Change the type 1 identity a bit to make locallyValidate() super fast, eliminating a scaling issue with v0.

This commit is contained in:
Adam Ierymenko 2020-02-17 15:09:26 -08:00
parent 3448e6fc76
commit a0ac4a744e
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
4 changed files with 162 additions and 114 deletions

View file

@ -357,7 +357,8 @@ enum ZT_TracePacketDropReason
ZT_TRACE_PACKET_DROP_REASON_RATE_LIMIT_EXCEEDED = 5,
ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT = 6,
ZT_TRACE_PACKET_DROP_REASON_INVALID_COMPRESSED_DATA = 7,
ZT_TRACE_PACKET_DROP_REASON_UNRECOGNIZED_VERB = 8
ZT_TRACE_PACKET_DROP_REASON_UNRECOGNIZED_VERB = 8,
ZT_TRACE_PACKET_DROP_REASON_REPLY_NOT_EXPECTED = 9
};
/**

View file

@ -11,27 +11,29 @@
*/
/****/
#include <cstring>
#include <cstdint>
#include "Constants.hpp"
#include "Identity.hpp"
#include "SHA512.hpp"
#include "Salsa20.hpp"
#include "AES.hpp"
#include "Utils.hpp"
#include <cstring>
#include <cstdint>
#include <algorithm>
namespace ZeroTier {
namespace {
// These can't be changed without a new identity type. They define the
// parameters of the hashcash hashing/searching algorithm for type 0
// identities.
#define ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN 17
#define ZT_IDENTITY_GEN_MEMORY 2097152
// --------------------------------------------------------------------------------------------------------------------
// A memory-hard composition of SHA-512 and Salsa20 for hashcash hashing
static void _computeMemoryHardHash(const void *publicKey,unsigned int publicKeyBytes,void *digest,void *genmem)
// This is the memory-intensive hash function used to compute v0 identities
// from v0 public keys.
#define ZT_V0_IDENTITY_GEN_MEMORY 2097152
static void _computeMemoryHardHash(const void *const publicKey,unsigned int publicKeyBytes,void *const digest,void *const genmem) noexcept
{
// Digest publicKey[] to obtain initial digest
SHA512(digest,publicKey,publicKeyBytes);
@ -39,10 +41,10 @@ static void _computeMemoryHardHash(const void *publicKey,unsigned int publicKeyB
// Initialize genmem[] using Salsa20 in a CBC-like configuration since
// ordinary Salsa20 is randomly seek-able. This is good for a cipher
// but is not what we want for sequential memory-hardness.
memset(genmem,0,ZT_IDENTITY_GEN_MEMORY);
memset(genmem,0,ZT_V0_IDENTITY_GEN_MEMORY);
Salsa20 s20(digest,(char *)digest + 32);
s20.crypt20((char *)genmem,(char *)genmem,64);
for(unsigned long i=64;i<ZT_IDENTITY_GEN_MEMORY;i+=64) {
for(unsigned long i=64;i<ZT_V0_IDENTITY_GEN_MEMORY;i+=64) {
unsigned long k = i - 64;
*((uint64_t *)((char *)genmem + i)) = *((uint64_t *)((char *)genmem + k));
*((uint64_t *)((char *)genmem + i + 8)) = *((uint64_t *)((char *)genmem + k + 8));
@ -56,9 +58,9 @@ static void _computeMemoryHardHash(const void *publicKey,unsigned int publicKeyB
}
// Render final digest using genmem as a lookup table
for(unsigned long i=0;i<(ZT_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
for(unsigned long i=0;i<(ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (64 / sizeof(uint64_t)));
unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_IDENTITY_GEN_MEMORY / sizeof(uint64_t)));
unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t)));
uint64_t tmp = ((uint64_t *)genmem)[idx2];
((uint64_t *)genmem)[idx2] = ((uint64_t *)digest)[idx1];
((uint64_t *)digest)[idx1] = tmp;
@ -66,26 +68,26 @@ static void _computeMemoryHardHash(const void *publicKey,unsigned int publicKeyB
}
}
// Hashcash generation halting condition -- halt when first byte is less than
// threshold value.
struct _Identity_generate_cond
struct _v0_identity_generate_cond
{
inline _Identity_generate_cond() {}
inline _Identity_generate_cond(unsigned char *sb,char *gm) : digest(sb),genmem(gm) {}
inline bool operator()(const uint8_t pub[ZT_C25519_PUBLIC_KEY_LEN]) const
ZT_ALWAYS_INLINE _v0_identity_generate_cond() noexcept {}
ZT_ALWAYS_INLINE _v0_identity_generate_cond(unsigned char *sb,char *gm) noexcept : digest(sb),genmem(gm) {}
ZT_ALWAYS_INLINE bool operator()(const uint8_t pub[ZT_C25519_PUBLIC_KEY_LEN]) const noexcept
{
_computeMemoryHardHash(pub,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
return (digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN);
return (digest[0] < 17);
}
unsigned char *digest;
char *genmem;
};
// --------------------------------------------------------------------------------------------------------------------
} // anonymous namespace
const Identity Identity::NIL;
void Identity::generate(const Type t)
bool Identity::generate(const Type t)
{
uint8_t digest[64];
@ -93,56 +95,100 @@ void Identity::generate(const Type t)
_hasPrivate = true;
_hash[0] = 0; // force hash recompute
char *const genmem = new char[ZT_IDENTITY_GEN_MEMORY];
do {
C25519::generateSatisfying(_Identity_generate_cond(digest,genmem),_pub.c25519,_priv.c25519);
_address.setTo(digest + 59); // last 5 bytes are address
} while (_address.isReserved());
delete [] genmem;
switch(t) {
case C25519: {
char *const genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
do {
C25519::generateSatisfying(_v0_identity_generate_cond(digest,genmem),_pub.c25519,_priv.c25519);
_address.setTo(digest + 59); // last 5 bytes are address
} while (_address.isReserved());
delete[] genmem;
} break;
if (t == P384) {
// We sign with both because in pure FIPS environments we might have to say
// that we do not rely on any non-FIPS algorithms, or may even have to disable
// them.
ECC384GenerateKey(_pub.p384,_priv.p384);
C25519::sign(_priv.c25519,_pub.c25519,&_pub,ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE,_pub.c25519s);
SHA384(digest,&_pub,ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE);
ECC384ECDSASign(_priv.p384,digest,_pub.p384s);
}
}
case P384: {
do {
C25519::generate(_pub.c25519,_priv.c25519);
ECC384GenerateKey(_pub.p384,_priv.p384);
bool Identity::locallyValidate() const
{
uint8_t digest[64];
// This is just an intentionally complex hash function for use with a simple hashcash
// design to slow down identity generation as a defense in depth against brute force
// collision searches. V0 used a somewhat more overkill memory intensive design that's
// not really necessary and makes verifications too slow, so V1 uses this instead.
if (_address.isReserved())
return false;
SHA384(digest,&_pub,sizeof(_pub));
AES c(digest);
SHA384(digest,digest,48);
std::sort(digest,digest + 48);
c.encrypt(digest,digest);
c.encrypt(digest + 16,digest + 16);
c.encrypt(digest + 32,digest + 32);
SHA384(digest,digest,48);
if (digest[47] != 0)
continue;
_address.setTo(digest);
} while (_address.isReserved());
} break;
switch(_type) {
case C25519:
break;
case P384:
if (!C25519::verify(_pub.c25519,&_pub,ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE,_pub.c25519s,ZT_C25519_SIGNATURE_LEN))
return false;
SHA384(digest,&_pub,ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE);
if (!ECC384ECDSAVerify(_pub.p384,digest,_pub.p384s))
return false;
break;
default:
return false;
}
char *genmem = nullptr;
try {
genmem = new char[ZT_IDENTITY_GEN_MEMORY];
_computeMemoryHardHash(_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
delete [] genmem;
return ((_address == Address(digest + 59,ZT_ADDRESS_LENGTH))&&(!_address.isReserved())&&(digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN));
} catch ( ... ) {
if (genmem) delete [] genmem;
}
return true;
}
return false;
bool Identity::locallyValidate() const
{
if ((_address.isReserved())||(!_address))
return false;
switch (_type) {
case C25519:
try {
uint8_t digest[64];
char *genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
_computeMemoryHardHash(_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
delete [] genmem;
return ((_address == Address(digest + 59))&&(!_address.isReserved())&&(digest[0] < 17));
} catch ( ... ) {}
return false;
case P384: {
const uint8_t *hash = this->hash();
return ((hash[47] == 0)&&(Address(hash) == _address));
}
default:
return false;
}
}
const uint8_t *Identity::hash() const
{
uint8_t *const hash = const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(_hash));
switch(_type) {
default:
memset(hash,0,48);
break;
case C25519:
if (_hash[0] == 0)
SHA384(hash,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
break;
case P384:
if (_hash[0] == 0) {
SHA384(hash,&_pub,sizeof(_pub));
AES c(hash);
std::sort(hash,hash + 48);
c.encrypt(hash,hash);
c.encrypt(hash + 16,hash + 16);
c.encrypt(hash + 32,hash + 32);
SHA384(hash,hash,48);
}
break;
}
return hash;
}
void Identity::hashWithPrivate(uint8_t h[48]) const
@ -167,8 +213,7 @@ unsigned int Identity::sign(const void *data,unsigned int len,void *sig,unsigned
case P384:
if (siglen >= ZT_ECC384_SIGNATURE_SIZE) {
// When signing with P384 we also hash the C25519 public key as an
// extra measure to ensure that only this identity can verify.
// When signing with P-384 we also include the C25519 public key in the hash.
uint8_t h[48];
SHA384(h,data,len,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
ECC384ECDSASign(_priv.p384,h,(uint8_t *)sig);
@ -265,12 +310,12 @@ char *Identity::toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_
*(p++) = ':';
*(p++) = '1';
*(p++) = ':';
int el = Utils::b32e((const uint8_t *)(&_pub),sizeof(_pub),p,(unsigned int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
int el = Utils::b32e((const uint8_t *)(&_pub),sizeof(_pub),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
if ((_hasPrivate)&&(includePrivate)) {
*(p++) = ':';
el = Utils::b32e((const uint8_t *)(&_priv),sizeof(_priv),p,(unsigned int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
el = Utils::b32e((const uint8_t *)(&_priv),sizeof(_priv),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
}
@ -383,7 +428,6 @@ int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool incl
{
_address.copyTo(data);
switch(_type) {
case C25519:
data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519;
memcpy(data + ZT_ADDRESS_LENGTH + 1,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
@ -393,21 +437,18 @@ int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool incl
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN);
}
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1;
case P384:
data[ZT_ADDRESS_LENGTH] = (uint8_t)P384;
memcpy(data + ZT_ADDRESS_LENGTH + 1,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
memcpy(data + 1 + ZT_ADDRESS_LENGTH,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
if ((includePrivate)&&(_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_C25519_PRIVATE_KEY_LEN + ZT_ECC384_PRIVATE_KEY_SIZE;
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
memcpy(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,&_priv,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1);
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
}
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0;
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2);
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
}
return -1;
}
@ -430,30 +471,29 @@ int Identity::unmarshal(const uint8_t *data,const int len) noexcept
return -1;
_hasPrivate = true;
memcpy(_priv.c25519,data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,ZT_C25519_PRIVATE_KEY_LEN);
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN;
} else if (privlen == 0) {
_hasPrivate = false;
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1;
}
break;
case P384:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2))
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1))
return -1;
memcpy(&_pub,data + ZT_ADDRESS_LENGTH + 1,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE];
if (privlen == ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1))
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE))
return -1;
_hasPrivate = true;
memcpy(&_priv,data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE];
if (len < (int)(privlen + (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1)))
if (!this->locallyValidate()) // for P384 we do this always
return -1;
return (int)(privlen + (unsigned int)(ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1));
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
} else if (privlen == 0) {
_hasPrivate = false;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2);
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
}
break;
@ -461,15 +501,6 @@ int Identity::unmarshal(const uint8_t *data,const int len) noexcept
return -1;
}
void Identity::_computeHash()
{
switch(_type) {
case C25519: SHA384(_hash,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN); break;
case P384: SHA384(_hash,&_pub,sizeof(_pub)); break;
default: memset(_hash,0,48);
}
}
} // namespace ZeroTier
extern "C" {

View file

@ -26,10 +26,8 @@
#include "TriviallyCopyable.hpp"
#define ZT_IDENTITY_STRING_BUFFER_LENGTH 1024
#define ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE (ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE + ZT_C25519_SIGNATURE_LEN + ZT_ECC384_SIGNATURE_SIZE)
#define ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE (ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE)
#define ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE (ZT_C25519_PRIVATE_KEY_LEN + ZT_ECC384_PRIVATE_KEY_SIZE)
#define ZT_IDENTITY_MARSHAL_SIZE_MAX (ZT_ADDRESS_LENGTH + 4 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE)
namespace ZeroTier {
@ -37,12 +35,20 @@ namespace ZeroTier {
/**
* A ZeroTier identity
*
* An identity consists of a public key, a 40-bit ZeroTier address computed
* from that key in a collision-resistant fashion, and a self-signature.
* Identities currently come in two types: type 0 identities based on just Curve25519
* and Ed25519 and type 1 identities that include both a 25519 key pair and a NIST P-384
* key pair. Type 1 identities use P-384 for signatures but use both key pairs at once
* (hashing their results) for key agreement with other type 1 identities, and can agree
* with type 0 identities using only their Curve25519 keys. The ability of type 0 and 1
* identities to agree will allow type 0 identities to keep being used even after type
* 1 becomes the default.
*
* The address derivation algorithm makes it computationally very expensive to
* search for a different public key that duplicates an existing address. (See
* code for deriveAddress() for this algorithm.)
* Type 1 identities also use a simpler mechanism to rate limit identity generation (as
* a defense in depth against intentional collision) that makes local identity validation
* faster, allowing full identity validation on all unmarshal() operations.
*
* The default is still type 0, but this may change in future versions once 1.x is no
* longer common in the wild.
*/
class Identity : public TriviallyCopyable
{
@ -90,8 +96,9 @@ public:
* This is a time consuming operation taking up to 5-10 seconds on some slower systems.
*
* @param t Type of identity to generate
* @return False if there was an error such as type being an invalid value
*/
void generate(Type t);
bool generate(Type t);
/**
* Check the validity of this identity's pairing of key to address
@ -106,14 +113,18 @@ public:
ZT_ALWAYS_INLINE bool hasPrivate() const noexcept { return _hasPrivate; }
/**
* @return 384-bit/48-byte hash of this identity's public key(s)
* This gets (computing if needed) a hash of this identity's public key(s).
*
* The hash returned by this function differs by identity type. For C25519 (type 0)
* identities this returns a simple SHA384 of the public key, which is NOT the same
* as the hash used to generate the address. For type 1 C25519+P384 identities this
* returns the same compoound SHA384 hash that is used for purposes of hashcash
* and address computation. This difference is because the v0 hash is expensive while
* the v1 hash is fast.
*
* @return 384-bit/48-byte hash (pointer remains valid as long as Identity object exists)
*/
ZT_ALWAYS_INLINE const uint8_t *hash() const
{
if (_hash[0] == 0)
const_cast<Identity *>(this)->_computeHash();
return reinterpret_cast<const uint8_t *>(_hash);
}
const uint8_t *hash() const;
/**
* Compute a hash of this identity's public and private keys
@ -228,8 +239,6 @@ public:
int unmarshal(const uint8_t *data,int len) noexcept;
private:
void _computeHash(); // recompute _hash
Address _address;
uint64_t _hash[6]; // hash of public key memo-ized for performance, recalculated when _hash[0] == 0
Type _type; // _type determines which fields in _priv and _pub are used
@ -241,8 +250,6 @@ private:
ZT_PACKED_STRUCT(struct { // don't re-order these
uint8_t c25519[ZT_C25519_PUBLIC_KEY_LEN]; // Curve25519 and Ed25519 public keys
uint8_t p384[ZT_ECC384_PUBLIC_KEY_SIZE]; // NIST P-384 public key
uint8_t c25519s[ZT_C25519_SIGNATURE_LEN]; // signature of both keys with ed25519
uint8_t p384s[ZT_ECC384_SIGNATURE_SIZE]; // signature of both keys with p384
}) _pub;
};

View file

@ -24,6 +24,7 @@
#include "SHA512.hpp"
#include "Peer.hpp"
#include "Path.hpp"
#include "Expect.hpp"
namespace ZeroTier {
@ -469,6 +470,7 @@ void VL1::_sendPendingWhois(void *const tPtr,const int64_t now)
if (outl > sizeof(Protocol::Header)) {
Protocol::armor(outp,outl,root->key(),ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012);
RR->expect->sending(ph.packetId,now);
rootPath->send(RR,tPtr,outp.b,outl,now);
}
}
@ -711,6 +713,13 @@ bool VL1::_OK(void *tPtr,const SharedPtr<Path> &path,const SharedPtr<Peer> &peer
return false;
}
Protocol::OK::Header &oh = pkt.as<Protocol::OK::Header>();
const int64_t now = RR->node->now();
if (!RR->expect->expecting(oh.inRePacketId,now)) {
RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_REPLY_NOT_EXPECTED);
return false;
}
switch(oh.inReVerb) {
case Protocol::VERB_HELLO: