Cleanup, remove legacy accessors, formatting.

This commit is contained in:
Adam Ierymenko 2020-07-14 16:23:53 -07:00
parent a117c92a1e
commit a19bc1e826
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
17 changed files with 630 additions and 615 deletions

View file

@ -13,5 +13,5 @@
package cli package cli
func Controller(basePath, authToken string, args []string, jsonOutput bool) { func Cert(basePath, authToken string, args []string, jsonOutput bool) {
} }

View file

@ -79,7 +79,7 @@ Commands:
validate <identity> Locally validate an identity validate <identity> Locally validate an identity
sign <identity> <file> Sign a file with an identity's key sign <identity> <file> Sign a file with an identity's key
verify <identity> <file> <sig> Verify a signature verify <identity> <file> <sig> Verify a signature
certificate <command> [args] - Certificate commands cert <command> [args] - Certificate commands
newid Create a new unique subject ID newid Create a new unique subject ID
newcsr <subject json path> Create a new CSR (signing request) newcsr <subject json path> Create a new CSR (signing request)
sign <csr path> <identity path> Sign a CSR to create a certificate sign <csr path> <identity path> Sign a CSR to create a certificate

View file

@ -139,12 +139,13 @@ func main() {
cli.Peers(basePath, authTokenRequired(basePath, *tflag, *tTflag), cmdArgs, *jflag, true) cli.Peers(basePath, authTokenRequired(basePath, *tflag, *tTflag), cmdArgs, *jflag, true)
case "root": case "root":
cli.Root(basePath, authTokenRequired(basePath, *tflag, *tTflag), cmdArgs, *jflag) cli.Root(basePath, authTokenRequired(basePath, *tflag, *tTflag), cmdArgs, *jflag)
case "controller":
case "set": case "set":
cli.Set(basePath, authTokenRequired(basePath, *tflag, *tTflag), cmdArgs) cli.Set(basePath, authTokenRequired(basePath, *tflag, *tTflag), cmdArgs)
case "controller":
cli.Controller(basePath, authTokenRequired(basePath, *tflag, *tTflag), cmdArgs, *jflag)
case "identity": case "identity":
cli.Identity(cmdArgs) cli.Identity(cmdArgs)
case "cert":
cli.Cert(basePath, authTokenRequired(basePath, *tflag, *tTflag), cmdArgs, *jflag)
} }
os.Exit(0) os.Exit(0)
} }

View file

@ -41,35 +41,18 @@ struct intl_MapHasher
std::size_t operator()(const O &obj) const noexcept std::size_t operator()(const O &obj) const noexcept
{ return (std::size_t)obj.hashCode(); } { return (std::size_t)obj.hashCode(); }
std::size_t operator()(const uint64_t i) const noexcept std::size_t operator()(const uint64_t i) const noexcept
{ return (std::size_t)Utils::hash64(i + Utils::s_mapNonce); } { return (std::size_t)Utils::hash64(i ^ Utils::s_mapNonce); }
std::size_t operator()(const int64_t i) const noexcept std::size_t operator()(const int64_t i) const noexcept
{ return (std::size_t)Utils::hash64((uint64_t)i + Utils::s_mapNonce); } { return (std::size_t)Utils::hash64((uint64_t)i ^ Utils::s_mapNonce); }
std::size_t operator()(const uint32_t i) const noexcept std::size_t operator()(const uint32_t i) const noexcept
{ return (std::size_t)Utils::hash32(i + (uint32_t)Utils::s_mapNonce); } { return (std::size_t)Utils::hash32(i ^ (uint32_t)Utils::s_mapNonce); }
std::size_t operator()(const int32_t i) const noexcept std::size_t operator()(const int32_t i) const noexcept
{ return (std::size_t)Utils::hash32((uint32_t)i + (uint32_t)Utils::s_mapNonce); } { return (std::size_t)Utils::hash32((uint32_t)i ^ (uint32_t)Utils::s_mapNonce); }
}; };
template< typename K, typename V > template< typename K, typename V >
class Map : public std::unordered_map< K, V, intl_MapHasher > class Map : public std::unordered_map< K, V, intl_MapHasher >
{ {};
public:
ZT_INLINE V *get(const K &key) noexcept
{
typename Map::iterator i(this->find(key));
if (i == this->end())
return nullptr;
return &(i->second);
}
ZT_INLINE const V *get(const K &key) const noexcept
{
typename Map::const_iterator i(this->find(key));
if (i == this->end())
return nullptr;
return &(i->second);
}
ZT_INLINE void set(const K &key, const V &value) { this->emplace(key, value); }
};
template< typename K, typename V > template< typename K, typename V >
class MultiMap : public std::unordered_multimap< K, V, intl_MapHasher, std::equal_to< K > > class MultiMap : public std::unordered_multimap< K, V, intl_MapHasher, std::equal_to< K > >
@ -77,34 +60,13 @@ class MultiMap : public std::unordered_multimap< K, V, intl_MapHasher, std::equa
#else #else
template<typename K,typename V> template<typename K, typename V>
class Map : public std::map< K,V,std::less<K> > class Map : public std::map< K, V >
{ {};
public:
ZT_INLINE V *get(const K &key) noexcept
{
typename Map::iterator i(this->find(key));
if (i == this->end())
return nullptr;
return &(i->second);
}
ZT_INLINE const V *get(const K &key) const noexcept template<typename K, typename V>
{ class MultiMap : public std::multimap< K, V >
typename Map::const_iterator i(this->find(key)); {};
if (i == this->end())
return nullptr;
return &(i->second);
}
ZT_INLINE void set(const K &key,const V &value)
{ (*this)[key] = value; }
};
template<typename K,typename V>
class MultiMap : public std::multimap< K,V,std::less<K>,Utils::Mallocator< std::pair<const K,V> > >
{
};
#endif #endif

View file

@ -167,15 +167,15 @@ public:
// under the target size. This tries to minimize the amount of time the write // under the target size. This tries to minimize the amount of time the write
// lock is held since many threads can hold the read lock but all threads must // lock is held since many threads can hold the read lock but all threads must
// wait if someone holds the write lock. // wait if someone holds the write lock.
std::vector<std::pair<int64_t, uint64_t> > messagesByLastUsedTime; std::vector< std::pair< int64_t, uint64_t > > messagesByLastUsedTime;
messagesByLastUsedTime.reserve(m_messages.size()); messagesByLastUsedTime.reserve(m_messages.size());
for (typename Map<uint64_t, p_E>::const_iterator i(m_messages.begin());i != m_messages.end();++i) for (typename Map< uint64_t, p_E >::const_iterator i(m_messages.begin()); i != m_messages.end(); ++i)
messagesByLastUsedTime.push_back(std::pair<int64_t, uint64_t>(i->second.lastUsed, i->first)); messagesByLastUsedTime.push_back(std::pair< int64_t, uint64_t >(i->second.lastUsed, i->first));
std::sort(messagesByLastUsedTime.begin(), messagesByLastUsedTime.end()); std::sort(messagesByLastUsedTime.begin(), messagesByLastUsedTime.end());
ml.writing(); // acquire write lock on _messages ml.writing(); // acquire write lock on _messages
for (unsigned long x = 0, y = (messagesByLastUsedTime.size() - GCS);x <= y;++x) for (unsigned long x = 0, y = (messagesByLastUsedTime.size() - GCS); x <= y; ++x)
m_messages.erase(messagesByLastUsedTime[x].second); m_messages.erase(messagesByLastUsedTime[x].second);
} catch (...) { } catch (...) {
return ERR_OUT_OF_MEMORY; return ERR_OUT_OF_MEMORY;
@ -183,15 +183,20 @@ public:
} }
// Get or create message fragment. // Get or create message fragment.
p_E *e = m_messages.get(messageId); Defragmenter< MF, MFP, GCS, GCT, P >::p_E *e;
if (!e) { {
ml.writing(); // acquire write lock on _messages if not already typename Map< uint64_t, Defragmenter< MF, MFP, GCS, GCT, P >::p_E >::iterator ee(m_messages.find(messageId));
try { if (ee == m_messages.end()) {
e = &(m_messages[messageId]); ml.writing(); // acquire write lock on _messages if not already
} catch (...) { try {
return ERR_OUT_OF_MEMORY; e = &(m_messages[messageId]);
} catch (...) {
return ERR_OUT_OF_MEMORY;
}
e->id = messageId;
} else {
e = &(ee->second);
} }
e->id = messageId;
} }
// Switch back to holding only the read lock on _messages if we have locked for write // Switch back to holding only the read lock on _messages if we have locked for write
@ -343,7 +348,7 @@ private:
Mutex lock; Mutex lock;
}; };
Map <uint64_t, Defragmenter<MF, MFP, GCS, GCT, P>::p_E> m_messages; Map <uint64_t, Defragmenter< MF, MFP, GCS, GCT, P >::p_E> m_messages;
RWMutex m_messages_l; RWMutex m_messages_l;
}; };

View file

@ -115,7 +115,7 @@ void Member::pushCredentials(const RuntimeEnvironment *RR, void *tPtr, const int
m_lastPushedCredentials = now; m_lastPushedCredentials = now;
} }
void Member::clean(const int64_t now, const NetworkConfig &nconf) void Member::clean(const NetworkConfig &nconf)
{ {
m_cleanCredImpl< TagCredential >(nconf, m_remoteTags); m_cleanCredImpl< TagCredential >(nconf, m_remoteTags);
m_cleanCredImpl< CapabilityCredential >(nconf, m_remoteCaps); m_cleanCredImpl< CapabilityCredential >(nconf, m_remoteCaps);
@ -164,18 +164,18 @@ static ZT_INLINE Member::AddCredentialResult _addCredImpl(
const NetworkConfig &nconf, const NetworkConfig &nconf,
const C &cred) const C &cred)
{ {
C *rc = remoteCreds.get(cred.id()); typename Map< uint32_t, C >::const_iterator rc(remoteCreds.find(cred.id()));
if (rc) { if (rc != remoteCreds.end()) {
if (rc->timestamp() > cred.timestamp()) { if (rc->second.timestamp() > cred.timestamp()) {
RR->t->credentialRejected(tPtr, 0x40000001, nconf.networkId, sourcePeerIdentity, cred.id(), cred.timestamp(), C::credentialType(), ZT_TRACE_CREDENTIAL_REJECTION_REASON_OLDER_THAN_LATEST); RR->t->credentialRejected(tPtr, 0x40000001, nconf.networkId, sourcePeerIdentity, cred.id(), cred.timestamp(), C::credentialType(), ZT_TRACE_CREDENTIAL_REJECTION_REASON_OLDER_THAN_LATEST);
return Member::ADD_REJECTED; return Member::ADD_REJECTED;
} }
if (*rc == cred) if (rc->second == cred)
return Member::ADD_ACCEPTED_REDUNDANT; return Member::ADD_ACCEPTED_REDUNDANT;
} }
const int64_t *const rt = revocations.get(Member::credentialKey(C::credentialType(), cred.id())); typename Map< uint64_t, int64_t >::const_iterator rt(revocations.find(Member::credentialKey(C::credentialType(), cred.id())));
if ((rt) && (*rt >= cred.timestamp())) { if ((rt != revocations.end()) && (rt->second >= cred.timestamp())) {
RR->t->credentialRejected(tPtr, 0x24248124, nconf.networkId, sourcePeerIdentity, cred.id(), cred.timestamp(), C::credentialType(), ZT_TRACE_CREDENTIAL_REJECTION_REASON_REVOKED); RR->t->credentialRejected(tPtr, 0x24248124, nconf.networkId, sourcePeerIdentity, cred.id(), cred.timestamp(), C::credentialType(), ZT_TRACE_CREDENTIAL_REJECTION_REASON_REVOKED);
return Member::ADD_REJECTED; return Member::ADD_REJECTED;
} }
@ -185,9 +185,8 @@ static ZT_INLINE Member::AddCredentialResult _addCredImpl(
RR->t->credentialRejected(tPtr, 0x01feba012, nconf.networkId, sourcePeerIdentity, cred.id(), cred.timestamp(), C::credentialType(), ZT_TRACE_CREDENTIAL_REJECTION_REASON_INVALID); RR->t->credentialRejected(tPtr, 0x01feba012, nconf.networkId, sourcePeerIdentity, cred.id(), cred.timestamp(), C::credentialType(), ZT_TRACE_CREDENTIAL_REJECTION_REASON_INVALID);
return Member::ADD_REJECTED; return Member::ADD_REJECTED;
case 0: case 0:
if (!rc) if (rc == remoteCreds.end())
rc = &(remoteCreds[cred.id()]); remoteCreds[cred.id()] = cred;
*rc = cred;
return Member::ADD_ACCEPTED_NEW; return Member::ADD_ACCEPTED_NEW;
case 1: case 1:
return Member::ADD_DEFERRED_FOR_WHOIS; return Member::ADD_DEFERRED_FOR_WHOIS;

View file

@ -73,17 +73,16 @@ public:
*/ */
ZT_INLINE const TagCredential *getTag(const NetworkConfig &nconf, const uint32_t id) const noexcept ZT_INLINE const TagCredential *getTag(const NetworkConfig &nconf, const uint32_t id) const noexcept
{ {
const TagCredential *const t = m_remoteTags.get(id); Map< uint32_t, TagCredential >::const_iterator t(m_remoteTags.find(id));
return (((t)&&(m_isCredentialTimestampValid(nconf, *t))) ? t : (TagCredential *)0); return (((t != m_remoteTags.end())&&(m_isCredentialTimestampValid(nconf, t->second))) ? &(t->second) : (TagCredential *)0);
} }
/** /**
* Clean internal databases of stale entries * Clean internal databases of stale entries
* *
* @param now Current time
* @param nconf Current network configuration * @param nconf Current network configuration
*/ */
void clean(int64_t now,const NetworkConfig &nconf); void clean(const NetworkConfig &nconf);
/** /**
* Generates a key for internal use in indexing credentials by type and credential ID * Generates a key for internal use in indexing credentials by type and credential ID
@ -166,8 +165,8 @@ private:
{ {
const int64_t ts = remoteCredential.timestamp(); const int64_t ts = remoteCredential.timestamp();
if (((ts >= nconf.timestamp) ? (ts - nconf.timestamp) : (nconf.timestamp - ts)) <= nconf.credentialTimeMaxDelta) { if (((ts >= nconf.timestamp) ? (ts - nconf.timestamp) : (nconf.timestamp - ts)) <= nconf.credentialTimeMaxDelta) {
const int64_t *threshold = m_revocations.get(credentialKey(C::credentialType(), remoteCredential.id())); Map< uint64_t, int64_t >::const_iterator threshold(m_revocations.find(credentialKey(C::credentialType(), remoteCredential.id())));
return ((!threshold)||(ts > *threshold)); return ((threshold == m_revocations.end())||(ts > threshold->second));
} }
return false; return false;
} }

View file

@ -33,14 +33,14 @@ namespace ZeroTier {
namespace { namespace {
// Returns true if packet appears valid; pos and proto will be set // Returns true if packet appears valid; pos and proto will be set
bool _ipv6GetPayload(const uint8_t *frameData,unsigned int frameLen,unsigned int &pos,unsigned int &proto) noexcept bool _ipv6GetPayload(const uint8_t *frameData, unsigned int frameLen, unsigned int &pos, unsigned int &proto) noexcept
{ {
if (frameLen < 40) if (frameLen < 40)
return false; return false;
pos = 40; pos = 40;
proto = frameData[6]; proto = frameData[6];
while (pos <= frameLen) { while (pos <= frameLen) {
switch(proto) { switch (proto) {
case 0: // hop-by-hop options case 0: // hop-by-hop options
case 43: // routing case 43: // routing
case 60: // destination options case 60: // destination options
@ -51,9 +51,9 @@ bool _ipv6GetPayload(const uint8_t *frameData,unsigned int frameLen,unsigned int
pos += ((unsigned int)frameData[pos + 1] * 8) + 8; pos += ((unsigned int)frameData[pos + 1] * 8) + 8;
break; break;
//case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway //case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway
//case 50: //case 50:
//case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff //case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff
default: default:
return true; return true;
} }
@ -100,13 +100,13 @@ _doZtFilterResult _doZtFilter(
rrl.clear(); rrl.clear();
for(unsigned int rn=0;rn<ruleCount;++rn) { for (unsigned int rn = 0; rn < ruleCount; ++rn) {
const ZT_VirtualNetworkRuleType rt = (ZT_VirtualNetworkRuleType)(rules[rn].t & 0x3fU); const ZT_VirtualNetworkRuleType rt = (ZT_VirtualNetworkRuleType)(rules[rn].t & 0x3fU);
// First check if this is an ACTION // First check if this is an ACTION
if ((unsigned int)rt <= (unsigned int)ZT_NETWORK_RULE_ACTION__MAX_ID) { if ((unsigned int)rt <= (unsigned int)ZT_NETWORK_RULE_ACTION__MAX_ID) {
if (thisSetMatches) { if (thisSetMatches) {
switch(rt) { switch (rt) {
case ZT_NETWORK_RULE_ACTION_PRIORITY: case ZT_NETWORK_RULE_ACTION_PRIORITY:
qosBucket = (rules[rn].v.qosBucket >= 0 && rules[rn].v.qosBucket <= 8) ? rules[rn].v.qosBucket : 4; // 4 = default bucket (no priority) qosBucket = (rules[rn].v.qosBucket >= 0 && rules[rn].v.qosBucket <= 8) ? rules[rn].v.qosBucket : 4; // 4 = default bucket (no priority)
return DOZTFILTER_ACCEPT; return DOZTFILTER_ACCEPT;
@ -117,10 +117,10 @@ _doZtFilterResult _doZtFilter(
case ZT_NETWORK_RULE_ACTION_ACCEPT: case ZT_NETWORK_RULE_ACTION_ACCEPT:
return (superAccept ? DOZTFILTER_SUPER_ACCEPT : DOZTFILTER_ACCEPT); // match, accept packet return (superAccept ? DOZTFILTER_SUPER_ACCEPT : DOZTFILTER_ACCEPT); // match, accept packet
// These are initially handled together since preliminary logic is common // These are initially handled together since preliminary logic is common
case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT: { case ZT_NETWORK_RULE_ACTION_REDIRECT: {
const Address fwdAddr(rules[rn].v.fwd.address); const Address fwdAddr(rules[rn].v.fwd.address);
if (fwdAddr == ztSource) { if (fwdAddr == ztSource) {
// Skip as no-op since source is target // Skip as no-op since source is target
@ -140,12 +140,13 @@ _doZtFilterResult _doZtFilter(
ccWatch = (rt == ZT_NETWORK_RULE_ACTION_WATCH); ccWatch = (rt == ZT_NETWORK_RULE_ACTION_WATCH);
} }
} }
} continue; }
continue;
case ZT_NETWORK_RULE_ACTION_BREAK: case ZT_NETWORK_RULE_ACTION_BREAK:
return DOZTFILTER_NO_MATCH; return DOZTFILTER_NO_MATCH;
// Unrecognized ACTIONs are ignored as no-ops // Unrecognized ACTIONs are ignored as no-ops
default: default:
continue; continue;
} }
@ -154,7 +155,7 @@ _doZtFilterResult _doZtFilter(
// super-accept if we accept at all. This will cause us to accept redirected or // super-accept if we accept at all. This will cause us to accept redirected or
// tee'd packets in spite of MAC and ZT addressing checks. // tee'd packets in spite of MAC and ZT addressing checks.
if (inbound) { if (inbound) {
switch(rt) { switch (rt) {
case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_TEE:
case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT: case ZT_NETWORK_RULE_ACTION_REDIRECT:
@ -173,15 +174,15 @@ _doZtFilterResult _doZtFilter(
// Circuit breaker: no need to evaluate an AND if the set's match state // Circuit breaker: no need to evaluate an AND if the set's match state
// is currently false since anything AND false is false. // is currently false since anything AND false is false.
if ((!thisSetMatches)&&(!(rules[rn].t & 0x40U))) { if ((!thisSetMatches) && (!(rules[rn].t & 0x40U))) {
rrl.logSkipped(rn,thisSetMatches); rrl.logSkipped(rn, thisSetMatches);
continue; continue;
} }
// If this was not an ACTION evaluate next MATCH and update thisSetMatches with (AND [result]) // If this was not an ACTION evaluate next MATCH and update thisSetMatches with (AND [result])
uint8_t thisRuleMatches = 0; uint8_t thisRuleMatches = 0;
uint64_t ownershipVerificationMask = 1; // this magic value means it hasn't been computed yet -- this is done lazily the first time it's needed uint64_t ownershipVerificationMask = 1; // this magic value means it hasn't been computed yet -- this is done lazily the first time it's needed
switch(rt) { switch (rt) {
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztSource.toInt()); thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztSource.toInt());
break; break;
@ -206,50 +207,50 @@ _doZtFilterResult _doZtFilter(
thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac) == macDest); thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac) == macDest);
break; break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 12),4,0))); thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip), 4, rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 12), 4, 0)));
} else { } else {
thisRuleMatches = 0; thisRuleMatches = 0;
} }
break; break;
case ZT_NETWORK_RULE_MATCH_IPV4_DEST: case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip),4,rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 16),4,0))); thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip), 4, rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 16), 4, 0)));
} else { } else {
thisRuleMatches = 0; thisRuleMatches = 0;
} }
break; break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 8),16,0))); thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip, 16, rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 8), 16, 0)));
} else { } else {
thisRuleMatches = 0; thisRuleMatches = 0;
} }
break; break;
case ZT_NETWORK_RULE_MATCH_IPV6_DEST: case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip,16,rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 24),16,0))); thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip, 16, rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 24), 16, 0)));
} else { } else {
thisRuleMatches = 0; thisRuleMatches = 0;
} }
break; break;
case ZT_NETWORK_RULE_MATCH_IP_TOS: case ZT_NETWORK_RULE_MATCH_IP_TOS:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
const uint8_t tosMasked = frameData[1] & rules[rn].v.ipTos.mask; const uint8_t tosMasked = frameData[1] & rules[rn].v.ipTos.mask;
thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0])&&(tosMasked <= rules[rn].v.ipTos.value[1])); thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0]) && (tosMasked <= rules[rn].v.ipTos.value[1]));
} else if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { } else if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
const uint8_t tosMasked = (((frameData[0] << 4U) & 0xf0U) | ((frameData[1] >> 4U) & 0x0fU)) & rules[rn].v.ipTos.mask; const uint8_t tosMasked = (((frameData[0] << 4U) & 0xf0U) | ((frameData[1] >> 4U) & 0x0fU)) & rules[rn].v.ipTos.mask;
thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0])&&(tosMasked <= rules[rn].v.ipTos.value[1])); thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0]) && (tosMasked <= rules[rn].v.ipTos.value[1]));
} else { } else {
thisRuleMatches = 0; thisRuleMatches = 0;
} }
break; break;
case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == frameData[9]); thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == frameData[9]);
} else if (etherType == ZT_ETHERTYPE_IPV6) { } else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0,proto = 0; unsigned int pos = 0, proto = 0;
if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == (uint8_t)proto); thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == (uint8_t)proto);
} else { } else {
thisRuleMatches = 0; thisRuleMatches = 0;
@ -262,13 +263,13 @@ _doZtFilterResult _doZtFilter(
thisRuleMatches = (uint8_t)(rules[rn].v.etherType == (uint16_t)etherType); thisRuleMatches = (uint8_t)(rules[rn].v.etherType == (uint16_t)etherType);
break; break;
case ZT_NETWORK_RULE_MATCH_ICMP: case ZT_NETWORK_RULE_MATCH_ICMP:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
if (frameData[9] == 0x01) { // IP protocol == ICMP if (frameData[9] == 0x01) { // IP protocol == ICMP
const unsigned int ihl = (frameData[0] & 0xfU) * 4; const unsigned int ihl = (frameData[0] & 0xfU) * 4;
if (frameLen >= (ihl + 2)) { if (frameLen >= (ihl + 2)) {
if (rules[rn].v.icmp.type == frameData[ihl]) { if (rules[rn].v.icmp.type == frameData[ihl]) {
if ((rules[rn].v.icmp.flags & 0x01) != 0) { if ((rules[rn].v.icmp.flags & 0x01) != 0) {
thisRuleMatches = (uint8_t)(frameData[ihl+1] == rules[rn].v.icmp.code); thisRuleMatches = (uint8_t)(frameData[ihl + 1] == rules[rn].v.icmp.code);
} else { } else {
thisRuleMatches = 1; thisRuleMatches = 1;
} }
@ -282,12 +283,12 @@ _doZtFilterResult _doZtFilter(
thisRuleMatches = 0; thisRuleMatches = 0;
} }
} else if (etherType == ZT_ETHERTYPE_IPV6) { } else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0,proto = 0; unsigned int pos = 0, proto = 0;
if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
if ((proto == 0x3a)&&(frameLen >= (pos+2))) { if ((proto == 0x3a) && (frameLen >= (pos + 2))) {
if (rules[rn].v.icmp.type == frameData[pos]) { if (rules[rn].v.icmp.type == frameData[pos]) {
if ((rules[rn].v.icmp.flags & 0x01) != 0) { if ((rules[rn].v.icmp.flags & 0x01) != 0) {
thisRuleMatches = (uint8_t)(frameData[pos+1] == rules[rn].v.icmp.code); thisRuleMatches = (uint8_t)(frameData[pos + 1] == rules[rn].v.icmp.code);
} else { } else {
thisRuleMatches = 1; thisRuleMatches = 1;
} }
@ -306,10 +307,10 @@ _doZtFilterResult _doZtFilter(
break; break;
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
const unsigned int headerLen = 4 * (frameData[0] & 0xfU); const unsigned int headerLen = 4 * (frameData[0] & 0xfU);
int p = -1; int p = -1;
switch(frameData[9]) { // IP protocol number switch (frameData[9]) { // IP protocol number
// All these start with 16-bit source and destination port in that order // All these start with 16-bit source and destination port in that order
case 0x06: // TCP case 0x06: // TCP
case 0x11: // UDP case 0x11: // UDP
@ -323,12 +324,12 @@ _doZtFilterResult _doZtFilter(
break; break;
} }
thisRuleMatches = (p >= 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0])&&(p <= (int)rules[rn].v.port[1])) : (uint8_t)0; thisRuleMatches = (p >= 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0]) && (p <= (int)rules[rn].v.port[1])) : (uint8_t)0;
} else if (etherType == ZT_ETHERTYPE_IPV6) { } else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0,proto = 0; unsigned int pos = 0, proto = 0;
if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
int p = -1; int p = -1;
switch(proto) { // IP protocol number switch (proto) { // IP protocol number
// All these start with 16-bit source and destination port in that order // All these start with 16-bit source and destination port in that order
case 0x06: // TCP case 0x06: // TCP
case 0x11: // UDP case 0x11: // UDP
@ -341,7 +342,7 @@ _doZtFilterResult _doZtFilter(
} }
break; break;
} }
thisRuleMatches = (p > 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0])&&(p <= (int)rules[rn].v.port[1])) : (uint8_t)0; thisRuleMatches = (p > 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0]) && (p <= (int)rules[rn].v.port[1])) : (uint8_t)0;
} else { } else {
thisRuleMatches = 0; thisRuleMatches = 0;
} }
@ -356,11 +357,11 @@ _doZtFilterResult _doZtFilter(
if (ownershipVerificationMask == 1) { if (ownershipVerificationMask == 1) {
ownershipVerificationMask = 0; ownershipVerificationMask = 0;
InetAddress src; InetAddress src;
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)) { if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
src.set((const void *)(frameData + 12),4,0); src.set((const void *)(frameData + 12), 4, 0);
} else if ((etherType == ZT_ETHERTYPE_IPV6)&&(frameLen >= 40)) { } else if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
// IPv6 NDP requires special handling, since the src and dest IPs in the packet are empty or link-local. // IPv6 NDP requires special handling, since the src and dest IPs in the packet are empty or link-local.
if ( (frameLen >= (40 + 8 + 16)) && (frameData[6] == 0x3a) && ((frameData[40] == 0x87)||(frameData[40] == 0x88)) ) { if ((frameLen >= (40 + 8 + 16)) && (frameData[6] == 0x3a) && ((frameData[40] == 0x87) || (frameData[40] == 0x88))) {
if (frameData[40] == 0x87) { if (frameData[40] == 0x87) {
// Neighbor solicitations contain no reliable source address, so we implement a small // Neighbor solicitations contain no reliable source address, so we implement a small
// hack by considering them authenticated. Otherwise you would pretty much have to do // hack by considering them authenticated. Otherwise you would pretty much have to do
@ -368,25 +369,25 @@ _doZtFilterResult _doZtFilter(
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED; ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
} else { } else {
// Neighbor advertisements on the other hand can absolutely be authenticated. // Neighbor advertisements on the other hand can absolutely be authenticated.
src.set((const void *)(frameData + 40 + 8),16,0); src.set((const void *)(frameData + 40 + 8), 16, 0);
} }
} else { } else {
// Other IPv6 packets can be handled normally // Other IPv6 packets can be handled normally
src.set((const void *)(frameData + 8),16,0); src.set((const void *)(frameData + 8), 16, 0);
} }
} else if ((etherType == ZT_ETHERTYPE_ARP)&&(frameLen >= 28)) { } else if ((etherType == ZT_ETHERTYPE_ARP) && (frameLen >= 28)) {
src.set((const void *)(frameData + 14),4,0); src.set((const void *)(frameData + 14), 4, 0);
} }
if (inbound) { if (inbound) {
if (membership) { if (membership) {
if ((src)&&(membership->peerOwnsAddress<InetAddress>(nconf,src))) if ((src) && (membership->peerOwnsAddress< InetAddress >(nconf, src)))
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED; ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
if (membership->peerOwnsAddress<MAC>(nconf,macSource)) if (membership->peerOwnsAddress< MAC >(nconf, macSource))
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED; ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED;
} }
} else { } else {
for(unsigned int i=0;i<nconf.certificateOfOwnershipCount;++i) { for (unsigned int i = 0; i < nconf.certificateOfOwnershipCount; ++i) {
if ((src)&&(nconf.certificatesOfOwnership[i].owns(src))) if ((src) && (nconf.certificatesOfOwnership[i].owns(src)))
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED; ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
if (nconf.certificatesOfOwnership[i].owns(macSource)) if (nconf.certificatesOfOwnership[i].owns(macSource))
ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED; ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED;
@ -394,23 +395,24 @@ _doZtFilterResult _doZtFilter(
} }
} }
cf |= ownershipVerificationMask; cf |= ownershipVerificationMask;
if ((etherType == ZT_ETHERTYPE_IPV4)&&(frameLen >= 20)&&(frameData[9] == 0x06)) { if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20) && (frameData[9] == 0x06)) {
const unsigned int headerLen = 4 * (frameData[0] & 0xfU); const unsigned int headerLen = 4 * (frameData[0] & 0xfU);
cf |= (uint64_t)frameData[headerLen + 13]; cf |= (uint64_t)frameData[headerLen + 13];
cf |= (((uint64_t)(frameData[headerLen + 12] & 0x0fU)) << 8U); cf |= (((uint64_t)(frameData[headerLen + 12] & 0x0fU)) << 8U);
} else if (etherType == ZT_ETHERTYPE_IPV6) { } else if (etherType == ZT_ETHERTYPE_IPV6) {
unsigned int pos = 0,proto = 0; unsigned int pos = 0, proto = 0;
if (_ipv6GetPayload(frameData,frameLen,pos,proto)) { if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
if ((proto == 0x06)&&(frameLen > (pos + 14))) { if ((proto == 0x06) && (frameLen > (pos + 14))) {
cf |= (uint64_t)frameData[pos + 13]; cf |= (uint64_t)frameData[pos + 13];
cf |= (((uint64_t)(frameData[pos + 12] & 0x0fU)) << 8U); cf |= (((uint64_t)(frameData[pos + 12] & 0x0fU)) << 8U);
} }
} }
} }
thisRuleMatches = (uint8_t)((cf & rules[rn].v.characteristics) != 0); thisRuleMatches = (uint8_t)((cf & rules[rn].v.characteristics) != 0);
} break; }
break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
thisRuleMatches = (uint8_t)((frameLen >= (unsigned int)rules[rn].v.frameSize[0])&&(frameLen <= (unsigned int)rules[rn].v.frameSize[1])); thisRuleMatches = (uint8_t)((frameLen >= (unsigned int)rules[rn].v.frameSize[0]) && (frameLen <= (unsigned int)rules[rn].v.frameSize[1]));
break; break;
case ZT_NETWORK_RULE_MATCH_RANDOM: case ZT_NETWORK_RULE_MATCH_RANDOM:
thisRuleMatches = (uint8_t)((uint32_t)(Utils::random() & 0xffffffffULL) <= rules[rn].v.randomProbability); thisRuleMatches = (uint8_t)((uint32_t)(Utils::random() & 0xffffffffULL) <= rules[rn].v.randomProbability);
@ -421,7 +423,7 @@ _doZtFilterResult _doZtFilter(
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL: { case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL: {
const TagCredential *const localTag = std::lower_bound(&(nconf.tags[0]), &(nconf.tags[nconf.tagCount]), rules[rn].v.tag.id, TagCredential::IdComparePredicate()); const TagCredential *const localTag = std::lower_bound(&(nconf.tags[0]), &(nconf.tags[nconf.tagCount]), rules[rn].v.tag.id, TagCredential::IdComparePredicate());
if ((localTag != &(nconf.tags[nconf.tagCount]))&&(localTag->id() == rules[rn].v.tag.id)) { if ((localTag != &(nconf.tags[nconf.tagCount])) && (localTag->id() == rules[rn].v.tag.id)) {
const TagCredential *const remoteTag = ((membership) ? membership->getTag(nconf, rules[rn].v.tag.id) : (const TagCredential *)0); const TagCredential *const remoteTag = ((membership) ? membership->getTag(nconf, rules[rn].v.tag.id) : (const TagCredential *)0);
if (remoteTag) { if (remoteTag) {
const uint32_t ltv = localTag->value(); const uint32_t ltv = localTag->value();
@ -436,12 +438,12 @@ _doZtFilterResult _doZtFilter(
} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR) { } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR) {
thisRuleMatches = (uint8_t)((ltv ^ rtv) == rules[rn].v.tag.value); thisRuleMatches = (uint8_t)((ltv ^ rtv) == rules[rn].v.tag.value);
} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_EQUAL) { } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_EQUAL) {
thisRuleMatches = (uint8_t)((ltv == rules[rn].v.tag.value)&&(rtv == rules[rn].v.tag.value)); thisRuleMatches = (uint8_t)((ltv == rules[rn].v.tag.value) && (rtv == rules[rn].v.tag.value));
} else { // sanity check, can't really happen } else { // sanity check, can't really happen
thisRuleMatches = 0; thisRuleMatches = 0;
} }
} else { } else {
if ((inbound)&&(!superAccept)) { if ((inbound) && (!superAccept)) {
thisRuleMatches = 0; thisRuleMatches = 0;
} else { } else {
// Outbound side is not strict since if we have to match both tags and // Outbound side is not strict since if we have to match both tags and
@ -455,12 +457,13 @@ _doZtFilterResult _doZtFilter(
} else { } else {
thisRuleMatches = 0; thisRuleMatches = 0;
} }
} break; }
break;
case ZT_NETWORK_RULE_MATCH_TAG_SENDER: case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: { case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: {
if (superAccept) { if (superAccept) {
thisRuleMatches = 1; thisRuleMatches = 1;
} else if ( ((rt == ZT_NETWORK_RULE_MATCH_TAG_SENDER)&&(inbound)) || ((rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER)&&(!inbound)) ) { } else if (((rt == ZT_NETWORK_RULE_MATCH_TAG_SENDER) && (inbound)) || ((rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER) && (!inbound))) {
const TagCredential *const remoteTag = ((membership) ? membership->getTag(nconf, rules[rn].v.tag.id) : (const TagCredential *)0); const TagCredential *const remoteTag = ((membership) ? membership->getTag(nconf, rules[rn].v.tag.id) : (const TagCredential *)0);
if (remoteTag) { if (remoteTag) {
thisRuleMatches = (uint8_t)(remoteTag->value() == rules[rn].v.tag.value); thisRuleMatches = (uint8_t)(remoteTag->value() == rules[rn].v.tag.value);
@ -475,13 +478,14 @@ _doZtFilterResult _doZtFilter(
} }
} else { // sender and outbound or receiver and inbound } else { // sender and outbound or receiver and inbound
const TagCredential *const localTag = std::lower_bound(&(nconf.tags[0]), &(nconf.tags[nconf.tagCount]), rules[rn].v.tag.id, TagCredential::IdComparePredicate()); const TagCredential *const localTag = std::lower_bound(&(nconf.tags[0]), &(nconf.tags[nconf.tagCount]), rules[rn].v.tag.id, TagCredential::IdComparePredicate());
if ((localTag != &(nconf.tags[nconf.tagCount]))&&(localTag->id() == rules[rn].v.tag.id)) { if ((localTag != &(nconf.tags[nconf.tagCount])) && (localTag->id() == rules[rn].v.tag.id)) {
thisRuleMatches = (uint8_t)(localTag->value() == rules[rn].v.tag.value); thisRuleMatches = (uint8_t)(localTag->value() == rules[rn].v.tag.value);
} else { } else {
thisRuleMatches = 0; thisRuleMatches = 0;
} }
} }
} break; }
break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE: { case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE: {
uint64_t integer = 0; uint64_t integer = 0;
const unsigned int bits = (rules[rn].v.intRange.format & 63U) + 1; const unsigned int bits = (rules[rn].v.intRange.format & 63U) + 1;
@ -509,17 +513,18 @@ _doZtFilterResult _doZtFilter(
} }
integer >>= (64 - bits); integer >>= (64 - bits);
} }
thisRuleMatches = (uint8_t)((integer >= rules[rn].v.intRange.start)&&(integer <= (rules[rn].v.intRange.start + (uint64_t)rules[rn].v.intRange.end))); thisRuleMatches = (uint8_t)((integer >= rules[rn].v.intRange.start) && (integer <= (rules[rn].v.intRange.start + (uint64_t)rules[rn].v.intRange.end)));
} break; }
break;
// The result of an unsupported MATCH is configurable at the network // The result of an unsupported MATCH is configurable at the network
// level via a flag. // level via a flag.
default: default:
thisRuleMatches = (uint8_t)((nconf.flags & ZT_NETWORKCONFIG_FLAG_RULES_RESULT_OF_UNSUPPORTED_MATCH) != 0); thisRuleMatches = (uint8_t)((nconf.flags & ZT_NETWORKCONFIG_FLAG_RULES_RESULT_OF_UNSUPPORTED_MATCH) != 0);
break; break;
} }
rrl.log(rn,thisRuleMatches,thisSetMatches); rrl.log(rn, thisRuleMatches, thisSetMatches);
if ((rules[rn].t & 0x40U)) if ((rules[rn].t & 0x40U))
thisSetMatches |= (thisRuleMatches ^ ((rules[rn].t >> 7U) & 1U)); thisSetMatches |= (thisRuleMatches ^ ((rules[rn].t >> 7U) & 1U));
@ -531,9 +536,9 @@ _doZtFilterResult _doZtFilter(
} // anonymous namespace } // anonymous namespace
const ZeroTier::MulticastGroup Network::BROADCAST(ZeroTier::MAC(0xffffffffffffULL),0); const ZeroTier::MulticastGroup Network::BROADCAST(ZeroTier::MAC(0xffffffffffffULL), 0);
Network::Network(const RuntimeEnvironment *renv,void *tPtr,uint64_t nwid,const Fingerprint &controllerFingerprint,void *uptr,const NetworkConfig *nconf) : Network::Network(const RuntimeEnvironment *renv, void *tPtr, uint64_t nwid, const Fingerprint &controllerFingerprint, void *uptr, const NetworkConfig *nconf) :
RR(renv), RR(renv),
m_uPtr(uptr), m_uPtr(uptr),
m_id(nwid), m_id(nwid),
@ -547,33 +552,34 @@ Network::Network(const RuntimeEnvironment *renv,void *tPtr,uint64_t nwid,const F
m_controllerFingerprint = controllerFingerprint; m_controllerFingerprint = controllerFingerprint;
if (nconf) { if (nconf) {
this->setConfiguration(tPtr,*nconf,false); this->setConfiguration(tPtr, *nconf, false);
m_lastConfigUpdate = 0; // still want to re-request since it's likely outdated m_lastConfigUpdate = 0; // still want to re-request since it's likely outdated
} else { } else {
uint64_t tmp[2]; uint64_t tmp[2];
tmp[0] = nwid; tmp[1] = 0; tmp[0] = nwid;
tmp[1] = 0;
bool got = false; bool got = false;
try { try {
Dictionary dict; Dictionary dict;
Vector<uint8_t> nconfData(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp)); Vector< uint8_t > nconfData(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp));
if (nconfData.size() > 2) { if (nconfData.size() > 2) {
nconfData.push_back(0); nconfData.push_back(0);
if (dict.decode(nconfData.data(),(unsigned int)nconfData.size())) { if (dict.decode(nconfData.data(), (unsigned int)nconfData.size())) {
try { try {
ScopedPtr<NetworkConfig> nconf2(new NetworkConfig()); ScopedPtr< NetworkConfig > nconf2(new NetworkConfig());
if (nconf2->fromDictionary(dict)) { if (nconf2->fromDictionary(dict)) {
this->setConfiguration(tPtr,*nconf2,false); this->setConfiguration(tPtr, *nconf2, false);
m_lastConfigUpdate = 0; // still want to re-request an update since it's likely outdated m_lastConfigUpdate = 0; // still want to re-request an update since it's likely outdated
got = true; got = true;
} }
} catch (...) {} } catch (...) {}
} }
} }
} catch ( ... ) {} } catch (...) {}
if (!got) if (!got)
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp,"\n",1); RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp, "\n", 1);
} }
if (!m_portInitialized) { if (!m_portInitialized) {
@ -615,7 +621,7 @@ bool Network::filterOutgoingPacket(
const unsigned int vlanId, const unsigned int vlanId,
uint8_t &qosBucket) uint8_t &qosBucket)
{ {
Trace::RuleResultLog rrl,crrl; Trace::RuleResultLog rrl, crrl;
Address ztFinalDest(ztDest); Address ztFinalDest(ztDest);
int localCapabilityIndex = -1; int localCapabilityIndex = -1;
int accept = 0; int accept = 0;
@ -626,12 +632,19 @@ bool Network::filterOutgoingPacket(
Mutex::Lock l1(m_memberships_l); Mutex::Lock l1(m_memberships_l);
Mutex::Lock l2(m_config_l); Mutex::Lock l2(m_config_l);
Member *const membership = (ztDest) ? m_memberships.get(ztDest) : nullptr; Member *membership;
if (ztDest) {
Map<Address, Member>::iterator mm(m_memberships.find(ztDest));
if (mm != m_memberships.end())
membership = &(mm->second);
} else {
membership = nullptr;
}
switch(_doZtFilter(RR, rrl, m_config, membership, false, ztSource, ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, m_config.rules, m_config.ruleCount, cc, ccLength, ccWatch, qosBucket)) { switch (_doZtFilter(RR, rrl, m_config, membership, false, ztSource, ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, m_config.rules, m_config.ruleCount, cc, ccLength, ccWatch, qosBucket)) {
case DOZTFILTER_NO_MATCH: { case DOZTFILTER_NO_MATCH: {
for(unsigned int c=0;c < m_config.capabilityCount;++c) { for (unsigned int c = 0; c < m_config.capabilityCount; ++c) {
ztFinalDest = ztDest; // sanity check, shouldn't be possible if there was no match ztFinalDest = ztDest; // sanity check, shouldn't be possible if there was no match
Address cc2; Address cc2;
unsigned int ccLength2 = 0; unsigned int ccLength2 = 0;
@ -647,7 +660,7 @@ bool Network::filterOutgoingPacket(
localCapabilityIndex = (int)c; localCapabilityIndex = (int)c;
accept = 1; accept = 1;
if ((!noTee)&&(cc2)) { if ((!noTee) && (cc2)) {
// TODO // TODO
/* /*
Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME); Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME);
@ -667,7 +680,8 @@ bool Network::filterOutgoingPacket(
if (accept) if (accept)
break; break;
} }
} break; }
break;
case DOZTFILTER_DROP: case DOZTFILTER_DROP:
RR->t->networkFilter(tPtr, 0xadea5a2a, m_id, rrl.l, nullptr, 0, 0, ztSource, ztDest, macSource, macDest, (uint16_t)frameLen, frameData, (uint16_t)etherType, (uint16_t)vlanId, noTee, false, 0); RR->t->networkFilter(tPtr, 0xadea5a2a, m_id, rrl.l, nullptr, 0, 0, ztSource, ztDest, macSource, macDest, (uint16_t)frameLen, frameData, (uint16_t)etherType, (uint16_t)vlanId, noTee, false, 0);
@ -684,7 +698,7 @@ bool Network::filterOutgoingPacket(
} }
if (accept != 0) { if (accept != 0) {
if ((!noTee)&&(cc)) { if ((!noTee) && (cc)) {
// TODO // TODO
/* /*
Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME); Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME);
@ -699,7 +713,7 @@ bool Network::filterOutgoingPacket(
*/ */
} }
if ((ztDest != ztFinalDest)&&(ztFinalDest)) { if ((ztDest != ztFinalDest) && (ztFinalDest)) {
// TODO // TODO
/* /*
Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME); Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME);
@ -730,7 +744,7 @@ bool Network::filterOutgoingPacket(
int Network::filterIncomingPacket( int Network::filterIncomingPacket(
void *tPtr, void *tPtr,
const SharedPtr<Peer> &sourcePeer, const SharedPtr< Peer > &sourcePeer,
const Address &ztDest, const Address &ztDest,
const MAC &macSource, const MAC &macSource,
const MAC &macDest, const MAC &macDest,
@ -740,7 +754,7 @@ int Network::filterIncomingPacket(
const unsigned int vlanId) const unsigned int vlanId)
{ {
Address ztFinalDest(ztDest); Address ztFinalDest(ztDest);
Trace::RuleResultLog rrl,crrl; Trace::RuleResultLog rrl, crrl;
int accept = 0; int accept = 0;
Address cc; Address cc;
unsigned int ccLength = 0; unsigned int ccLength = 0;
@ -763,7 +777,7 @@ int Network::filterIncomingPacket(
Address cc2; Address cc2;
unsigned int ccLength2 = 0; unsigned int ccLength2 = 0;
bool ccWatch2 = false; bool ccWatch2 = false;
switch(_doZtFilter(RR, crrl, m_config, &membership, true, sourcePeer->address(), ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, c->rules(), c->ruleCount(), cc2, ccLength2, ccWatch2, qosBucket)) { switch (_doZtFilter(RR, crrl, m_config, &membership, true, sourcePeer->address(), ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, c->rules(), c->ruleCount(), cc2, ccLength2, ccWatch2, qosBucket)) {
case DOZTFILTER_NO_MATCH: case DOZTFILTER_NO_MATCH:
case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern
break; break;
@ -794,7 +808,8 @@ int Network::filterIncomingPacket(
break; break;
} }
} }
} break; }
break;
case DOZTFILTER_DROP: case DOZTFILTER_DROP:
//if (_config.remoteTraceTarget) //if (_config.remoteTraceTarget)
@ -826,7 +841,7 @@ int Network::filterIncomingPacket(
*/ */
} }
if ((ztDest != ztFinalDest)&&(ztFinalDest)) { if ((ztDest != ztFinalDest) && (ztFinalDest)) {
// TODO // TODO
/* /*
Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME); Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME);
@ -851,7 +866,7 @@ int Network::filterIncomingPacket(
return accept; return accept;
} }
void Network::multicastSubscribe(void *tPtr,const MulticastGroup &mg) void Network::multicastSubscribe(void *tPtr, const MulticastGroup &mg)
{ {
Mutex::Lock l(m_myMulticastGroups_l); Mutex::Lock l(m_myMulticastGroups_l);
if (!std::binary_search(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg)) { if (!std::binary_search(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg)) {
@ -864,12 +879,12 @@ void Network::multicastSubscribe(void *tPtr,const MulticastGroup &mg)
void Network::multicastUnsubscribe(const MulticastGroup &mg) void Network::multicastUnsubscribe(const MulticastGroup &mg)
{ {
Mutex::Lock l(m_myMulticastGroups_l); Mutex::Lock l(m_myMulticastGroups_l);
Vector<MulticastGroup>::iterator i(std::lower_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg)); Vector< MulticastGroup >::iterator i(std::lower_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg));
if ((i != m_myMulticastGroups.end()) && (*i == mg) ) if ((i != m_myMulticastGroups.end()) && (*i == mg))
m_myMulticastGroups.erase(i); m_myMulticastGroups.erase(i);
} }
uint64_t Network::handleConfigChunk(void *tPtr,uint64_t packetId,const SharedPtr<Peer> &source,const Buf &chunk,int ptr,int size) uint64_t Network::handleConfigChunk(void *tPtr, uint64_t packetId, const SharedPtr< Peer > &source, const Buf &chunk, int ptr, int size)
{ {
// If the controller's full fingerprint is known or was explicitly specified on join(), // If the controller's full fingerprint is known or was explicitly specified on join(),
// require that the controller's identity match. Otherwise learn it. // require that the controller's identity match. Otherwise learn it.
@ -1013,16 +1028,16 @@ uint64_t Network::handleConfigChunk(void *tPtr,uint64_t packetId,const SharedPtr
#endif #endif
} }
int Network::setConfiguration(void *tPtr,const NetworkConfig &nconf,bool saveToDisk) int Network::setConfiguration(void *tPtr, const NetworkConfig &nconf, bool saveToDisk)
{ {
if (m_destroyed) if (m_destroyed)
return 0; return 0;
// _lock is NOT locked when this is called // _lock is NOT locked when this is called
try { try {
if ((nconf.issuedTo != RR->identity.address())||(nconf.networkId != m_id)) if ((nconf.issuedTo != RR->identity.address()) || (nconf.networkId != m_id))
return 0; // invalid config that is not for us or not for this network return 0; // invalid config that is not for us or not for this network
if ((!Utils::allZero(nconf.issuedToFingerprintHash,ZT_FINGERPRINT_HASH_SIZE)) && (memcmp(nconf.issuedToFingerprintHash,RR->identity.fingerprint().hash,ZT_FINGERPRINT_HASH_SIZE) != 0)) if ((!Utils::allZero(nconf.issuedToFingerprintHash, ZT_FINGERPRINT_HASH_SIZE)) && (memcmp(nconf.issuedToFingerprintHash, RR->identity.fingerprint().hash, ZT_FINGERPRINT_HASH_SIZE) != 0))
return 0; // full identity hash is present and does not match return 0; // full identity hash is present and does not match
if (m_config == nconf) if (m_config == nconf)
@ -1030,7 +1045,7 @@ int Network::setConfiguration(void *tPtr,const NetworkConfig &nconf,bool saveToD
ZT_VirtualNetworkConfig ctmp; ZT_VirtualNetworkConfig ctmp;
bool oldPortInitialized; bool oldPortInitialized;
{ // do things that require lock here, but unlock before calling callbacks { // do things that require lock here, but unlock before calling callbacks
Mutex::Lock l1(m_config_l); Mutex::Lock l1(m_config_l);
m_config = nconf; m_config = nconf;
@ -1050,20 +1065,21 @@ int Network::setConfiguration(void *tPtr,const NetworkConfig &nconf,bool saveToD
Dictionary d; Dictionary d;
if (nconf.toDictionary(d)) { if (nconf.toDictionary(d)) {
uint64_t tmp[2]; uint64_t tmp[2];
tmp[0] = m_id; tmp[1] = 0; tmp[0] = m_id;
Vector<uint8_t> d2; tmp[1] = 0;
Vector< uint8_t > d2;
d.encode(d2); d.encode(d2);
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp,d2.data(),(unsigned int)d2.size()); RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp, d2.data(), (unsigned int)d2.size());
} }
} catch ( ... ) {} } catch (...) {}
} }
return 2; // OK and configuration has changed return 2; // OK and configuration has changed
} catch ( ... ) {} // ignore invalid configs } catch (...) {} // ignore invalid configs
return 0; return 0;
} }
bool Network::gate(void *tPtr,const SharedPtr<Peer> &peer) noexcept bool Network::gate(void *tPtr, const SharedPtr< Peer > &peer) noexcept
{ {
Mutex::Lock lc(m_config_l); Mutex::Lock lc(m_config_l);
@ -1074,21 +1090,13 @@ bool Network::gate(void *tPtr,const SharedPtr<Peer> &peer) noexcept
try { try {
Mutex::Lock l(m_memberships_l); Mutex::Lock l(m_memberships_l);
Member *m = m_memberships.get(peer->address()); return m_memberships[peer->address()].certificateOfMembershipAgress(m_config.com, peer->identity());
if (m) { } catch (...) {}
// SECURITY: this method in CertificateOfMembership does a full fingerprint check as well as
// checking certificate agreement. See Membership.hpp.
return m->certificateOfMembershipAgress(m_config.com, peer->identity());
} else {
m = &(m_memberships[peer->address()]);
return false;
}
} catch ( ... ) {}
return false; return false;
} }
void Network::doPeriodicTasks(void *tPtr,const int64_t now) void Network::doPeriodicTasks(void *tPtr, const int64_t now)
{ {
if (m_destroyed) if (m_destroyed)
return; return;
@ -1099,8 +1107,8 @@ void Network::doPeriodicTasks(void *tPtr,const int64_t now)
{ {
Mutex::Lock l1(m_memberships_l); Mutex::Lock l1(m_memberships_l);
for(Map<Address,Member>::iterator i(m_memberships.begin()); i != m_memberships.end(); ++i) for (Map< Address, Member >::iterator i(m_memberships.begin()); i != m_memberships.end(); ++i)
i->second.clean(now, m_config); i->second.clean(m_config);
{ {
Mutex::Lock l2(m_myMulticastGroups_l); Mutex::Lock l2(m_myMulticastGroups_l);
@ -1121,19 +1129,19 @@ void Network::doPeriodicTasks(void *tPtr,const int64_t now)
} }
} }
void Network::learnBridgeRoute(const MAC &mac,const Address &addr) void Network::learnBridgeRoute(const MAC &mac, const Address &addr)
{ {
Mutex::Lock _l(m_remoteBridgeRoutes_l); Mutex::Lock _l(m_remoteBridgeRoutes_l);
m_remoteBridgeRoutes[mac] = addr; m_remoteBridgeRoutes[mac] = addr;
// Anti-DOS circuit breaker to prevent nodes from spamming us with absurd numbers of bridge routes // Anti-DOS circuit breaker to prevent nodes from spamming us with absurd numbers of bridge routes
while (m_remoteBridgeRoutes.size() > ZT_MAX_BRIDGE_ROUTES) { while (m_remoteBridgeRoutes.size() > ZT_MAX_BRIDGE_ROUTES) {
Map< Address,unsigned long > counts; Map< Address, unsigned long > counts;
Address maxAddr; Address maxAddr;
unsigned long maxCount = 0; unsigned long maxCount = 0;
// Find the address responsible for the most entries // Find the address responsible for the most entries
for(Map<MAC,Address>::iterator i(m_remoteBridgeRoutes.begin());i != m_remoteBridgeRoutes.end();++i) { for (Map< MAC, Address >::iterator i(m_remoteBridgeRoutes.begin()); i != m_remoteBridgeRoutes.end(); ++i) {
const unsigned long c = ++counts[i->second]; const unsigned long c = ++counts[i->second];
if (c > maxCount) { if (c > maxCount) {
maxCount = c; maxCount = c;
@ -1142,7 +1150,7 @@ void Network::learnBridgeRoute(const MAC &mac,const Address &addr)
} }
// Kill this address from our table, since it's most likely spamming us // Kill this address from our table, since it's most likely spamming us
for(Map<MAC,Address>::iterator i(m_remoteBridgeRoutes.begin());i != m_remoteBridgeRoutes.end();) { for (Map< MAC, Address >::iterator i(m_remoteBridgeRoutes.begin()); i != m_remoteBridgeRoutes.end();) {
if (i->second == maxAddr) if (i->second == maxAddr)
m_remoteBridgeRoutes.erase(i++); m_remoteBridgeRoutes.erase(i++);
else ++i; else ++i;
@ -1216,7 +1224,7 @@ Member::AddCredentialResult Network::addCredential(void *tPtr, const Identity &s
return m_memberships[coo.issuedTo()].addCredential(RR, tPtr, sourcePeerIdentity, m_config, coo); return m_memberships[coo.issuedTo()].addCredential(RR, tPtr, sourcePeerIdentity, m_config, coo);
} }
void Network::pushCredentials(void *tPtr,const SharedPtr<Peer> &to,const int64_t now) void Network::pushCredentials(void *tPtr, const SharedPtr< Peer > &to, const int64_t now)
{ {
const int64_t tout = std::min(m_config.credentialTimeMaxDelta, m_config.com.timestampMaxDelta()); const int64_t tout = std::min(m_config.credentialTimeMaxDelta, m_config.com.timestampMaxDelta());
Mutex::Lock _l(m_memberships_l); Mutex::Lock _l(m_memberships_l);
@ -1251,7 +1259,7 @@ void Network::m_requestConfiguration(void *tPtr)
const uint16_t startPortRange = (uint16_t)((m_id >> 40U) & 0xffff); const uint16_t startPortRange = (uint16_t)((m_id >> 40U) & 0xffff);
const uint16_t endPortRange = (uint16_t)((m_id >> 24U) & 0xffff); const uint16_t endPortRange = (uint16_t)((m_id >> 24U) & 0xffff);
if (endPortRange >= startPortRange) { if (endPortRange >= startPortRange) {
ScopedPtr<NetworkConfig> nconf(new NetworkConfig()); ScopedPtr< NetworkConfig > nconf(new NetworkConfig());
nconf->networkId = m_id; nconf->networkId = m_id;
nconf->timestamp = RR->node->now(); nconf->timestamp = RR->node->now();
@ -1307,12 +1315,12 @@ void Network::m_requestConfiguration(void *tPtr)
nconf->name[3] = 'o'; nconf->name[3] = 'o';
nconf->name[4] = 'c'; nconf->name[4] = 'c';
nconf->name[5] = '-'; nconf->name[5] = '-';
Utils::hex((uint16_t)startPortRange,nconf->name + 6); Utils::hex((uint16_t)startPortRange, nconf->name + 6);
nconf->name[10] = '-'; nconf->name[10] = '-';
Utils::hex((uint16_t)endPortRange,nconf->name + 11); Utils::hex((uint16_t)endPortRange, nconf->name + 11);
nconf->name[15] = (char)0; nconf->name[15] = (char)0;
this->setConfiguration(tPtr,*nconf,false); this->setConfiguration(tPtr, *nconf, false);
} else { } else {
this->setNotFound(); this->setNotFound();
} }
@ -1328,9 +1336,9 @@ void Network::m_requestConfiguration(void *tPtr)
ipv4[3] = (uint8_t)myAddress; ipv4[3] = (uint8_t)myAddress;
char v4ascii[24]; char v4ascii[24];
Utils::decimal(ipv4[0],v4ascii); Utils::decimal(ipv4[0], v4ascii);
ScopedPtr<NetworkConfig> nconf(new NetworkConfig()); ScopedPtr< NetworkConfig > nconf(new NetworkConfig());
nconf->networkId = m_id; nconf->networkId = m_id;
nconf->timestamp = RR->node->now(); nconf->timestamp = RR->node->now();
@ -1348,7 +1356,7 @@ void Network::m_requestConfiguration(void *tPtr)
nconf->specialists[0] = networkHub; nconf->specialists[0] = networkHub;
nconf->staticIps[0] = InetAddress::makeIpv66plane(m_id, myAddress); nconf->staticIps[0] = InetAddress::makeIpv66plane(m_id, myAddress);
nconf->staticIps[1].set(ipv4,4,8); nconf->staticIps[1].set(ipv4, 4, 8);
nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;
@ -1370,7 +1378,7 @@ void Network::m_requestConfiguration(void *tPtr)
nconf->name[nn++] = '0'; nconf->name[nn++] = '0';
nconf->name[nn] = (char)0; nconf->name[nn] = (char)0;
this->setConfiguration(tPtr,*nconf,false); this->setConfiguration(tPtr, *nconf, false);
} }
return; return;
} }
@ -1378,17 +1386,17 @@ void Network::m_requestConfiguration(void *tPtr)
const Address ctrl(controller()); const Address ctrl(controller());
Dictionary rmd; Dictionary rmd;
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_VENDOR,(uint64_t)1); // 1 == ZeroTier, no other vendors at the moment rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_VENDOR, (uint64_t)1); // 1 == ZeroTier, no other vendors at the moment
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION,(uint64_t)ZT_PROTO_VERSION); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION, (uint64_t)ZT_PROTO_VERSION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION,(uint64_t)ZEROTIER_VERSION_MAJOR); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION, (uint64_t)ZEROTIER_VERSION_MAJOR);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION,(uint64_t)ZEROTIER_VERSION_MINOR); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION, (uint64_t)ZEROTIER_VERSION_MINOR);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION,(uint64_t)ZEROTIER_VERSION_REVISION); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION, (uint64_t)ZEROTIER_VERSION_REVISION);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_RULES,(uint64_t)ZT_MAX_NETWORK_RULES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_RULES, (uint64_t)ZT_MAX_NETWORK_RULES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_CAPABILITIES,(uint64_t)ZT_MAX_NETWORK_CAPABILITIES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_CAPABILITIES, (uint64_t)ZT_MAX_NETWORK_CAPABILITIES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_CAPABILITY_RULES,(uint64_t)ZT_MAX_CAPABILITY_RULES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_CAPABILITY_RULES, (uint64_t)ZT_MAX_CAPABILITY_RULES);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_TAGS,(uint64_t)ZT_MAX_NETWORK_TAGS); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_TAGS, (uint64_t)ZT_MAX_NETWORK_TAGS);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_FLAGS,(uint64_t)0); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_FLAGS, (uint64_t)0);
rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_RULES_ENGINE_REV,(uint64_t)ZT_RULES_ENGINE_REVISION); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_RULES_ENGINE_REV, (uint64_t)ZT_RULES_ENGINE_REVISION);
RR->t->networkConfigRequestSent(tPtr, 0x335bb1a2, m_id); RR->t->networkConfigRequestSent(tPtr, 0x335bb1a2, m_id);
@ -1422,7 +1430,7 @@ void Network::m_requestConfiguration(void *tPtr)
ZT_VirtualNetworkStatus Network::m_status() const ZT_VirtualNetworkStatus Network::m_status() const
{ {
switch(_netconfFailure) { switch (_netconfFailure) {
case NETCONF_FAILURE_ACCESS_DENIED: case NETCONF_FAILURE_ACCESS_DENIED:
return ZT_NETWORK_STATUS_ACCESS_DENIED; return ZT_NETWORK_STATUS_ACCESS_DENIED;
case NETCONF_FAILURE_NOT_FOUND: case NETCONF_FAILURE_NOT_FOUND:
@ -1445,32 +1453,32 @@ void Network::m_externalConfig(ZT_VirtualNetworkConfig *ec) const
ec->status = m_status(); ec->status = m_status();
ec->type = (m_config) ? (m_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE; ec->type = (m_config) ? (m_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE;
ec->mtu = (m_config) ? m_config.mtu : ZT_DEFAULT_MTU; ec->mtu = (m_config) ? m_config.mtu : ZT_DEFAULT_MTU;
Vector<Address> ab; Vector< Address > ab;
for(unsigned int i=0;i < m_config.specialistCount;++i) { for (unsigned int i = 0; i < m_config.specialistCount; ++i) {
if ((m_config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0) if ((m_config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0)
ab.push_back(Address(m_config.specialists[i])); ab.push_back(Address(m_config.specialists[i]));
} }
ec->bridge = (std::find(ab.begin(),ab.end(),RR->identity.address()) != ab.end()) ? 1 : 0; ec->bridge = (std::find(ab.begin(), ab.end(), RR->identity.address()) != ab.end()) ? 1 : 0;
ec->broadcastEnabled = (m_config) ? (m_config.enableBroadcast() ? 1 : 0) : 0; ec->broadcastEnabled = (m_config) ? (m_config.enableBroadcast() ? 1 : 0) : 0;
ec->netconfRevision = (m_config) ? (unsigned long)m_config.revision : 0; ec->netconfRevision = (m_config) ? (unsigned long)m_config.revision : 0;
ec->assignedAddressCount = 0; ec->assignedAddressCount = 0;
for(unsigned int i=0;i<ZT_MAX_ZT_ASSIGNED_ADDRESSES;++i) { for (unsigned int i = 0; i < ZT_MAX_ZT_ASSIGNED_ADDRESSES; ++i) {
if (i < m_config.staticIpCount) { if (i < m_config.staticIpCount) {
Utils::copy<sizeof(struct sockaddr_storage)>(&(ec->assignedAddresses[i]),&(m_config.staticIps[i])); Utils::copy< sizeof(struct sockaddr_storage) >(&(ec->assignedAddresses[i]), &(m_config.staticIps[i]));
++ec->assignedAddressCount; ++ec->assignedAddressCount;
} else { } else {
Utils::zero<sizeof(struct sockaddr_storage)>(&(ec->assignedAddresses[i])); Utils::zero< sizeof(struct sockaddr_storage) >(&(ec->assignedAddresses[i]));
} }
} }
ec->routeCount = 0; ec->routeCount = 0;
for(unsigned int i=0;i<ZT_MAX_NETWORK_ROUTES;++i) { for (unsigned int i = 0; i < ZT_MAX_NETWORK_ROUTES; ++i) {
if (i < m_config.routeCount) { if (i < m_config.routeCount) {
Utils::copy<sizeof(ZT_VirtualNetworkRoute)>(&(ec->routes[i]),&(m_config.routes[i])); Utils::copy< sizeof(ZT_VirtualNetworkRoute) >(&(ec->routes[i]), &(m_config.routes[i]));
++ec->routeCount; ++ec->routeCount;
} else { } else {
Utils::zero<sizeof(ZT_VirtualNetworkRoute)>(&(ec->routes[i])); Utils::zero< sizeof(ZT_VirtualNetworkRoute) >(&(ec->routes[i]));
} }
} }
} }
@ -1478,26 +1486,26 @@ void Network::m_externalConfig(ZT_VirtualNetworkConfig *ec) const
void Network::m_announceMulticastGroups(void *tPtr, bool force) void Network::m_announceMulticastGroups(void *tPtr, bool force)
{ {
// Assumes _myMulticastGroups_l and _memberships_l are locked // Assumes _myMulticastGroups_l and _memberships_l are locked
const Vector<MulticastGroup> groups(m_allMulticastGroups()); const Vector< MulticastGroup > groups(m_allMulticastGroups());
m_announceMulticastGroupsTo(tPtr, controller(), groups); m_announceMulticastGroupsTo(tPtr, controller(), groups);
// TODO // TODO
/* /*
Address *a = nullptr; Address *a = nullptr;
Membership *m = nullptr; Membership *m = nullptr;
Hashtable<Address,Membership>::Iterator i(_memberships); Hashtable<Address,Membership>::Iterator i(_memberships);
while (i.next(a,m)) { while (i.next(a,m)) {
bool announce = m->multicastLikeGate(now); // force this to be called even if 'force' is true since it updates last push time bool announce = m->multicastLikeGate(now); // force this to be called even if 'force' is true since it updates last push time
if ((!announce)&&(force)) if ((!announce)&&(force))
announce = true; announce = true;
if ((announce)&&(m->isAllowedOnNetwork(_config))) if ((announce)&&(m->isAllowedOnNetwork(_config)))
_announceMulticastGroupsTo(tPtr,*a,groups); _announceMulticastGroupsTo(tPtr,*a,groups);
} }
*/ */
} }
void Network::m_announceMulticastGroupsTo(void *tPtr, const Address &peer, const Vector<MulticastGroup> &allMulticastGroups) void Network::m_announceMulticastGroupsTo(void *tPtr, const Address &peer, const Vector< MulticastGroup > &allMulticastGroups)
{ {
#if 0 #if 0
// Assumes _myMulticastGroups_l and _memberships_l are locked // Assumes _myMulticastGroups_l and _memberships_l are locked
@ -1523,18 +1531,18 @@ void Network::m_announceMulticastGroupsTo(void *tPtr, const Address &peer, const
#endif #endif
} }
Vector<MulticastGroup> Network::m_allMulticastGroups() const Vector< MulticastGroup > Network::m_allMulticastGroups() const
{ {
// Assumes _myMulticastGroups_l is locked // Assumes _myMulticastGroups_l is locked
Vector<MulticastGroup> mgs; Vector< MulticastGroup > mgs;
mgs.reserve(m_myMulticastGroups.size() + m_multicastGroupsBehindMe.size() + 1); mgs.reserve(m_myMulticastGroups.size() + m_multicastGroupsBehindMe.size() + 1);
mgs.insert(mgs.end(), m_myMulticastGroups.begin(), m_myMulticastGroups.end()); mgs.insert(mgs.end(), m_myMulticastGroups.begin(), m_myMulticastGroups.end());
for(Map<MulticastGroup,int64_t>::const_iterator i(m_multicastGroupsBehindMe.begin());i != m_multicastGroupsBehindMe.end();++i) for (Map< MulticastGroup, int64_t >::const_iterator i(m_multicastGroupsBehindMe.begin()); i != m_multicastGroupsBehindMe.end(); ++i)
mgs.push_back(i->first); mgs.push_back(i->first);
if ((m_config) && (m_config.enableBroadcast())) if ((m_config) && (m_config.enableBroadcast()))
mgs.push_back(Network::BROADCAST); mgs.push_back(Network::BROADCAST);
std::sort(mgs.begin(),mgs.end()); std::sort(mgs.begin(), mgs.end());
mgs.erase(std::unique(mgs.begin(),mgs.end()),mgs.end()); mgs.erase(std::unique(mgs.begin(), mgs.end()), mgs.end());
return mgs; return mgs;
} }

View file

@ -32,6 +32,7 @@
namespace ZeroTier { namespace ZeroTier {
class RuntimeEnvironment; class RuntimeEnvironment;
class Peer; class Peer;
/** /**
@ -39,7 +40,7 @@ class Peer;
*/ */
class Network class Network
{ {
friend class SharedPtr<Network>; friend class SharedPtr< Network >;
public: public:
/** /**
@ -50,7 +51,8 @@ public:
/** /**
* Compute primary controller device ID from network ID * Compute primary controller device ID from network ID
*/ */
static ZT_INLINE Address controllerFor(uint64_t nwid) noexcept { return Address(nwid >> 24U); } static ZT_INLINE Address controllerFor(uint64_t nwid) noexcept
{ return Address(nwid >> 24U); }
/** /**
* Construct a new network * Construct a new network
@ -65,18 +67,33 @@ public:
* @param uptr Arbitrary pointer used by externally-facing API (for user use) * @param uptr Arbitrary pointer used by externally-facing API (for user use)
* @param nconf Network config, if known * @param nconf Network config, if known
*/ */
Network(const RuntimeEnvironment *renv,void *tPtr,uint64_t nwid,const Fingerprint &controllerFingerprint,void *uptr,const NetworkConfig *nconf); Network(const RuntimeEnvironment *renv, void *tPtr, uint64_t nwid, const Fingerprint &controllerFingerprint, void *uptr, const NetworkConfig *nconf);
~Network(); ~Network();
ZT_INLINE uint64_t id() const noexcept { return m_id; } ZT_INLINE uint64_t id() const noexcept
ZT_INLINE Address controller() const noexcept { return Address(m_id >> 24U); } { return m_id; }
ZT_INLINE bool multicastEnabled() const noexcept { return (m_config.multicastLimit > 0); }
ZT_INLINE bool hasConfig() const noexcept { return (m_config); } ZT_INLINE Address controller() const noexcept
ZT_INLINE uint64_t lastConfigUpdate() const noexcept { return m_lastConfigUpdate; } { return Address(m_id >> 24U); }
ZT_INLINE ZT_VirtualNetworkStatus status() const noexcept { return m_status(); }
ZT_INLINE const NetworkConfig &config() const noexcept { return m_config; } ZT_INLINE bool multicastEnabled() const noexcept
ZT_INLINE const MAC &mac() const noexcept { return m_mac; } { return (m_config.multicastLimit > 0); }
ZT_INLINE bool hasConfig() const noexcept
{ return (m_config); }
ZT_INLINE uint64_t lastConfigUpdate() const noexcept
{ return m_lastConfigUpdate; }
ZT_INLINE ZT_VirtualNetworkStatus status() const noexcept
{ return m_status(); }
ZT_INLINE const NetworkConfig &config() const noexcept
{ return m_config; }
ZT_INLINE const MAC &mac() const noexcept
{ return m_mac; }
/** /**
* Apply filters to an outgoing packet * Apply filters to an outgoing packet
@ -132,7 +149,7 @@ public:
*/ */
int filterIncomingPacket( int filterIncomingPacket(
void *tPtr, void *tPtr,
const SharedPtr<Peer> &sourcePeer, const SharedPtr< Peer > &sourcePeer,
const Address &ztDest, const Address &ztDest,
const MAC &macSource, const MAC &macSource,
const MAC &macDest, const MAC &macDest,
@ -148,7 +165,7 @@ public:
* @param includeBridgedGroups If true, also check groups we've learned via bridging * @param includeBridgedGroups If true, also check groups we've learned via bridging
* @return True if this network endpoint / peer is a member * @return True if this network endpoint / peer is a member
*/ */
ZT_INLINE bool subscribedToMulticastGroup(const MulticastGroup &mg,const bool includeBridgedGroups) const ZT_INLINE bool subscribedToMulticastGroup(const MulticastGroup &mg, const bool includeBridgedGroups) const
{ {
Mutex::Lock l(m_myMulticastGroups_l); Mutex::Lock l(m_myMulticastGroups_l);
if (std::binary_search(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg)) if (std::binary_search(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg))
@ -164,7 +181,7 @@ public:
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param mg New multicast group * @param mg New multicast group
*/ */
void multicastSubscribe(void *tPtr,const MulticastGroup &mg); void multicastSubscribe(void *tPtr, const MulticastGroup &mg);
/** /**
* Unsubscribe from a multicast group * Unsubscribe from a multicast group
@ -189,7 +206,7 @@ public:
* @param size Size of data in chunk buffer (total, not relative to ptr) * @param size Size of data in chunk buffer (total, not relative to ptr)
* @return Update ID if update was fully assembled and accepted or 0 otherwise * @return Update ID if update was fully assembled and accepted or 0 otherwise
*/ */
uint64_t handleConfigChunk(void *tPtr,uint64_t packetId,const SharedPtr<Peer> &source,const Buf &chunk,int ptr,int size); uint64_t handleConfigChunk(void *tPtr, uint64_t packetId, const SharedPtr< Peer > &source, const Buf &chunk, int ptr, int size);
/** /**
* Set network configuration * Set network configuration
@ -203,17 +220,19 @@ public:
* @param saveToDisk Save to disk? Used during loading, should usually be true otherwise. * @param saveToDisk Save to disk? Used during loading, should usually be true otherwise.
* @return 0 == bad, 1 == accepted but duplicate/unchanged, 2 == accepted and new * @return 0 == bad, 1 == accepted but duplicate/unchanged, 2 == accepted and new
*/ */
int setConfiguration(void *tPtr,const NetworkConfig &nconf,bool saveToDisk); int setConfiguration(void *tPtr, const NetworkConfig &nconf, bool saveToDisk);
/** /**
* Set netconf failure to 'access denied' -- called in IncomingPacket when controller reports this * Set netconf failure to 'access denied' -- called in IncomingPacket when controller reports this
*/ */
ZT_INLINE void setAccessDenied() noexcept { _netconfFailure = NETCONF_FAILURE_ACCESS_DENIED; } ZT_INLINE void setAccessDenied() noexcept
{ _netconfFailure = NETCONF_FAILURE_ACCESS_DENIED; }
/** /**
* Set netconf failure to 'not found' -- called by IncomingPacket when controller reports this * Set netconf failure to 'not found' -- called by IncomingPacket when controller reports this
*/ */
ZT_INLINE void setNotFound() noexcept { _netconfFailure = NETCONF_FAILURE_NOT_FOUND; } ZT_INLINE void setNotFound() noexcept
{ _netconfFailure = NETCONF_FAILURE_NOT_FOUND; }
/** /**
* Determine whether this peer is permitted to communicate on this network * Determine whether this peer is permitted to communicate on this network
@ -221,12 +240,12 @@ public:
* @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call * @param tPtr Thread pointer to be handed through to any callbacks called as a result of this call
* @param peer Peer to check * @param peer Peer to check
*/ */
bool gate(void *tPtr,const SharedPtr<Peer> &peer) noexcept; bool gate(void *tPtr, const SharedPtr< Peer > &peer) noexcept;
/** /**
* Do periodic cleanup and housekeeping tasks * Do periodic cleanup and housekeeping tasks
*/ */
void doPeriodicTasks(void *tPtr,int64_t now); void doPeriodicTasks(void *tPtr, int64_t now);
/** /**
* Find the node on this network that has this MAC behind it (if any) * Find the node on this network that has this MAC behind it (if any)
@ -237,8 +256,8 @@ public:
ZT_INLINE Address findBridgeTo(const MAC &mac) const ZT_INLINE Address findBridgeTo(const MAC &mac) const
{ {
Mutex::Lock _l(m_remoteBridgeRoutes_l); Mutex::Lock _l(m_remoteBridgeRoutes_l);
const Address *const br = m_remoteBridgeRoutes.get(mac); Map< MAC, Address >::const_iterator br(m_remoteBridgeRoutes.find(mac));
return ((br) ? *br : Address()); return ((br == m_remoteBridgeRoutes.end()) ? Address() : br->second);
} }
/** /**
@ -247,7 +266,7 @@ public:
* @param mac MAC address of destination * @param mac MAC address of destination
* @param addr Bridge this MAC is reachable behind * @param addr Bridge this MAC is reachable behind
*/ */
void learnBridgeRoute(const MAC &mac,const Address &addr); void learnBridgeRoute(const MAC &mac, const Address &addr);
/** /**
* Learn a multicast group that is bridged to our tap device * Learn a multicast group that is bridged to our tap device
@ -256,10 +275,10 @@ public:
* @param mg Multicast group * @param mg Multicast group
* @param now Current time * @param now Current time
*/ */
ZT_INLINE void learnBridgedMulticastGroup(void *tPtr,const MulticastGroup &mg,int64_t now) ZT_INLINE void learnBridgedMulticastGroup(void *tPtr, const MulticastGroup &mg, int64_t now)
{ {
Mutex::Lock l(m_myMulticastGroups_l); Mutex::Lock l(m_myMulticastGroups_l);
m_multicastGroupsBehindMe.set(mg, now); m_multicastGroupsBehindMe[mg] = now;
} }
/** /**
@ -294,7 +313,7 @@ public:
* @param to Destination peer * @param to Destination peer
* @param now Current time * @param now Current time
*/ */
void pushCredentials(void *tPtr,const SharedPtr<Peer> &to,int64_t now); void pushCredentials(void *tPtr, const SharedPtr< Peer > &to, int64_t now);
/** /**
* Destroy this network * Destroy this network
@ -316,12 +335,12 @@ public:
* *
* @param f Function of (const Address,const Membership) * @param f Function of (const Address,const Membership)
*/ */
template<typename F> template< typename F >
ZT_INLINE void eachMember(F f) ZT_INLINE void eachMember(F f)
{ {
Mutex::Lock ml(m_memberships_l); Mutex::Lock ml(m_memberships_l);
for(Map<Address,Member>::iterator i(m_memberships.begin()); i != m_memberships.end(); ++i) { // NOLINT(modernize-loop-convert,hicpp-use-auto,modernize-use-auto) for (Map< Address, Member >::iterator i(m_memberships.begin()); i != m_memberships.end(); ++i) { // NOLINT(modernize-loop-convert,hicpp-use-auto,modernize-use-auto)
if (!f(i->first,i->second)) if (!f(i->first, i->second))
break; break;
} }
} }
@ -329,15 +348,20 @@ public:
/** /**
* @return Externally usable pointer-to-pointer exported via the core API * @return Externally usable pointer-to-pointer exported via the core API
*/ */
ZT_INLINE void **userPtr() noexcept { return &m_uPtr; } ZT_INLINE void **userPtr() noexcept
{ return &m_uPtr; }
private: private:
void m_requestConfiguration(void *tPtr); void m_requestConfiguration(void *tPtr);
ZT_VirtualNetworkStatus m_status() const; ZT_VirtualNetworkStatus m_status() const;
void m_externalConfig(ZT_VirtualNetworkConfig *ec) const; // assumes _lock is locked void m_externalConfig(ZT_VirtualNetworkConfig *ec) const; // assumes _lock is locked
void m_announceMulticastGroups(void *tPtr, bool force); void m_announceMulticastGroups(void *tPtr, bool force);
void m_announceMulticastGroupsTo(void *tPtr, const Address &peer, const Vector<MulticastGroup> &allMulticastGroups);
Vector<MulticastGroup> m_allMulticastGroups() const; void m_announceMulticastGroupsTo(void *tPtr, const Address &peer, const Vector< MulticastGroup > &allMulticastGroups);
Vector< MulticastGroup > m_allMulticastGroups() const;
const RuntimeEnvironment *const RR; const RuntimeEnvironment *const RR;
void *m_uPtr; void *m_uPtr;
@ -345,30 +369,31 @@ private:
Fingerprint m_controllerFingerprint; Fingerprint m_controllerFingerprint;
MAC m_mac; // local MAC address MAC m_mac; // local MAC address
bool m_portInitialized; bool m_portInitialized;
std::atomic<bool> m_destroyed; std::atomic< bool > m_destroyed;
Vector<MulticastGroup> m_myMulticastGroups; // multicast groups that we belong to (according to tap) Vector< MulticastGroup > m_myMulticastGroups; // multicast groups that we belong to (according to tap)
Map<MulticastGroup,int64_t> m_multicastGroupsBehindMe; // multicast groups that seem to be behind us and when we last saw them (if we are a bridge) Map< MulticastGroup, int64_t > m_multicastGroupsBehindMe; // multicast groups that seem to be behind us and when we last saw them (if we are a bridge)
Map<MAC,Address> m_remoteBridgeRoutes; // remote addresses where given MACs are reachable (for tracking devices behind remote bridges) Map< MAC, Address > m_remoteBridgeRoutes; // remote addresses where given MACs are reachable (for tracking devices behind remote bridges)
NetworkConfig m_config; NetworkConfig m_config;
std::atomic<int64_t> m_lastConfigUpdate; std::atomic< int64_t > m_lastConfigUpdate;
volatile enum { volatile enum
{
NETCONF_FAILURE_NONE, NETCONF_FAILURE_NONE,
NETCONF_FAILURE_ACCESS_DENIED, NETCONF_FAILURE_ACCESS_DENIED,
NETCONF_FAILURE_NOT_FOUND, NETCONF_FAILURE_NOT_FOUND,
NETCONF_FAILURE_INIT_FAILED NETCONF_FAILURE_INIT_FAILED
} _netconfFailure; } _netconfFailure;
Map<Address,Member> m_memberships; Map< Address, Member > m_memberships;
Mutex m_myMulticastGroups_l; Mutex m_myMulticastGroups_l;
Mutex m_remoteBridgeRoutes_l; Mutex m_remoteBridgeRoutes_l;
Mutex m_config_l; Mutex m_config_l;
Mutex m_memberships_l; Mutex m_memberships_l;
std::atomic<int> __refCount; std::atomic< int > __refCount;
}; };
} // namespace ZeroTier } // namespace ZeroTier

View file

@ -678,10 +678,11 @@ bool Node::externalPathLookup(void *tPtr, const Identity &id, int family, InetAd
bool Node::localControllerHasAuthorized(const int64_t now, const uint64_t nwid, const Address &addr) const bool Node::localControllerHasAuthorized(const int64_t now, const uint64_t nwid, const Address &addr) const
{ {
m_localControllerAuthorizations_l.lock(); m_localControllerAuthorizations_l.lock();
const int64_t *const at = m_localControllerAuthorizations.get(p_LocalControllerAuth(nwid, addr)); Map<Node::p_LocalControllerAuth, int64_t>::const_iterator i(m_localControllerAuthorizations.find(p_LocalControllerAuth(nwid, addr)));
const int64_t at = (i == m_localControllerAuthorizations.end()) ? -1LL : i->second;
m_localControllerAuthorizations_l.unlock(); m_localControllerAuthorizations_l.unlock();
if (at) if (at > 0)
return ((now - *at) < (ZT_NETWORK_AUTOCONF_DELAY * 3)); return ((now - at) < (ZT_NETWORK_AUTOCONF_DELAY * 3));
return false; return false;
} }

View file

@ -55,7 +55,7 @@ public:
int64_t now, int64_t now,
int64_t localSocket, int64_t localSocket,
const struct sockaddr_storage *remoteAddress, const struct sockaddr_storage *remoteAddress,
SharedPtr<Buf> &packetData, SharedPtr< Buf > &packetData,
unsigned int packetLength, unsigned int packetLength,
volatile int64_t *nextBackgroundTaskDeadline); volatile int64_t *nextBackgroundTaskDeadline);
@ -67,7 +67,7 @@ public:
uint64_t destMac, uint64_t destMac,
unsigned int etherType, unsigned int etherType,
unsigned int vlanId, unsigned int vlanId,
SharedPtr<Buf> &frameData, SharedPtr< Buf > &frameData,
unsigned int frameLength, unsigned int frameLength,
volatile int64_t *nextBackgroundTaskDeadline); volatile int64_t *nextBackgroundTaskDeadline);
@ -222,19 +222,19 @@ public:
* @param nwid Network ID * @param nwid Network ID
* @return Network associated with ID * @return Network associated with ID
*/ */
ZT_INLINE SharedPtr<Network> network(const uint64_t nwid) const noexcept ZT_INLINE SharedPtr< Network > network(const uint64_t nwid) const noexcept
{ {
RWMutex::RLock l(m_networks_l); RWMutex::RLock l(m_networks_l);
const SharedPtr<Network> *const n = m_networks.get(nwid); Map< uint64_t, SharedPtr< Network > >::const_iterator n(m_networks.find(nwid));
if (n) if (likely(n != m_networks.end()))
return *n; return n->second;
return SharedPtr<Network>(); return SharedPtr< Network >();
} }
/** /**
* @return Known local interface addresses for this node * @return Known local interface addresses for this node
*/ */
ZT_INLINE Vector<ZT_InterfaceAddress> localInterfaceAddresses() const ZT_INLINE Vector< ZT_InterfaceAddress > localInterfaceAddresses() const
{ {
Mutex::Lock _l(m_localInterfaceAddresses_m); Mutex::Lock _l(m_localInterfaceAddresses_m);
return m_localInterfaceAddresses; return m_localInterfaceAddresses;
@ -280,7 +280,7 @@ public:
* @param id Object ID or NULL if this type does not use one * @param id Object ID or NULL if this type does not use one
* @return Vector containing data or empty vector if not found or empty * @return Vector containing data or empty vector if not found or empty
*/ */
Vector<uint8_t> stateObjectGet(void *tPtr, ZT_StateObjectType type, const uint64_t *id); Vector< uint8_t > stateObjectGet(void *tPtr, ZT_StateObjectType type, const uint64_t *id);
/** /**
* Store a state object * Store a state object
@ -398,16 +398,16 @@ private:
{ return ((a.nwid < nwid) || ((a.nwid == nwid) && (a.address < address))); } { return ((a.nwid < nwid) || ((a.nwid == nwid) && (a.address < address))); }
}; };
Map<p_LocalControllerAuth, int64_t> m_localControllerAuthorizations; Map< p_LocalControllerAuth, int64_t > m_localControllerAuthorizations;
Mutex m_localControllerAuthorizations_l; Mutex m_localControllerAuthorizations_l;
// Locally joined networks by network ID. // Locally joined networks by network ID.
Map<uint64_t, SharedPtr<Network> > m_networks; Map< uint64_t, SharedPtr< Network > > m_networks;
RWMutex m_networks_l; RWMutex m_networks_l;
// These are local interface addresses that have been configured via the API // These are local interface addresses that have been configured via the API
// and can be pushed to other nodes. // and can be pushed to other nodes.
Vector<ZT_InterfaceAddress> m_localInterfaceAddresses; Vector< ZT_InterfaceAddress > m_localInterfaceAddresses;
Mutex m_localInterfaceAddresses_m; Mutex m_localInterfaceAddresses_m;
// This is locked while running processBackgroundTasks(). // This is locked while running processBackgroundTasks().
@ -419,10 +419,10 @@ private:
int64_t m_lastNetworkHousekeepingRun; int64_t m_lastNetworkHousekeepingRun;
// This is the most recent value for time passed in via any of the core API methods. // This is the most recent value for time passed in via any of the core API methods.
std::atomic<int64_t> m_now; std::atomic< int64_t > m_now;
// True if at least one root appears reachable. // True if at least one root appears reachable.
std::atomic<bool> m_online; std::atomic< bool > m_online;
}; };
} // namespace ZeroTier } // namespace ZeroTier

View file

@ -416,6 +416,20 @@ void Topology::m_loadCached(void *tPtr, const Address &zta, SharedPtr< Peer > &p
} }
} }
SharedPtr< Peer > Topology::m_peerFromCached(void *tPtr, const Address &zta)
{
SharedPtr< Peer > p;
m_loadCached(tPtr, zta, p);
if (p) {
RWMutex::Lock l(m_peers_l);
SharedPtr< Peer > &hp = m_peers[zta];
if (hp)
return hp;
hp = p;
}
return p;
}
void Topology::m_updateRootPeers_l_roots_certs(void *tPtr) void Topology::m_updateRootPeers_l_roots_certs(void *tPtr)
{ {
// assumes m_roots_l and m_certs_l are locked for write // assumes m_roots_l and m_certs_l are locked for write

View file

@ -65,24 +65,13 @@ public:
{ {
{ {
RWMutex::RLock l(m_peers_l); RWMutex::RLock l(m_peers_l);
const SharedPtr< Peer > *const ap = m_peers.get(zta); Map< Address, SharedPtr< Peer > >::const_iterator ap(m_peers.find(zta));
if (likely(ap != nullptr)) if (likely(ap != m_peers.end()))
return *ap; return ap->second;
}
{
SharedPtr< Peer > p;
if (loadFromCached) {
m_loadCached(tPtr, zta, p);
if (p) {
RWMutex::Lock l(m_peers_l);
SharedPtr< Peer > &hp = m_peers[zta];
if (hp)
return hp;
hp = p;
}
}
return p;
} }
if (loadFromCached)
return m_peerFromCached(tPtr, zta);
return SharedPtr< Peer >();
} }
/** /**
@ -97,9 +86,9 @@ public:
const UniqueID k(r.key()); const UniqueID k(r.key());
{ {
RWMutex::RLock lck(m_paths_l); RWMutex::RLock lck(m_paths_l);
SharedPtr< Path > *const p = m_paths.get(k); Map< UniqueID, SharedPtr< Path > >::const_iterator p(m_paths.find(k));
if (likely(p != nullptr)) if (likely(p != m_paths.end()))
return *p; return p->second;
} }
{ {
SharedPtr< Path > p(new Path(l, r)); SharedPtr< Path > p(new Path(l, r));
@ -231,11 +220,19 @@ public:
private: private:
void m_eraseCertificate_l_certs(const SharedPtr< const Certificate > &cert); void m_eraseCertificate_l_certs(const SharedPtr< const Certificate > &cert);
bool m_cleanCertificates_l_certs(int64_t now); bool m_cleanCertificates_l_certs(int64_t now);
bool m_verifyCertificateChain_l_certs(const Certificate *current, const int64_t now) const; bool m_verifyCertificateChain_l_certs(const Certificate *current, const int64_t now) const;
ZT_CertificateError m_verifyCertificate_l_certs(const Certificate &cert, const int64_t now, unsigned int localTrust, bool skipSignatureCheck) const; ZT_CertificateError m_verifyCertificate_l_certs(const Certificate &cert, const int64_t now, unsigned int localTrust, bool skipSignatureCheck) const;
void m_loadCached(void *tPtr, const Address &zta, SharedPtr< Peer > &peer); void m_loadCached(void *tPtr, const Address &zta, SharedPtr< Peer > &peer);
SharedPtr< Peer > m_peerFromCached(void *tPtr, const Address &zta);
void m_updateRootPeers_l_roots_certs(void *tPtr); void m_updateRootPeers_l_roots_certs(void *tPtr);
void m_writeTrustStore_l_roots_certs(void *tPtr) const; void m_writeTrustStore_l_roots_certs(void *tPtr) const;
const RuntimeEnvironment *const RR; const RuntimeEnvironment *const RR;

View file

@ -19,8 +19,8 @@
namespace ZeroTier { namespace ZeroTier {
static const uint8_t ARP_REQUEST_HEADER[8] = { 0x00,0x01,0x08,0x00,0x06,0x04,0x00,0x01 }; static const uint8_t ARP_REQUEST_HEADER[8] = {0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01};
static const uint8_t ARP_RESPONSE_HEADER[8] = { 0x00,0x01,0x08,0x00,0x06,0x04,0x00,0x02 }; static const uint8_t ARP_RESPONSE_HEADER[8] = {0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x02};
Arp::Arp() : Arp::Arp() :
_cache(), _cache(),
@ -28,7 +28,7 @@ Arp::Arp() :
{ {
} }
void Arp::addLocal(uint32_t ip,const MAC &mac) void Arp::addLocal(uint32_t ip, const MAC &mac)
{ {
_ArpEntry &e = _cache[ip]; _ArpEntry &e = _cache[ip];
e.lastQuerySent = 0; // local IP e.lastQuerySent = 0; // local IP
@ -42,7 +42,7 @@ void Arp::remove(uint32_t ip)
_cache.erase(ip); _cache.erase(ip);
} }
uint32_t Arp::processIncomingArp(const void *arp,unsigned int len,void *response,unsigned int &responseLen,MAC &responseDest) uint32_t Arp::processIncomingArp(const void *arp, unsigned int len, void *response, unsigned int &responseLen, MAC &responseDest)
{ {
const uint64_t now = OSUtils::now(); const uint64_t now = OSUtils::now();
uint32_t ip = 0; uint32_t ip = 0;
@ -51,25 +51,25 @@ uint32_t Arp::processIncomingArp(const void *arp,unsigned int len,void *response
responseDest.zero(); responseDest.zero();
if (len >= 28) { if (len >= 28) {
if (!memcmp(arp,ARP_REQUEST_HEADER,8)) { if (!memcmp(arp, ARP_REQUEST_HEADER, 8)) {
// Respond to ARP requests for locally-known IPs // Respond to ARP requests for locally-known IPs
_ArpEntry *targetEntry = _cache.get(reinterpret_cast<const uint32_t *>(arp)[6]); Map< uint32_t, Arp::_ArpEntry >::const_iterator targetEntry(_cache.find(reinterpret_cast<const uint32_t *>(arp)[6]));
if ((targetEntry)&&(targetEntry->local)) { if ((targetEntry != _cache.end()) && (targetEntry->second.local)) {
memcpy(response,ARP_RESPONSE_HEADER,8); memcpy(response, ARP_RESPONSE_HEADER, 8);
targetEntry->mac.copyTo(reinterpret_cast<uint8_t *>(response) + 8); targetEntry->second.mac.copyTo(reinterpret_cast<uint8_t *>(response) + 8);
memcpy(reinterpret_cast<uint8_t *>(response) + 14,reinterpret_cast<const uint8_t *>(arp) + 24,4); memcpy(reinterpret_cast<uint8_t *>(response) + 14, reinterpret_cast<const uint8_t *>(arp) + 24, 4);
memcpy(reinterpret_cast<uint8_t *>(response) + 18,reinterpret_cast<const uint8_t *>(arp) + 8,10); memcpy(reinterpret_cast<uint8_t *>(response) + 18, reinterpret_cast<const uint8_t *>(arp) + 8, 10);
responseLen = 28; responseLen = 28;
responseDest.setTo(reinterpret_cast<const uint8_t *>(arp) + 8); responseDest.setTo(reinterpret_cast<const uint8_t *>(arp) + 8);
} }
} else if (!memcmp(arp,ARP_RESPONSE_HEADER,8)) { } else if (!memcmp(arp, ARP_RESPONSE_HEADER, 8)) {
// Learn cache entries for remote IPs from relevant ARP replies // Learn cache entries for remote IPs from relevant ARP replies
uint32_t responseIp = 0; uint32_t responseIp = 0;
memcpy(&responseIp,reinterpret_cast<const uint8_t *>(arp) + 14,4); memcpy(&responseIp, reinterpret_cast<const uint8_t *>(arp) + 14, 4);
_ArpEntry *queryEntry = _cache.get(responseIp); Map< uint32_t, Arp::_ArpEntry >::iterator queryEntry(_cache.find(responseIp));
if ((queryEntry)&&(!queryEntry->local)&&((now - queryEntry->lastQuerySent) <= ZT_ARP_QUERY_MAX_TTL)) { if ((queryEntry != _cache.end()) && (!queryEntry->second.local) && ((now - queryEntry->second.lastQuerySent) <= ZT_ARP_QUERY_MAX_TTL)) {
queryEntry->lastResponseReceived = now; queryEntry->second.lastResponseReceived = now;
queryEntry->mac.setTo(reinterpret_cast<const uint8_t *>(arp) + 8); queryEntry->second.mac.setTo(reinterpret_cast<const uint8_t *>(arp) + 8);
ip = responseIp; ip = responseIp;
} }
} }
@ -77,8 +77,8 @@ uint32_t Arp::processIncomingArp(const void *arp,unsigned int len,void *response
if ((now - _lastCleaned) >= ZT_ARP_EXPIRE) { if ((now - _lastCleaned) >= ZT_ARP_EXPIRE) {
_lastCleaned = now; _lastCleaned = now;
for(Map< uint32_t,_ArpEntry >::iterator i(_cache.begin());i!=_cache.end();) { for (Map< uint32_t, _ArpEntry >::iterator i(_cache.begin()); i != _cache.end();) {
if ((!i->second.local)&&((now - i->second.lastResponseReceived) >= ZT_ARP_EXPIRE)) if ((!i->second.local) && ((now - i->second.lastResponseReceived) >= ZT_ARP_EXPIRE))
_cache.erase(i++); _cache.erase(i++);
else ++i; else ++i;
} }
@ -87,22 +87,26 @@ uint32_t Arp::processIncomingArp(const void *arp,unsigned int len,void *response
return ip; return ip;
} }
MAC Arp::query(const MAC &localMac,uint32_t localIp,uint32_t targetIp,void *query,unsigned int &queryLen,MAC &queryDest) MAC Arp::query(const MAC &localMac, uint32_t localIp, uint32_t targetIp, void *query, unsigned int &queryLen, MAC &queryDest)
{ {
const uint64_t now = OSUtils::now(); const uint64_t now = OSUtils::now();
_ArpEntry &e = _cache[targetIp]; _ArpEntry &e = _cache[targetIp];
if ( ((e.mac)&&((now - e.lastResponseReceived) >= (ZT_ARP_EXPIRE / 3))) || if (((e.mac) && ((now - e.lastResponseReceived) >= (ZT_ARP_EXPIRE / 3))) ||
((!e.mac)&&((now - e.lastQuerySent) >= ZT_ARP_QUERY_INTERVAL)) ) { ((!e.mac) && ((now - e.lastQuerySent) >= ZT_ARP_QUERY_INTERVAL))) {
e.lastQuerySent = now; e.lastQuerySent = now;
uint8_t *q = reinterpret_cast<uint8_t *>(query); uint8_t *q = reinterpret_cast<uint8_t *>(query);
memcpy(q,ARP_REQUEST_HEADER,8); q += 8; // ARP request header information, always the same memcpy(q, ARP_REQUEST_HEADER, 8);
localMac.copyTo(q); q += 6; // sending host MAC address q += 8; // ARP request header information, always the same
memcpy(q,&localIp,4); q += 4; // sending host IP (IP already in big-endian byte order) localMac.copyTo(q);
memset(q,0,6); q += 6; // sending zeros for target MAC address as thats what we want to find q += 6; // sending host MAC address
memcpy(q,&targetIp,4); // target IP address for resolution (IP already in big-endian byte order) memcpy(q, &localIp, 4);
q += 4; // sending host IP (IP already in big-endian byte order)
memset(q, 0, 6);
q += 6; // sending zeros for target MAC address as thats what we want to find
memcpy(q, &targetIp, 4); // target IP address for resolution (IP already in big-endian byte order)
queryLen = 28; queryLen = 28;
if (e.mac) if (e.mac)
queryDest = e.mac; // confirmation query, send directly to address holder queryDest = e.mac; // confirmation query, send directly to address holder

View file

@ -47,70 +47,71 @@ typedef std::vector<route_entry> RouteList;
class LinuxNetLink class LinuxNetLink
{ {
private: private:
LinuxNetLink(); LinuxNetLink();
~LinuxNetLink(); ~LinuxNetLink();
public: public:
static LinuxNetLink& getInstance() static LinuxNetLink& getInstance()
{ {
static LinuxNetLink instance; static LinuxNetLink instance;
return instance; return instance;
} }
LinuxNetLink(LinuxNetLink const&) = delete; LinuxNetLink(LinuxNetLink const&) = delete;
void operator=(LinuxNetLink const&) = delete; void operator=(LinuxNetLink const&) = delete;
void addRoute(const InetAddress &target, const InetAddress &via, const InetAddress &src, const char *ifaceName); void addRoute(const InetAddress &target, const InetAddress &via, const InetAddress &src, const char *ifaceName);
void delRoute(const InetAddress &target, const InetAddress &via, const InetAddress &src, const char *ifaceName); void delRoute(const InetAddress &target, const InetAddress &via, const InetAddress &src, const char *ifaceName);
RouteList getIPV4Routes() const; RouteList getIPV4Routes() const;
RouteList getIPV6Routes() const; RouteList getIPV6Routes() const;
void addAddress(const InetAddress &addr, const char *iface); void addAddress(const InetAddress &addr, const char *iface);
void removeAddress(const InetAddress &addr, const char *iface); void removeAddress(const InetAddress &addr, const char *iface);
void threadMain() throw();
void threadMain() throw();
private: private:
int _doRecv(int fd); int _doRecv(int fd);
void _processMessage(struct nlmsghdr *nlp, int nll); void _processMessage(struct nlmsghdr *nlp, int nll);
void _routeAdded(struct nlmsghdr *nlp); void _routeAdded(struct nlmsghdr *nlp);
void _routeDeleted(struct nlmsghdr *nlp); void _routeDeleted(struct nlmsghdr *nlp);
void _linkAdded(struct nlmsghdr *nlp); void _linkAdded(struct nlmsghdr *nlp);
void _linkDeleted(struct nlmsghdr *nlp); void _linkDeleted(struct nlmsghdr *nlp);
void _ipAddressAdded(struct nlmsghdr *nlp); void _ipAddressAdded(struct nlmsghdr *nlp);
void _ipAddressDeleted(struct nlmsghdr *nlp); void _ipAddressDeleted(struct nlmsghdr *nlp);
void _requestInterfaceList(); void _requestInterfaceList();
void _requestIPv4Routes(); void _requestIPv4Routes();
void _requestIPv6Routes(); void _requestIPv6Routes();
int _indexForInterface(const char *iface); int _indexForInterface(const char *iface);
void _setSocketTimeout(int fd, int seconds = 1); void _setSocketTimeout(int fd, int seconds = 1);
Thread _t; Thread _t;
bool _running; bool _running;
RouteList _routes_ipv4; RouteList _routes_ipv4;
Mutex _rv4_m; Mutex _rv4_m;
RouteList _routes_ipv6; RouteList _routes_ipv6;
Mutex _rv6_m; Mutex _rv6_m;
uint32_t _seq; uint32_t _seq;
struct iface_entry { struct iface_entry {
int index; int index;
char ifacename[IFNAMSIZ]; char ifacename[IFNAMSIZ];
char mac[18]; char mac[18];
char mac_bin[6]; char mac_bin[6];
unsigned int mtu; unsigned int mtu;
}; };
std::map<int, iface_entry> _interfaces; std::map<int, iface_entry> _interfaces;
Mutex _if_m; Mutex _if_m;
// socket communication vars; // socket communication vars;
int _fd; int _fd;
struct sockaddr_nl _la; struct sockaddr_nl _la;
}; };
} }

View file

@ -20,239 +20,236 @@
namespace ZeroTier { namespace ZeroTier {
uint16_t calc_checksum (uint16_t *addr, int len) uint16_t calc_checksum(uint16_t *addr, int len)
{ {
int count = len; int count = len;
uint32_t sum = 0; uint32_t sum = 0;
uint16_t answer = 0; uint16_t answer = 0;
// Sum up 2-byte values until none or only one byte left. // Sum up 2-byte values until none or only one byte left.
while (count > 1) { while (count > 1) {
sum += *(addr++); sum += *(addr++);
count -= 2; count -= 2;
} }
// Add left-over byte, if any. // Add left-over byte, if any.
if (count > 0) { if (count > 0) {
sum += *(uint8_t *) addr; sum += *(uint8_t *)addr;
} }
// Fold 32-bit sum into 16 bits; we lose information by doing this, // Fold 32-bit sum into 16 bits; we lose information by doing this,
// increasing the chances of a collision. // increasing the chances of a collision.
// sum = (lower 16 bits) + (upper 16 bits shifted right 16 bits) // sum = (lower 16 bits) + (upper 16 bits shifted right 16 bits)
while (sum >> 16) { while (sum >> 16) {
sum = (sum & 0xffff) + (sum >> 16); sum = (sum & 0xffff) + (sum >> 16);
} }
// Checksum is one's compliment of sum. // Checksum is one's compliment of sum.
answer = ~sum; answer = ~sum;
return (answer); return (answer);
} }
struct _pseudo_header { struct _pseudo_header
uint8_t sourceAddr[16]; {
uint8_t targetAddr[16]; uint8_t sourceAddr[16];
uint32_t length; uint8_t targetAddr[16];
uint8_t zeros[3]; uint32_t length;
uint8_t next; // 58 uint8_t zeros[3];
uint8_t next; // 58
}; };
struct _option { struct _option
_option(int optionType) {
: type(optionType) _option(int optionType)
, length(8) : type(optionType), length(8)
{ {
memset(mac, 0, sizeof(mac)); memset(mac, 0, sizeof(mac));
} }
uint8_t type; uint8_t type;
uint8_t length; uint8_t length;
uint8_t mac[6]; uint8_t mac[6];
}; };
struct _neighbor_solicitation { struct _neighbor_solicitation
_neighbor_solicitation() {
: type(135) _neighbor_solicitation()
, code(0) : type(135), code(0), checksum(0), option(1)
, checksum(0) {
, option(1) memset(&reserved, 0, sizeof(reserved));
{ memset(target, 0, sizeof(target));
memset(&reserved, 0, sizeof(reserved)); }
memset(target, 0, sizeof(target));
}
void calculateChecksum(const sockaddr_storage &sourceIp, const sockaddr_storage &destIp) { void calculateChecksum(const sockaddr_storage &sourceIp, const sockaddr_storage &destIp)
_pseudo_header ph; {
memset(&ph, 0, sizeof(_pseudo_header)); _pseudo_header ph;
const sockaddr_in6 *src = (const sockaddr_in6*)&sourceIp; memset(&ph, 0, sizeof(_pseudo_header));
const sockaddr_in6 *dest = (const sockaddr_in6*)&destIp; const sockaddr_in6 *src = (const sockaddr_in6 *)&sourceIp;
const sockaddr_in6 *dest = (const sockaddr_in6 *)&destIp;
memcpy(ph.sourceAddr, &src->sin6_addr, sizeof(struct in6_addr)); memcpy(ph.sourceAddr, &src->sin6_addr, sizeof(struct in6_addr));
memcpy(ph.targetAddr, &dest->sin6_addr, sizeof(struct in6_addr)); memcpy(ph.targetAddr, &dest->sin6_addr, sizeof(struct in6_addr));
ph.next = 58; ph.next = 58;
ph.length = htonl(sizeof(_neighbor_solicitation)); ph.length = htonl(sizeof(_neighbor_solicitation));
size_t len = sizeof(_pseudo_header) + sizeof(_neighbor_solicitation); size_t len = sizeof(_pseudo_header) + sizeof(_neighbor_solicitation);
uint8_t *tmp = (uint8_t*)malloc(len); uint8_t *tmp = (uint8_t *)malloc(len);
memcpy(tmp, &ph, sizeof(_pseudo_header)); memcpy(tmp, &ph, sizeof(_pseudo_header));
memcpy(tmp+sizeof(_pseudo_header), this, sizeof(_neighbor_solicitation)); memcpy(tmp + sizeof(_pseudo_header), this, sizeof(_neighbor_solicitation));
checksum = calc_checksum((uint16_t*)tmp, (int)len); checksum = calc_checksum((uint16_t *)tmp, (int)len);
free(tmp); free(tmp);
tmp = NULL; tmp = NULL;
} }
uint8_t type; // 135 uint8_t type; // 135
uint8_t code; // 0 uint8_t code; // 0
uint16_t checksum; uint16_t checksum;
uint32_t reserved; uint32_t reserved;
uint8_t target[16]; uint8_t target[16];
_option option; _option option;
}; };
struct _neighbor_advertisement { struct _neighbor_advertisement
_neighbor_advertisement() {
: type(136) _neighbor_advertisement()
, code(0) : type(136), code(0), checksum(0), rso(0x40), option(2)
, checksum(0) {
, rso(0x40) memset(padding, 0, sizeof(padding));
, option(2) memset(target, 0, sizeof(target));
{ }
memset(padding, 0, sizeof(padding));
memset(target, 0, sizeof(target));
}
void calculateChecksum(const sockaddr_storage &sourceIp, const InetAddress &destIp) { void calculateChecksum(const sockaddr_storage &sourceIp, const InetAddress &destIp)
_pseudo_header ph; {
memset(&ph, 0, sizeof(_pseudo_header)); _pseudo_header ph;
const sockaddr_in6 *src = (const sockaddr_in6*)&sourceIp; memset(&ph, 0, sizeof(_pseudo_header));
const sockaddr_in6 *dest = (const sockaddr_in6*)&destIp; const sockaddr_in6 *src = (const sockaddr_in6 *)&sourceIp;
const sockaddr_in6 *dest = (const sockaddr_in6 *)&destIp;
memcpy(ph.sourceAddr, &src->sin6_addr, sizeof(struct in6_addr)); memcpy(ph.sourceAddr, &src->sin6_addr, sizeof(struct in6_addr));
memcpy(ph.targetAddr, &dest->sin6_addr, sizeof(struct in6_addr)); memcpy(ph.targetAddr, &dest->sin6_addr, sizeof(struct in6_addr));
ph.next = 58; ph.next = 58;
ph.length = htonl(sizeof(_neighbor_advertisement)); ph.length = htonl(sizeof(_neighbor_advertisement));
size_t len = sizeof(_pseudo_header) + sizeof(_neighbor_advertisement); size_t len = sizeof(_pseudo_header) + sizeof(_neighbor_advertisement);
uint8_t *tmp = (uint8_t*)malloc(len); uint8_t *tmp = (uint8_t *)malloc(len);
memcpy(tmp, &ph, sizeof(_pseudo_header)); memcpy(tmp, &ph, sizeof(_pseudo_header));
memcpy(tmp+sizeof(_pseudo_header), this, sizeof(_neighbor_advertisement)); memcpy(tmp + sizeof(_pseudo_header), this, sizeof(_neighbor_advertisement));
checksum = calc_checksum((uint16_t*)tmp, (int)len); checksum = calc_checksum((uint16_t *)tmp, (int)len);
free(tmp); free(tmp);
tmp = NULL; tmp = NULL;
} }
uint8_t type; // 136 uint8_t type; // 136
uint8_t code; // 0 uint8_t code; // 0
uint16_t checksum; uint16_t checksum;
uint8_t rso; uint8_t rso;
uint8_t padding[3]; uint8_t padding[3];
uint8_t target[16]; uint8_t target[16];
_option option; _option option;
}; };
NeighborDiscovery::NeighborDiscovery() NeighborDiscovery::NeighborDiscovery()
: _cache() : _cache(), _lastCleaned(OSUtils::now())
, _lastCleaned(OSUtils::now())
{} {}
void NeighborDiscovery::addLocal(const sockaddr_storage &address, const MAC &mac) void NeighborDiscovery::addLocal(const sockaddr_storage &address, const MAC &mac)
{ {
_NDEntry &e = _cache[InetAddress(address)]; _NDEntry &e = _cache[InetAddress(address)];
e.lastQuerySent = 0; e.lastQuerySent = 0;
e.lastResponseReceived = 0; e.lastResponseReceived = 0;
e.mac = mac; e.mac = mac;
e.local = true; e.local = true;
} }
void NeighborDiscovery::remove(const sockaddr_storage &address) void NeighborDiscovery::remove(const sockaddr_storage &address)
{ {
_cache.erase(InetAddress(address)); _cache.erase(InetAddress(address));
} }
sockaddr_storage NeighborDiscovery::processIncomingND(const uint8_t *nd, unsigned int len, const sockaddr_storage &localIp, uint8_t *response, unsigned int &responseLen, MAC &responseDest) sockaddr_storage NeighborDiscovery::processIncomingND(const uint8_t *nd, unsigned int len, const sockaddr_storage &localIp, uint8_t *response, unsigned int &responseLen, MAC &responseDest)
{ {
// assert(sizeof(_neighbor_solicitation) == 28); // assert(sizeof(_neighbor_solicitation) == 28);
// assert(sizeof(_neighbor_advertisement) == 32); // assert(sizeof(_neighbor_advertisement) == 32);
const uint64_t now = OSUtils::now(); const uint64_t now = OSUtils::now();
InetAddress ip; InetAddress ip;
if (len >= sizeof(_neighbor_solicitation) && nd[0] == 0x87) { if (len >= sizeof(_neighbor_solicitation) && nd[0] == 0x87) {
// respond to Neighbor Solicitation request for local address // respond to Neighbor Solicitation request for local address
_neighbor_solicitation solicitation; _neighbor_solicitation solicitation;
memcpy(&solicitation, nd, len); memcpy(&solicitation, nd, len);
InetAddress targetAddress(solicitation.target, 16, 0); InetAddress targetAddress(solicitation.target, 16, 0);
_NDEntry *targetEntry = _cache.get(targetAddress); Map<InetAddress, NeighborDiscovery::_NDEntry>::const_iterator targetEntry(_cache.find(targetAddress));
if (targetEntry && targetEntry->local) { if ((targetEntry != _cache.end()) && targetEntry->second.local) {
_neighbor_advertisement adv; _neighbor_advertisement adv;
targetEntry->mac.copyTo(adv.option.mac); targetEntry->second.mac.copyTo(adv.option.mac);
memcpy(adv.target, solicitation.target, 16); memcpy(adv.target, solicitation.target, 16);
adv.calculateChecksum(localIp, targetAddress); adv.calculateChecksum(localIp, targetAddress);
memcpy(response, &adv, sizeof(_neighbor_advertisement)); memcpy(response, &adv, sizeof(_neighbor_advertisement));
responseLen = sizeof(_neighbor_advertisement); responseLen = sizeof(_neighbor_advertisement);
responseDest.setTo(solicitation.option.mac); responseDest.setTo(solicitation.option.mac);
} }
} else if (len >= sizeof(_neighbor_advertisement) && nd[0] == 0x88) { } else if (len >= sizeof(_neighbor_advertisement) && nd[0] == 0x88) {
_neighbor_advertisement adv; _neighbor_advertisement adv;
memcpy(&adv, nd, len); memcpy(&adv, nd, len);
InetAddress responseAddress(adv.target, 16, 0); InetAddress responseAddress(adv.target, 16, 0);
_NDEntry *queryEntry = _cache.get(responseAddress); Map<InetAddress, NeighborDiscovery::_NDEntry>::iterator queryEntry(_cache.find(responseAddress));
if(queryEntry && !queryEntry->local && (now - queryEntry->lastQuerySent <= ZT_ND_QUERY_MAX_TTL)) { if ((queryEntry != _cache.end()) && !queryEntry->second.local && (now - queryEntry->second.lastQuerySent <= ZT_ND_QUERY_MAX_TTL)) {
queryEntry->lastResponseReceived = now; queryEntry->second.lastResponseReceived = now;
queryEntry->mac.setTo(adv.option.mac); queryEntry->second.mac.setTo(adv.option.mac);
ip = responseAddress; ip = responseAddress;
} }
} }
if ((now - _lastCleaned) >= ZT_ND_EXPIRE) { if ((now - _lastCleaned) >= ZT_ND_EXPIRE) {
_lastCleaned = now; _lastCleaned = now;
for(Map<InetAddress,_NDEntry>::iterator i(_cache.begin());i!=_cache.end();) { for (Map< InetAddress, _NDEntry >::iterator i(_cache.begin()); i != _cache.end();) {
if(!i->second.local && (now - i->second.lastResponseReceived) >= ZT_ND_EXPIRE) { if (!i->second.local && (now - i->second.lastResponseReceived) >= ZT_ND_EXPIRE) {
_cache.erase(i++); _cache.erase(i++);
} else { } else {
++i; ++i;
} }
} }
} }
return *reinterpret_cast<sockaddr_storage *>(&ip); return *reinterpret_cast<sockaddr_storage *>(&ip);
} }
MAC NeighborDiscovery::query(const MAC &localMac, const sockaddr_storage &localIp, const sockaddr_storage &targetIp, uint8_t *query, unsigned int &queryLen, MAC &queryDest) MAC NeighborDiscovery::query(const MAC &localMac, const sockaddr_storage &localIp, const sockaddr_storage &targetIp, uint8_t *query, unsigned int &queryLen, MAC &queryDest)
{ {
const uint64_t now = OSUtils::now(); const uint64_t now = OSUtils::now();
InetAddress localAddress(localIp); InetAddress localAddress(localIp);
localAddress.setPort(0); localAddress.setPort(0);
InetAddress targetAddress(targetIp); InetAddress targetAddress(targetIp);
targetAddress.setPort(0); targetAddress.setPort(0);
_NDEntry &e = _cache[targetAddress]; _NDEntry &e = _cache[targetAddress];
if ( (e.mac && ((now - e.lastResponseReceived) >= (ZT_ND_EXPIRE / 3))) || if ((e.mac && ((now - e.lastResponseReceived) >= (ZT_ND_EXPIRE / 3))) ||
(!e.mac && ((now - e.lastQuerySent) >= ZT_ND_QUERY_INTERVAL))) { (!e.mac && ((now - e.lastQuerySent) >= ZT_ND_QUERY_INTERVAL))) {
e.lastQuerySent = now; e.lastQuerySent = now;
_neighbor_solicitation ns; _neighbor_solicitation ns;
memcpy(ns.target, targetAddress.rawIpData(), 16); memcpy(ns.target, targetAddress.rawIpData(), 16);
localMac.copyTo(ns.option.mac); localMac.copyTo(ns.option.mac);
ns.calculateChecksum(localIp, targetIp); ns.calculateChecksum(localIp, targetIp);
if (e.mac) { if (e.mac) {
queryDest = e.mac; queryDest = e.mac;
} else { } else {
queryDest = (uint64_t)0xffffffffffffULL; queryDest = (uint64_t)0xffffffffffffULL;
} }
} else { } else {
queryLen = 0; queryLen = 0;
queryDest.zero(); queryDest.zero();
} }
return e.mac; return e.mac;
} }
} }

View file

@ -27,39 +27,41 @@ namespace ZeroTier {
class NeighborDiscovery class NeighborDiscovery
{ {
public: public:
NeighborDiscovery(); NeighborDiscovery();
/** /**
* Set a local IP entry that we should respond to Neighbor Requests withPrefix64k * Set a local IP entry that we should respond to Neighbor Requests withPrefix64k
* *
* @param mac Our local MAC address * @param mac Our local MAC address
* @param ip Our IPv6 address * @param ip Our IPv6 address
*/ */
void addLocal(const sockaddr_storage &address, const MAC &mac); void addLocal(const sockaddr_storage &address, const MAC &mac);
/** /**
* Delete a local IP entry or cached Neighbor entry * Delete a local IP entry or cached Neighbor entry
* *
* @param address IPv6 address to remove * @param address IPv6 address to remove
*/ */
void remove(const sockaddr_storage &address); void remove(const sockaddr_storage &address);
sockaddr_storage processIncomingND(const uint8_t *nd, unsigned int len, const sockaddr_storage &localIp, uint8_t *response, unsigned int &responseLen, MAC &responseDest); sockaddr_storage processIncomingND(const uint8_t *nd, unsigned int len, const sockaddr_storage &localIp, uint8_t *response, unsigned int &responseLen, MAC &responseDest);
MAC query(const MAC &localMac, const sockaddr_storage &localIp, const sockaddr_storage &targetIp, uint8_t *query, unsigned int &queryLen, MAC &queryDest); MAC query(const MAC &localMac, const sockaddr_storage &localIp, const sockaddr_storage &targetIp, uint8_t *query, unsigned int &queryLen, MAC &queryDest);
private: private:
struct _NDEntry struct _NDEntry
{ {
_NDEntry() : lastQuerySent(0), lastResponseReceived(0), mac(), local(false) {} _NDEntry() : lastQuerySent(0), lastResponseReceived(0), mac(), local(false)
uint64_t lastQuerySent; {}
uint64_t lastResponseReceived;
MAC mac;
bool local;
};
Map< InetAddress,_NDEntry > _cache; uint64_t lastQuerySent;
uint64_t _lastCleaned; uint64_t lastResponseReceived;
MAC mac;
bool local;
};
Map< InetAddress, _NDEntry > _cache;
uint64_t _lastCleaned;
}; };
} // namespace ZeroTier } // namespace ZeroTier