
ZT_PACKED_STRUCT(struct FRAME {
uint64_t networkId;
uint16_t etherType;
uint8_t data[];
});
ZT_PACKED_STRUCT(struct EXT_FRAME {
uint64_t networkId;
uint8_t flags;
uint8_t destMac[6];
uint8_t sourceMac[6];
uint16_t etherType;
uint8_t data[];
});
ZT_PACKED_STRUCT(struct MULTICAST_LIKE_Entry {
uint64_t networkId;
uint8_t mac[6];
uint32_t adi;
});
ZT_PACKED_STRUCT(struct MULTICAST_LIKE {
MULTICAST_LIKE_Entry groups[];
});
namespace OK {
ZT_PACKED_STRUCT(struct HELLO {
uint64_t timestampEcho;
uint8_t versionProtocol;
uint8_t versionMajor;
uint8_t versionMinor;
uint16_t versionRev;
});
ZT_PACKED_STRUCT(struct EXT_FRAME {
uint64_t networkId;
uint8_t flags;
uint8_t destMac[6];
uint8_t sourceMac[6];
uint16_t etherType;
});
/**
* OK response header
*
* The OK header comes after the packet header but before type-specific payloads.
*
* @tparam PT OK payload type (default: uint8_t[])
*/
template<typename PT = uint8_t[]>
ZT_PACKED_STRUCT(struct Header {
uint8_t inReVerb;
uint64_t inRePacketId;
PT p;
});
} // namespace OK
namespace ERROR {
/**
* Error header
*
* The error header comes after the packet header but before type-specific payloads.
*
* @tparam PT Error payload type (default: uint8_t[])
*/
template<typename PT = uint8_t[]>
ZT_PACKED_STRUCT(struct Header {
uint8_t inReVerb;
uint64_t inRePacketId;
uint8_t error;
PT p;
});
} // namespace ERROR
/**
* Normal packet header
*
* @tparam PT Packet payload type (default: uint8_t[])
*/
template<typename PT = uint8_t[]>
ZT_PACKED_STRUCT(struct Header {
uint64_t packetId;
uint8_t destination[5];
uint8_t source[5];
uint8_t flags;
uint64_t mac;
// --- begin encrypted envelope ---
uint8_t verb;
PT p;
});
/**
* Packet fragment header
*/
ZT_PACKED_STRUCT(struct FragmentHeader {
uint64_t packetId;
uint8_t destination[5];
uint8_t fragmentIndicator; // always 0xff for fragments
uint8_t counts; // total: most significant four bits, number: least significant four bits
uint8_t hops; // top 5 bits unused and must be zero
uint8_t p[];
});
/****************************************************************************/
/**
* Increment the 3-bit hops field embedded in the packet flags field
*
* @return New hop count (can be greater than allowed if there is an overflow)
*/
template<typename X>
ZT_ALWAYS_INLINE unsigned int incrementPacketHops(Buf< Header<X> > &packet)
{
uint8_t f = packet.data.fields.flags;
uint8_t h = f;
f &= 0xf8U;
++h;
packet.data.fields.flags = f | (h & 0x07U);
return h;
}
/**
* @return 3-bit hops field embedded in packet flags field
*/
template<typename X>
ZT_ALWAYS_INLINE unsigned int packetHops(Buf< Header<X> > &packet) const { return (packet.data.fields.flags & 0x07U); }
/**
* Armor a packet for transport
*
* @param packet Packet to armor
* @param packetSize Size of data in packet (must be at least the minimum packet size)
* @param key 256-bit symmetric key
* @param cipherSuite Cipher suite to apply
*/
void armor(Buf< Header<> > &packet,unsigned int packetSize,const uint8_t key[ZT_PEER_SECRET_KEY_LENGTH],uint8_t cipherSuite);
/**
* Dearmor a packet and check message authentication code
*
* If the packet is valid and MAC (if indicated) passes, the cipher suite
* is returned. Otherwise -1 is returned to indicate a MAC failure.
*
* @param packet Packet to dearmor
* @param packetSize Size of data in packet (must be at least the minimum packet size)
* @param key 256-bit symmetric key
* @return Cipher suite or -1 if MAC validation failed
*/
int dearmor(Buf< Header<> > &packet,unsigned int packetSize,const uint8_t key[ZT_PEER_SECRET_KEY_LENGTH]);
/**
* Compress packet payload
*
* @param packet Packet to compress
* @param packetSize Original packet size
* @return New packet size (returns original size of compression didn't help, in which case packet is unmodified)
*/
unsigned int compress(Buf< Header<> > &packet,unsigned int packetSize);
/**
* Uncompress packet payload (if compressed)
*
* @param packet Packet to uncompress
* @param packetSize Original packet size
* @return New packet size or -1 on decompression error (returns original packet size if packet wasn't compressed)
*/
int uncompress(Buf< Header<> > &packet,unsigned int packetSize);
/**
* Get a sequential non-repeating packet ID for the next packet (thread-safe)
*
* @return Next packet ID / cryptographic nonce
*/
uint64_t getPacketId();
} // namespace Protocol
} // namespace ZeroTier
#endif

View file

@ -165,7 +165,7 @@ void getSecureRandom(void *buf,unsigned int bytes)
{
static Mutex globalLock;
static bool initialized = false;
static uint64_t randomState[4];
static uint64_t randomState[8];
static uint8_t randomBuf[65536];
static unsigned long randomPtr = sizeof(randomBuf);
@ -175,7 +175,7 @@ void getSecureRandom(void *buf,unsigned int bytes)
if (randomPtr >= sizeof(randomBuf)) {
randomPtr = 0;
if (unlikely(!initialized)) {
if (!initialized) {
initialized = true;
#ifdef __WINDOWS__
HCRYPTPROV cryptProvider = NULL;
@ -225,14 +225,18 @@ void getSecureRandom(void *buf,unsigned int bytes)
#endif
}
for(int k=0;k<4;++k) { if (++randomState[k] != 0) break; }
uint8_t h[48];
HMACSHA384((const uint8_t *)randomState,randomBuf,sizeof(randomBuf),h); // compute HMAC on random buffer using state as secret key
AES c(h);
c.ctr(h + 32,randomBuf,sizeof(randomBuf),randomBuf); // encrypt random buffer with AES-CTR using HMAC result as key
SHA512(randomState,randomState,sizeof(randomState));
AES aes(reinterpret_cast<const uint8_t *>(randomState));
uint64_t ctr[2];
ctr[0] = randomState[6];
ctr[1] = randomState[7];
for(unsigned long i=0;i<sizeof(randomBuf);i+=16) {
++ctr[0];
aes.encrypt(reinterpret_cast<const uint8_t *>(ctr),randomBuf + i);
}
}
((uint8_t *)buf)[i] = randomBuf[randomPtr++];
reinterpret_cast<uint8_t *>(buf)[i] = randomBuf[randomPtr++];
}
}