A bunch of boring formattings stuff, etc.

This commit is contained in:
Adam Ierymenko 2020-05-14 10:55:41 -07:00
parent 52e1f5502d
commit d3777b3eb4
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
21 changed files with 611 additions and 788 deletions

View file

@ -21,8 +21,6 @@
#define ZT_ADDRESS_STRING_SIZE_MAX (ZT_ADDRESS_LENGTH_HEX + 1) #define ZT_ADDRESS_STRING_SIZE_MAX (ZT_ADDRESS_LENGTH_HEX + 1)
static_assert(ZT_ADDRESS_LENGTH == 5,"parts of Address will need modification for any change in ZT_ADDRESS_LENGTH");
namespace ZeroTier { namespace ZeroTier {
/** /**

View file

@ -394,9 +394,12 @@ public:
{ {
const char *const s = (const char *)(unsafeData + ii); const char *const s = (const char *)(unsafeData + ii);
const int sii = ii; const int sii = ii;
while (likely(ii < ZT_BUF_MEM_SIZE)) { while (ii < ZT_BUF_MEM_SIZE) {
if (unsafeData[ii++] == 0) { if (unsafeData[ii++] == 0) {
Utils::copy(buf,s,ii - sii); const int l = ii - sii;
if (unlikely((unsigned int)l > bufSize))
return nullptr;
Utils::copy(buf,s,l);
return buf; return buf;
} }
} }

View file

@ -41,7 +41,6 @@ set(core_headers
SelfAwareness.hpp SelfAwareness.hpp
SHA512.hpp SHA512.hpp
SharedPtr.hpp SharedPtr.hpp
Speck128.hpp
SymmetricKey.hpp SymmetricKey.hpp
Tag.hpp Tag.hpp
Topology.hpp Topology.hpp

View file

@ -36,11 +36,15 @@ int Capability::marshal(uint8_t data[ZT_CAPABILITY_MARSHAL_SIZE_MAX],const bool
data[p++] = 0x7f; data[p++] = 0x7f;
} }
Utils::storeBigEndian<uint64_t>(data + p, m_nwid); p += 8; Utils::storeBigEndian<uint64_t>(data + p, m_nwid);
Utils::storeBigEndian<uint64_t>(data + p,(uint64_t)m_ts); p += 8; p += 8;
Utils::storeBigEndian<uint32_t>(data + p, m_id); p += 4; Utils::storeBigEndian<uint64_t>(data + p, (uint64_t) m_ts);
p += 8;
Utils::storeBigEndian<uint32_t>(data + p, m_id);
p += 4;
Utils::storeBigEndian<uint16_t>(data + p,(uint16_t)m_ruleCount); p += 2; Utils::storeBigEndian<uint16_t>(data + p, (uint16_t) m_ruleCount);
p += 2;
p += Capability::marshalVirtualNetworkRules(data + p, m_rules, m_ruleCount); p += Capability::marshalVirtualNetworkRules(data + p, m_rules, m_ruleCount);
// LEGACY: older versions supported multiple records with this being a maximum custody // LEGACY: older versions supported multiple records with this being a maximum custody
@ -48,11 +52,15 @@ int Capability::marshal(uint8_t data[ZT_CAPABILITY_MARSHAL_SIZE_MAX],const bool
data[p++] = (uint8_t) 1; data[p++] = (uint8_t) 1;
if (!forSign) { if (!forSign) {
m_issuedTo.copyTo(data + p); p += ZT_ADDRESS_LENGTH; m_issuedTo.copyTo(data + p);
m_signedBy.copyTo(data + 0); p += ZT_ADDRESS_LENGTH; p += ZT_ADDRESS_LENGTH;
m_signedBy.copyTo(data + 0);
p += ZT_ADDRESS_LENGTH;
data[p++] = 1; // LEGACY: old versions require a reserved byte here data[p++] = 1; // LEGACY: old versions require a reserved byte here
Utils::storeBigEndian<uint16_t>(data + p,(uint16_t)m_signatureLength); p += 2; Utils::storeBigEndian<uint16_t>(data + p, (uint16_t) m_signatureLength);
Utils::copy(data + p, m_signature, m_signatureLength); p += (int)m_signatureLength; p += 2;
Utils::copy(data + p, m_signature, m_signatureLength);
p += (int) m_signatureLength;
// LEGACY: older versions supported more than one record terminated by a zero address. // LEGACY: older versions supported more than one record terminated by a zero address.
for (int k = 0;k < ZT_ADDRESS_LENGTH;++k) for (int k = 0;k < ZT_ADDRESS_LENGTH;++k)
@ -98,7 +106,8 @@ int Capability::unmarshal(const uint8_t *data,int len) noexcept
for (unsigned int i = 0;;++i) { for (unsigned int i = 0;;++i) {
if ((p + ZT_ADDRESS_LENGTH) > len) if ((p + ZT_ADDRESS_LENGTH) > len)
return -1; return -1;
const Address to(data + p); p += ZT_ADDRESS_LENGTH; const Address to(data + p);
p += ZT_ADDRESS_LENGTH;
if (!to) if (!to)
break; break;
@ -106,14 +115,17 @@ int Capability::unmarshal(const uint8_t *data,int len) noexcept
m_issuedTo = to; m_issuedTo = to;
if ((p + ZT_ADDRESS_LENGTH) > len) if ((p + ZT_ADDRESS_LENGTH) > len)
return -1; return -1;
m_signedBy.setTo(data + p); p += ZT_ADDRESS_LENGTH + 1; // LEGACY: +1 to skip reserved field m_signedBy.setTo(data + p);
p += ZT_ADDRESS_LENGTH + 1; // LEGACY: +1 to skip reserved field
if ((p + 2) > len) if ((p + 2) > len)
return -1; return -1;
m_signatureLength = Utils::loadBigEndian<uint16_t>(data + p); p += 2; m_signatureLength = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
if ((m_signatureLength > sizeof(m_signature)) || ((p + (int) m_signatureLength) > len)) if ((m_signatureLength > sizeof(m_signature)) || ((p + (int) m_signatureLength) > len))
return -1; return -1;
Utils::copy(m_signature, data + p, m_signatureLength); p += (int)m_signatureLength; Utils::copy(m_signature, data + p, m_signatureLength);
p += (int) m_signatureLength;
} }
if ((p + 2) > len) if ((p + 2) > len)
@ -139,18 +151,23 @@ int Capability::marshalVirtualNetworkRules(uint8_t *data,const ZT_VirtualNetwork
case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT: case ZT_NETWORK_RULE_ACTION_REDIRECT:
data[p++] = 14; data[p++] = 14;
Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.fwd.address); p += 8; Utils::storeBigEndian<uint64_t>(data + p, rules[i].v.fwd.address);
Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.fwd.flags); p += 4; p += 8;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.fwd.length); p += 2; Utils::storeBigEndian<uint32_t>(data + p, rules[i].v.fwd.flags);
p += 4;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.fwd.length);
p += 2;
break; break;
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
data[p++] = 5; data[p++] = 5;
Address(rules[i].v.zt).copyTo(data + p); p += ZT_ADDRESS_LENGTH; Address(rules[i].v.zt).copyTo(data + p);
p += ZT_ADDRESS_LENGTH;
break; break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID: case ZT_NETWORK_RULE_MATCH_VLAN_ID:
data[p++] = 2; data[p++] = 2;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.vlanId); p += 2; Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.vlanId);
p += 2;
break; break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP: case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
data[p++] = 1; data[p++] = 1;
@ -163,7 +180,8 @@ int Capability::marshalVirtualNetworkRules(uint8_t *data,const ZT_VirtualNetwork
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST: case ZT_NETWORK_RULE_MATCH_MAC_DEST:
data[p++] = 6; data[p++] = 6;
MAC(rules[i].v.mac).copyTo(data + p); p += 6; MAC(rules[i].v.mac).copyTo(data + p);
p += 6;
break; break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST: case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
@ -177,7 +195,8 @@ int Capability::marshalVirtualNetworkRules(uint8_t *data,const ZT_VirtualNetwork
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST: case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
data[p++] = 17; data[p++] = 17;
Utils::copy<16>(data + p,rules[i].v.ipv6.ip); p += 16; Utils::copy<16>(data + p, rules[i].v.ipv6.ip);
p += 16;
data[p++] = rules[i].v.ipv6.mask; data[p++] = rules[i].v.ipv6.mask;
break; break;
case ZT_NETWORK_RULE_MATCH_IP_TOS: case ZT_NETWORK_RULE_MATCH_IP_TOS:
@ -192,7 +211,8 @@ int Capability::marshalVirtualNetworkRules(uint8_t *data,const ZT_VirtualNetwork
break; break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE: case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
data[p++] = 2; data[p++] = 2;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.etherType); p += 2; Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.etherType);
p += 2;
break; break;
case ZT_NETWORK_RULE_MATCH_ICMP: case ZT_NETWORK_RULE_MATCH_ICMP:
data[p++] = 3; data[p++] = 3;
@ -203,21 +223,27 @@ int Capability::marshalVirtualNetworkRules(uint8_t *data,const ZT_VirtualNetwork
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
data[p++] = 4; data[p++] = 4;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.port[0]); p += 2; Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.port[0]);
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.port[1]); p += 2; p += 2;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.port[1]);
p += 2;
break; break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
data[p++] = 8; data[p++] = 8;
Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.characteristics); p += 8; Utils::storeBigEndian<uint64_t>(data + p, rules[i].v.characteristics);
p += 8;
break; break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
data[p++] = 4; data[p++] = 4;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.frameSize[0]); p += 2; Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.frameSize[0]);
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.frameSize[1]); p += 2; p += 2;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.frameSize[1]);
p += 2;
break; break;
case ZT_NETWORK_RULE_MATCH_RANDOM: case ZT_NETWORK_RULE_MATCH_RANDOM:
data[p++] = 4; data[p++] = 4;
Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.randomProbability); p += 4; Utils::storeBigEndian<uint32_t>(data + p, rules[i].v.randomProbability);
p += 4;
break; break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE: case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
@ -227,14 +253,19 @@ int Capability::marshalVirtualNetworkRules(uint8_t *data,const ZT_VirtualNetwork
case ZT_NETWORK_RULE_MATCH_TAG_SENDER: case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
data[p++] = 8; data[p++] = 8;
Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.tag.id); p += 4; Utils::storeBigEndian<uint32_t>(data + p, rules[i].v.tag.id);
Utils::storeBigEndian<uint32_t>(data + p,rules[i].v.tag.value); p += 4; p += 4;
Utils::storeBigEndian<uint32_t>(data + p, rules[i].v.tag.value);
p += 4;
break; break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE: case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
data[p++] = 19; data[p++] = 19;
Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.intRange.start); p += 8; Utils::storeBigEndian<uint64_t>(data + p, rules[i].v.intRange.start);
Utils::storeBigEndian<uint64_t>(data + p,rules[i].v.intRange.start + (uint64_t)rules[i].v.intRange.end); p += 8; p += 8;
Utils::storeBigEndian<uint16_t>(data + p,rules[i].v.intRange.idx); p += 2; Utils::storeBigEndian<uint64_t>(data + p, rules[i].v.intRange.start + (uint64_t) rules[i].v.intRange.end);
p += 8;
Utils::storeBigEndian<uint16_t>(data + p, rules[i].v.intRange.idx);
p += 2;
data[p++] = rules[i].v.intRange.format; data[p++] = rules[i].v.intRange.format;
break; break;
} }
@ -260,18 +291,23 @@ int Capability::unmarshalVirtualNetworkRules(const uint8_t *const data,const int
case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_WATCH:
case ZT_NETWORK_RULE_ACTION_REDIRECT: case ZT_NETWORK_RULE_ACTION_REDIRECT:
if ((p + 14) > len) return -1; if ((p + 14) > len) return -1;
rules[ruleCount].v.fwd.address = Utils::loadBigEndian<uint64_t>(data + p); p += 8; rules[ruleCount].v.fwd.address = Utils::loadBigEndian<uint64_t>(data + p);
rules[ruleCount].v.fwd.flags = Utils::loadBigEndian<uint32_t>(data + p); p += 4; p += 8;
rules[ruleCount].v.fwd.length = Utils::loadBigEndian<uint16_t>(data + p); p += 2; rules[ruleCount].v.fwd.flags = Utils::loadBigEndian<uint32_t>(data + p);
p += 4;
rules[ruleCount].v.fwd.length = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
break; break;
case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
if ((p + ZT_ADDRESS_LENGTH) > len) return -1; if ((p + ZT_ADDRESS_LENGTH) > len) return -1;
rules[ruleCount].v.zt = Address(data + p).toInt(); p += ZT_ADDRESS_LENGTH; rules[ruleCount].v.zt = Address(data + p).toInt();
p += ZT_ADDRESS_LENGTH;
break; break;
case ZT_NETWORK_RULE_MATCH_VLAN_ID: case ZT_NETWORK_RULE_MATCH_VLAN_ID:
if ((p + 2) > len) return -1; if ((p + 2) > len) return -1;
rules[ruleCount].v.vlanId = Utils::loadBigEndian<uint16_t>(data + p); p += 2; rules[ruleCount].v.vlanId = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
break; break;
case ZT_NETWORK_RULE_MATCH_VLAN_PCP: case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
if ((p + 1) > len) return -1; if ((p + 1) > len) return -1;
@ -284,18 +320,21 @@ int Capability::unmarshalVirtualNetworkRules(const uint8_t *const data,const int
case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
case ZT_NETWORK_RULE_MATCH_MAC_DEST: case ZT_NETWORK_RULE_MATCH_MAC_DEST:
if ((p + 6) > len) return -1; if ((p + 6) > len) return -1;
Utils::copy<6>(rules[ruleCount].v.mac,data + p); p += 6; Utils::copy<6>(rules[ruleCount].v.mac, data + p);
p += 6;
break; break;
case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV4_DEST: case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
if ((p + 5) > len) return -1; if ((p + 5) > len) return -1;
Utils::copy<4>(&(rules[ruleCount].v.ipv4.ip),data + p); p += 4; Utils::copy<4>(&(rules[ruleCount].v.ipv4.ip), data + p);
p += 4;
rules[ruleCount].v.ipv4.mask = data[p++]; rules[ruleCount].v.ipv4.mask = data[p++];
break; break;
case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
case ZT_NETWORK_RULE_MATCH_IPV6_DEST: case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
if ((p + 17) > len) return -1; if ((p + 17) > len) return -1;
Utils::copy<16>(rules[ruleCount].v.ipv6.ip,data + p); p += 16; Utils::copy<16>(rules[ruleCount].v.ipv6.ip, data + p);
p += 16;
rules[ruleCount].v.ipv6.mask = data[p++]; rules[ruleCount].v.ipv6.mask = data[p++];
break; break;
case ZT_NETWORK_RULE_MATCH_IP_TOS: case ZT_NETWORK_RULE_MATCH_IP_TOS:
@ -310,7 +349,8 @@ int Capability::unmarshalVirtualNetworkRules(const uint8_t *const data,const int
break; break;
case ZT_NETWORK_RULE_MATCH_ETHERTYPE: case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
if ((p + 2) > len) return -1; if ((p + 2) > len) return -1;
rules[ruleCount].v.etherType = Utils::loadBigEndian<uint16_t>(data + p); p += 2; rules[ruleCount].v.etherType = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
break; break;
case ZT_NETWORK_RULE_MATCH_ICMP: case ZT_NETWORK_RULE_MATCH_ICMP:
if ((p + 3) > len) return -1; if ((p + 3) > len) return -1;
@ -321,21 +361,27 @@ int Capability::unmarshalVirtualNetworkRules(const uint8_t *const data,const int
case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
if ((p + 4) > len) return -1; if ((p + 4) > len) return -1;
rules[ruleCount].v.port[0] = Utils::loadBigEndian<uint16_t>(data + p); p += 2; rules[ruleCount].v.port[0] = Utils::loadBigEndian<uint16_t>(data + p);
rules[ruleCount].v.port[1] = Utils::loadBigEndian<uint16_t>(data + p); p += 2; p += 2;
rules[ruleCount].v.port[1] = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
break; break;
case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS:
if ((p + 8) > len) return -1; if ((p + 8) > len) return -1;
rules[ruleCount].v.characteristics = Utils::loadBigEndian<uint64_t>(data + p); p += 8; rules[ruleCount].v.characteristics = Utils::loadBigEndian<uint64_t>(data + p);
p += 8;
break; break;
case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
if ((p + 4) > len) return -1; if ((p + 4) > len) return -1;
rules[ruleCount].v.frameSize[0] = Utils::loadBigEndian<uint16_t>(data + p); p += 2; rules[ruleCount].v.frameSize[0] = Utils::loadBigEndian<uint16_t>(data + p);
rules[ruleCount].v.frameSize[1] = Utils::loadBigEndian<uint16_t>(data + p); p += 2; p += 2;
rules[ruleCount].v.frameSize[1] = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
break; break;
case ZT_NETWORK_RULE_MATCH_RANDOM: case ZT_NETWORK_RULE_MATCH_RANDOM:
if ((p + 4) > len) return -1; if ((p + 4) > len) return -1;
rules[ruleCount].v.randomProbability = Utils::loadBigEndian<uint32_t>(data + p); p += 4; rules[ruleCount].v.randomProbability = Utils::loadBigEndian<uint32_t>(data + p);
p += 4;
break; break;
case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE: case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
@ -345,14 +391,19 @@ int Capability::unmarshalVirtualNetworkRules(const uint8_t *const data,const int
case ZT_NETWORK_RULE_MATCH_TAG_SENDER: case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER:
if ((p + 4) > len) return -1; if ((p + 4) > len) return -1;
rules[ruleCount].v.tag.id = Utils::loadBigEndian<uint32_t>(data + p); p += 4; rules[ruleCount].v.tag.id = Utils::loadBigEndian<uint32_t>(data + p);
rules[ruleCount].v.tag.value = Utils::loadBigEndian<uint32_t>(data + p); p += 4; p += 4;
rules[ruleCount].v.tag.value = Utils::loadBigEndian<uint32_t>(data + p);
p += 4;
break; break;
case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE: case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE:
if ((p + 19) > len) return -1; if ((p + 19) > len) return -1;
rules[ruleCount].v.intRange.start = Utils::loadBigEndian<uint64_t>(data + p); p += 8; rules[ruleCount].v.intRange.start = Utils::loadBigEndian<uint64_t>(data + p);
rules[ruleCount].v.intRange.end = (uint32_t)(Utils::loadBigEndian<uint64_t>(data + p) - rules[ruleCount].v.intRange.start); p += 8; p += 8;
rules[ruleCount].v.intRange.idx = Utils::loadBigEndian<uint16_t>(data + p); p += 2; rules[ruleCount].v.intRange.end = (uint32_t) (Utils::loadBigEndian<uint64_t>(data + p) - rules[ruleCount].v.intRange.start);
p += 8;
rules[ruleCount].v.intRange.idx = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
rules[ruleCount].v.intRange.format = data[p++]; rules[ruleCount].v.intRange.format = data[p++];
break; break;
} }

View file

@ -20,7 +20,8 @@ CertificateOfMembership::CertificateOfMembership(const int64_t timestamp,const i
m_timestampMaxDelta(timestampMaxDelta), m_timestampMaxDelta(timestampMaxDelta),
m_networkId(nwid), m_networkId(nwid),
m_issuedTo(issuedTo.fingerprint()), m_issuedTo(issuedTo.fingerprint()),
m_signatureLength(0) {} m_signatureLength(0)
{}
bool CertificateOfMembership::agreesWith(const CertificateOfMembership &other) const noexcept bool CertificateOfMembership::agreesWith(const CertificateOfMembership &other) const noexcept
{ {
@ -100,15 +101,24 @@ int CertificateOfMembership::marshal(uint8_t data[ZT_CERTIFICATEOFMEMBERSHIP_MAR
// All formats start with the standard three qualifiers: timestamp with delta, network ID as a strict // All formats start with the standard three qualifiers: timestamp with delta, network ID as a strict
// equality compare, and the address of the issued-to node as an informational tuple. // equality compare, and the address of the issued-to node as an informational tuple.
int p = 3; int p = 3;
Utils::storeBigEndian<uint64_t>(data + p,0); p += 8; Utils::storeBigEndian<uint64_t>(data + p, 0);
Utils::storeBigEndian<uint64_t>(data + p,(uint64_t)m_timestamp); p += 8; p += 8;
Utils::storeBigEndian<uint64_t>(data + p,(uint64_t)m_timestampMaxDelta); p += 8; Utils::storeBigEndian<uint64_t>(data + p, (uint64_t) m_timestamp);
Utils::storeBigEndian<uint64_t>(data + p,1); p += 8; p += 8;
Utils::storeBigEndian<uint64_t>(data + p, m_networkId); p += 8; Utils::storeBigEndian<uint64_t>(data + p, (uint64_t) m_timestampMaxDelta);
Utils::storeBigEndian<uint64_t>(data + p,0); p += 8; p += 8;
Utils::storeBigEndian<uint64_t>(data + p,2); p += 8; Utils::storeBigEndian<uint64_t>(data + p, 1);
Utils::storeBigEndian<uint64_t>(data + p, m_issuedTo.address().toInt()); p += 8; p += 8;
Utils::storeAsIsEndian<uint64_t>(data + p,0xffffffffffffffffULL); p += 8; Utils::storeBigEndian<uint64_t>(data + p, m_networkId);
p += 8;
Utils::storeBigEndian<uint64_t>(data + p, 0);
p += 8;
Utils::storeBigEndian<uint64_t>(data + p, 2);
p += 8;
Utils::storeBigEndian<uint64_t>(data + p, m_issuedTo.address().toInt());
p += 8;
Utils::storeAsIsEndian<uint64_t>(data + p, 0xffffffffffffffffULL);
p += 8;
if (v2) { if (v2) {
// V2 marshal format will have three tuples followed by the fingerprint hash. // V2 marshal format will have three tuples followed by the fingerprint hash.
@ -119,17 +129,22 @@ int CertificateOfMembership::marshal(uint8_t data[ZT_CERTIFICATEOFMEMBERSHIP_MAR
// V1 marshal format must shove everything into tuples, resulting in nine. // V1 marshal format must shove everything into tuples, resulting in nine.
Utils::storeBigEndian<uint16_t>(data + 1, 9); Utils::storeBigEndian<uint16_t>(data + 1, 9);
for (int k = 0;k < 6;++k) { for (int k = 0;k < 6;++k) {
Utils::storeBigEndian<uint64_t>(data + p,(uint64_t)k + 3); p += 8; Utils::storeBigEndian<uint64_t>(data + p, (uint64_t) k + 3);
Utils::storeAsIsEndian<uint64_t>(data + p,Utils::loadAsIsEndian<uint64_t>(m_issuedTo.hash() + (k * 8))); p += 8; p += 8;
Utils::storeAsIsEndian<uint64_t>(data + p,0xffffffffffffffffULL); p += 8; Utils::storeAsIsEndian<uint64_t>(data + p, Utils::loadAsIsEndian<uint64_t>(m_issuedTo.hash() + (k * 8)));
p += 8;
Utils::storeAsIsEndian<uint64_t>(data + p, 0xffffffffffffffffULL);
p += 8;
} }
} }
m_signedBy.copyTo(data + p); p += 5; m_signedBy.copyTo(data + p);
p += 5;
if (v2) { if (v2) {
// V2 marshal format prefixes signatures with a 16-bit length to support future signature types. // V2 marshal format prefixes signatures with a 16-bit length to support future signature types.
Utils::storeBigEndian<uint16_t>(data + p,(uint16_t)m_signatureLength); p += 2; Utils::storeBigEndian<uint16_t>(data + p, (uint16_t) m_signatureLength);
p += 2;
Utils::copy(data + p, m_signature, m_signatureLength); Utils::copy(data + p, m_signature, m_signatureLength);
p += (int) m_signatureLength; p += (int) m_signatureLength;
} else { } else {
@ -155,9 +170,12 @@ int CertificateOfMembership::unmarshal(const uint8_t *data,int len) noexcept
for (unsigned int q = 0;q < numq;++q) { for (unsigned int q = 0;q < numq;++q) {
if ((p + 24) > len) if ((p + 24) > len)
return -1; return -1;
const uint64_t id = Utils::loadBigEndian<uint64_t>(data + p); p += 8; // NOLINT(hicpp-use-auto,modernize-use-auto) const uint64_t id = Utils::loadBigEndian<uint64_t>(data + p);
const uint64_t value = Utils::loadBigEndian<uint64_t>(data + p); p += 8; // NOLINT(hicpp-use-auto,modernize-use-auto) p += 8; // NOLINT(hicpp-use-auto,modernize-use-auto)
const uint64_t delta = Utils::loadBigEndian<uint64_t>(data + p); p += 8; // NOLINT(hicpp-use-auto,modernize-use-auto) const uint64_t value = Utils::loadBigEndian<uint64_t>(data + p);
p += 8; // NOLINT(hicpp-use-auto,modernize-use-auto)
const uint64_t delta = Utils::loadBigEndian<uint64_t>(data + p);
p += 8; // NOLINT(hicpp-use-auto,modernize-use-auto)
switch (id) { switch (id) {
case 0: case 0:
m_timestamp = (int64_t) value; m_timestamp = (int64_t) value;

View file

@ -68,12 +68,16 @@ int CertificateOfOwnership::marshal(uint8_t data[ZT_CERTIFICATEOFOWNERSHIP_MARSH
Utils::copy<ZT_CERTIFICATEOFOWNERSHIP_MAX_THING_VALUE_SIZE>(data + p, m_thingValues[i]); Utils::copy<ZT_CERTIFICATEOFOWNERSHIP_MAX_THING_VALUE_SIZE>(data + p, m_thingValues[i]);
p += ZT_CERTIFICATEOFOWNERSHIP_MAX_THING_VALUE_SIZE; p += ZT_CERTIFICATEOFOWNERSHIP_MAX_THING_VALUE_SIZE;
} }
m_issuedTo.copyTo(data + p); p += ZT_ADDRESS_LENGTH; m_issuedTo.copyTo(data + p);
m_signedBy.copyTo(data + p); p += ZT_ADDRESS_LENGTH; p += ZT_ADDRESS_LENGTH;
m_signedBy.copyTo(data + p);
p += ZT_ADDRESS_LENGTH;
if (!forSign) { if (!forSign) {
data[p++] = 1; data[p++] = 1;
Utils::storeBigEndian<uint16_t>(data + p,(uint16_t)m_signatureLength); p += 2; Utils::storeBigEndian<uint16_t>(data + p, (uint16_t) m_signatureLength);
Utils::copy(data + p, m_signature, m_signatureLength); p += (int)m_signatureLength; p += 2;
Utils::copy(data + p, m_signature, m_signatureLength);
p += (int) m_signatureLength;
} }
data[p++] = 0; data[p++] = 0;
data[p++] = 0; data[p++] = 0;
@ -108,8 +112,10 @@ int CertificateOfOwnership::unmarshal(const uint8_t *data,int len) noexcept
if ((p + ZT_ADDRESS_LENGTH + ZT_ADDRESS_LENGTH + 1 + 2) > len) if ((p + ZT_ADDRESS_LENGTH + ZT_ADDRESS_LENGTH + 1 + 2) > len)
return -1; return -1;
m_issuedTo.setTo(data + p); p += ZT_ADDRESS_LENGTH; m_issuedTo.setTo(data + p);
m_signedBy.setTo(data + p); p += ZT_ADDRESS_LENGTH + 1; p += ZT_ADDRESS_LENGTH;
m_signedBy.setTo(data + p);
p += ZT_ADDRESS_LENGTH + 1;
p += 2 + Utils::loadBigEndian<uint16_t>(data + p); p += 2 + Utils::loadBigEndian<uint16_t>(data + p);
if (p > len) if (p > len)

View file

@ -16,10 +16,8 @@
#include "SHA512.hpp" #include "SHA512.hpp"
#include "Salsa20.hpp" #include "Salsa20.hpp"
#include "Utils.hpp" #include "Utils.hpp"
#include "Speck128.hpp" #include "AES.hpp"
#include <cstring>
#include <cstdint>
#include <algorithm> #include <algorithm>
namespace ZeroTier { namespace ZeroTier {
@ -78,74 +76,34 @@ struct identityV0ProofOfWorkCriteria
// It's not quite as heavy as the V0 frankenhash, is a little more orderly in // It's not quite as heavy as the V0 frankenhash, is a little more orderly in
// its design, but remains relatively resistant to GPU acceleration due to memory // its design, but remains relatively resistant to GPU acceleration due to memory
// requirements for efficient computation. // requirements for efficient computation.
#define ZT_IDENTITY_V1_POW_MEMORY_SIZE 98304 #define ZT_IDENTITY_V1_POW_MEMORY_SIZE 1048576
#define ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64 131072
bool identityV1ProofOfWorkCriteria(const void *in,const unsigned int len,uint64_t *const b) bool identityV1ProofOfWorkCriteria(const void *in,const unsigned int len,uint64_t *const b)
{ {
SHA512(b,in,len); SHA512(b,in,len);
// This treats hash output as little-endian, so swap on BE machines. AES c(b);
#if __BYTE_ORDER == __BIG_ENDIAN for(unsigned int i=8;i<ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64;i+=8) {
b[0] = Utils::swapBytes(b[0]); SHA512(b + i,b + (i - 8),64);
b[1] = Utils::swapBytes(b[1]); if (unlikely((b[i] % 31337ULL) == (b[i] >> 49U)))
b[2] = Utils::swapBytes(b[2]); c.encrypt(b + i,b + i);
b[3] = Utils::swapBytes(b[3]);
b[4] = Utils::swapBytes(b[4]);
b[5] = Utils::swapBytes(b[5]);
b[6] = Utils::swapBytes(b[6]);
b[7] = Utils::swapBytes(b[7]);
#endif
// Memory-intensive work: fill 'b' with pseudo-random bits generated from
// a reduced-round instance of Speck128 using a CBC-like construction.
// Then sort the resulting integer array in ascending numerical order.
// The sort requires that we compute and cache the whole data set, or at
// least that this is the most efficient implementation.
Speck128<24> s16;
s16.initXY(b[4],b[5]);
for(unsigned long i=0;i<(ZT_IDENTITY_V1_POW_MEMORY_SIZE-8);) {
// Load four 128-bit blocks.
uint64_t x0 = b[i];
uint64_t y0 = b[i + 1];
uint64_t x1 = b[i + 2];
uint64_t y1 = b[i + 3];
uint64_t x2 = b[i + 4];
uint64_t y2 = b[i + 5];
uint64_t x3 = b[i + 6];
uint64_t y3 = b[i + 7];
// Advance by 512 bits / 64 bytes (its a uint64_t array).
i += 8;
// Ensure that mixing happens across blocks.
x0 += x1;
x1 += x2;
x2 += x3;
x3 += y0;
// Encrypt 4X blocks. Speck is used for this PoW function because
// its performance is similar on all architectures while AES is much
// faster on some than others.
s16.encryptXYXYXYXY(x0,y0,x1,y1,x2,y2,x3,y3);
// Store four 128-bit blocks at new position.
b[i] = x0;
b[i + 1] = y0;
b[i + 2] = x1;
b[i + 3] = y1;
b[i + 4] = x2;
b[i + 5] = y2;
b[i + 6] = x3;
b[i + 7] = y3;
} }
// Sort array, something that can't efficiently be done unless we have
// computed the whole array and have it in memory. This also involves
// branching which is less efficient on GPUs.
std::sort(b,b + ZT_IDENTITY_V1_POW_MEMORY_SIZE);
// Swap byte order back on BE machines.
#if __BYTE_ORDER == __BIG_ENDIAN #if __BYTE_ORDER == __BIG_ENDIAN
for(unsigned int i=0;i<98304;i+=8) { for(unsigned int i=0;i<ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64;i+=8) {
b[i] = Utils::swapBytes(b[i]);
b[i + 1] = Utils::swapBytes(b[i + 1]);
b[i + 2] = Utils::swapBytes(b[i + 2]);
b[i + 3] = Utils::swapBytes(b[i + 3]);
b[i + 4] = Utils::swapBytes(b[i + 4]);
b[i + 5] = Utils::swapBytes(b[i + 5]);
b[i + 6] = Utils::swapBytes(b[i + 6]);
b[i + 7] = Utils::swapBytes(b[i + 7]);
}
#endif
std::sort(b,b + ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64);
#if __BYTE_ORDER == __BIG_ENDIAN
for(unsigned int i=0;i<ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64;i+=8) {
b[i] = Utils::swapBytes(b[i]); b[i] = Utils::swapBytes(b[i]);
b[i + 1] = Utils::swapBytes(b[i + 1]); b[i + 1] = Utils::swapBytes(b[i + 1]);
b[i + 2] = Utils::swapBytes(b[i + 2]); b[i + 2] = Utils::swapBytes(b[i + 2]);
@ -158,6 +116,9 @@ bool identityV1ProofOfWorkCriteria(const void *in,const unsigned int len,uint64_
#endif #endif
// Hash resulting sorted array to get final result for PoW criteria test. // Hash resulting sorted array to get final result for PoW criteria test.
// We also include the original input after so that cryptographically this
// is exactly like SHA384(in). This should make any FIPS types happy as
// this means the identity hash is SHA384 and not some weird construction.
SHA384(b,b,sizeof(b),in,len); SHA384(b,b,sizeof(b),in,len);
// PoW passes if sum of first two 64-bit integers (treated as little-endian) mod 180 is 0. // PoW passes if sum of first two 64-bit integers (treated as little-endian) mod 180 is 0.
@ -197,7 +158,7 @@ bool Identity::generate(const Type t)
} break; } break;
case P384: { case P384: {
uint64_t *const b = (uint64_t *)malloc(ZT_IDENTITY_V1_POW_MEMORY_SIZE * 8); // NOLINT(hicpp-use-auto,modernize-use-auto) uint64_t *const b = (uint64_t *)malloc(ZT_IDENTITY_V1_POW_MEMORY_SIZE); // NOLINT(hicpp-use-auto,modernize-use-auto)
if (!b) if (!b)
return false; return false;
for(;;) { for(;;) {

View file

@ -43,7 +43,7 @@ bool NetworkConfig::toDictionary(Dictionary &d) const
d.add(ZT_NETWORKCONFIG_DICT_KEY_COM,tmp,this->com.marshal(tmp)); d.add(ZT_NETWORKCONFIG_DICT_KEY_COM,tmp,this->com.marshal(tmp));
} }
std::vector<uint8_t> *blob = &(d[ZT_NETWORKCONFIG_DICT_KEY_CAPABILITIES]); Vector<uint8_t> *blob = &(d[ZT_NETWORKCONFIG_DICT_KEY_CAPABILITIES]);
for (unsigned int i = 0; i < this->capabilityCount; ++i) { for (unsigned int i = 0; i < this->capabilityCount; ++i) {
int l = this->capabilities[i].marshal(tmp); int l = this->capabilities[i].marshal(tmp);
if (l < 0) if (l < 0)
@ -121,7 +121,7 @@ bool NetworkConfig::fromDictionary(const Dictionary &d)
this->credentialTimeMaxDelta = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_CREDENTIAL_TIME_MAX_DELTA,0); this->credentialTimeMaxDelta = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_CREDENTIAL_TIME_MAX_DELTA,0);
this->revision = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_REVISION,0); this->revision = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_REVISION,0);
this->issuedTo = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO,0); this->issuedTo = d.getUI(ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO,0);
const std::vector<uint8_t> *blob = &(d[ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO_IDENTITY_HASH]); const Vector<uint8_t> *blob = &(d[ZT_NETWORKCONFIG_DICT_KEY_ISSUED_TO_IDENTITY_HASH]);
if (blob->size() == ZT_FINGERPRINT_HASH_SIZE) { if (blob->size() == ZT_FINGERPRINT_HASH_SIZE) {
Utils::copy<ZT_FINGERPRINT_HASH_SIZE>(this->issuedToFingerprintHash,blob->data()); Utils::copy<ZT_FINGERPRINT_HASH_SIZE>(this->issuedToFingerprintHash,blob->data());
} else { } else {

View file

@ -99,9 +99,14 @@ public:
} }
} }
ZT_INLINE SharedPtr<Peer> &operator[](const unsigned int i) noexcept { return m_peers[i]; } ZT_INLINE SharedPtr <Peer> &operator[](const unsigned int i) noexcept
ZT_INLINE const SharedPtr<Peer> &operator[](const unsigned int i) const noexcept { return m_peers[i]; } { return m_peers[i]; }
ZT_INLINE unsigned int size() const noexcept { return m_peerCount; }
ZT_INLINE const SharedPtr <Peer> &operator[](const unsigned int i) const noexcept
{ return m_peers[i]; }
ZT_INLINE unsigned int size() const noexcept
{ return m_peerCount; }
private: private:
SharedPtr <Peer> m_onePeer; SharedPtr <Peer> m_onePeer;

View file

@ -33,15 +33,24 @@ int Revocation::marshal(uint8_t data[ZT_REVOCATION_MARSHAL_SIZE_MAX],bool forSig
for (int k = 0;k < 8;++k) for (int k = 0;k < 8;++k)
data[p++] = 0x7f; data[p++] = 0x7f;
} }
Utils::storeBigEndian<uint32_t>(data + p,0); p += 4; Utils::storeBigEndian<uint32_t>(data + p, 0);
Utils::storeBigEndian<uint32_t>(data + p, m_id); p += 4; p += 4;
Utils::storeBigEndian<uint64_t>(data + p, m_networkId); p += 8; Utils::storeBigEndian<uint32_t>(data + p, m_id);
Utils::storeBigEndian<uint32_t>(data + p,0); p += 4; p += 4;
Utils::storeBigEndian<uint32_t>(data + p, m_credentialId); p += 4; Utils::storeBigEndian<uint64_t>(data + p, m_networkId);
Utils::storeBigEndian<uint64_t>(data + p,(uint64_t)m_threshold); p += 8; p += 8;
Utils::storeBigEndian<uint64_t>(data + p, m_flags); p += 8; Utils::storeBigEndian<uint32_t>(data + p, 0);
m_target.copyTo(data + p); p += ZT_ADDRESS_LENGTH; p += 4;
m_signedBy.copyTo(data + p); p += ZT_ADDRESS_LENGTH; Utils::storeBigEndian<uint32_t>(data + p, m_credentialId);
p += 4;
Utils::storeBigEndian<uint64_t>(data + p, (uint64_t) m_threshold);
p += 8;
Utils::storeBigEndian<uint64_t>(data + p, m_flags);
p += 8;
m_target.copyTo(data + p);
p += ZT_ADDRESS_LENGTH;
m_signedBy.copyTo(data + p);
p += ZT_ADDRESS_LENGTH;
data[p++] = (uint8_t) m_type; data[p++] = (uint8_t) m_type;
if (!forSign) { if (!forSign) {
data[p++] = 1; data[p++] = 1;

View file

@ -3,10 +3,6 @@
#include "SHA512.hpp" #include "SHA512.hpp"
#include "Utils.hpp" #include "Utils.hpp"
#include <cstdint>
#include <cstring>
#include <algorithm>
namespace ZeroTier { namespace ZeroTier {
#ifndef ZT_HAVE_NATIVE_SHA512 #ifndef ZT_HAVE_NATIVE_SHA512

View file

@ -14,18 +14,11 @@
#ifndef ZT_SALSA20_HPP #ifndef ZT_SALSA20_HPP
#define ZT_SALSA20_HPP #define ZT_SALSA20_HPP
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include "Constants.hpp" #include "Constants.hpp"
#include "Utils.hpp" #include "Utils.hpp"
#include "TriviallyCopyable.hpp" #include "TriviallyCopyable.hpp"
#ifdef ZT_ARCH_X64 #ifdef ZT_ARCH_X64
#include <xmmintrin.h>
#include <emmintrin.h>
#include <immintrin.h>
#define ZT_SALSA20_SSE 1 #define ZT_SALSA20_SSE 1
#endif #endif

View file

@ -1,195 +0,0 @@
/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_SPECK128_HPP
#define ZT_SPECK128_HPP
#include "Constants.hpp"
#include "Utils.hpp"
#define ZT_SPECK128_KEY_SIZE 16
namespace ZeroTier {
/**
* Tiny and simple 128-bit ARX block cipher
*
* Speck does not specify a mandatory endian-ness. This implementation is
* little-endian for higher performance on the majority of platforms.
*
* Right now this is only used as part of the PoW function for V1 identity
* generation. It's used because it's faster than SHA for filling a buffer
* with randomness and unlike AES its relative performance advantage
* across CPU architectures is pretty much identical.
*
* @tparam R Number of rounds (default: 32)
*/
template<int R = 32>
class Speck128
{
public:
/**
* Create an uninitialized instance, init() must be called to set up.
*/
ZT_INLINE Speck128() noexcept {}
/**
* Initialize Speck from a 128-bit key
*
* @param k 128-bit / 16 byte key
*/
ZT_INLINE Speck128(const void *k) noexcept { this->init(k); }
ZT_INLINE ~Speck128() { Utils::burn(m_expandedKey, sizeof(m_expandedKey)); }
/**
* Initialize Speck from a 128-bit key
*
* @param k 128-bit / 16 byte key
*/
ZT_INLINE void init(const void *k) noexcept
{
initXY(Utils::loadLittleEndian<uint64_t>(k),Utils::loadLittleEndian<uint64_t>(reinterpret_cast<const uint8_t *>(k) + 8));
}
/**
* Initialize Speck from a 128-bit key in two 64-bit words
*
* @param x Least significant 64 bits
* @param y Most significant 64 bits
*/
ZT_INLINE void initXY(uint64_t x,uint64_t y) noexcept
{
m_expandedKey[0] = x;
for(uint64_t i=0;i<(R-1);++i) {
x = x >> 8U | x << 56U;
x += y;
x ^= i;
y = y << 3U | y >> 61U;
y ^= x;
m_expandedKey[i + 1] = y;
}
}
/**
* Encrypt a 128-bit block as two 64-bit words
*
* These should be in host byte order. If read or written to/from data
* they should be stored in little-endian byte order.
*
* @param x Least significant 64 bits
* @param y Most significant 64 bits
*/
ZT_INLINE void encryptXY(uint64_t &x,uint64_t &y) const noexcept
{
for (int i=0;i<R;++i) {
const uint64_t kk = m_expandedKey[i];
x = x >> 8U | x << 56U;
x += y;
x ^= kk;
y = y << 3U | y >> 61U;
y ^= x;
}
}
/**
* Encrypt 512 bits in parallel with the same key.
*
* Parallel in this case assumes instruction level parallelism, but even without that
* it may be faster due to cache/memory effects.
*/
ZT_INLINE void encryptXYXYXYXY(uint64_t &x0,uint64_t &y0,uint64_t &x1,uint64_t &y1,uint64_t &x2,uint64_t &y2,uint64_t &x3,uint64_t &y3) const noexcept
{
for (int i=0;i<R;++i) {
const uint64_t kk = m_expandedKey[i];
x0 = x0 >> 8U | x0 << 56U;
x1 = x1 >> 8U | x1 << 56U;
x2 = x2 >> 8U | x2 << 56U;
x3 = x3 >> 8U | x3 << 56U;
x0 += y0;
x1 += y1;
x2 += y2;
x3 += y3;
x0 ^= kk;
x1 ^= kk;
x2 ^= kk;
x3 ^= kk;
y0 = y0 << 3U | y0 >> 61U;
y1 = y1 << 3U | y1 >> 61U;
y2 = y2 << 3U | y2 >> 61U;
y3 = y3 << 3U | y3 >> 61U;
y0 ^= x0;
y1 ^= x1;
y2 ^= x2;
y3 ^= x3;
}
}
/**
* Decrypt a 128-bit block as two 64-bit words
*
* These should be in host byte order. If read or written to/from data
* they should be stored in little-endian byte order.
*
* @param x Least significant 64 bits
* @param y Most significant 64 bits
*/
ZT_INLINE void decryptXY(uint64_t &x,uint64_t &y) const noexcept
{
for (int i=(R-1);i>=0;--i) {
const uint64_t kk = m_expandedKey[i];
y ^= x;
y = y >> 3U | y << 61U;
x ^= kk;
x -= y;
x = x << 8U | x >> 56U;
}
}
/**
* Encrypt a block
*
* @param in 128-bit / 16 byte input
* @param out 128-bit / 16 byte output
*/
ZT_INLINE void encrypt(const void *const in,void *const out) const noexcept
{
uint64_t x = Utils::loadLittleEndian<uint64_t>(in);
uint64_t y = Utils::loadLittleEndian<uint64_t>(reinterpret_cast<const uint8_t *>(in) + 8);
encryptXY(x,y);
Utils::storeLittleEndian<uint64_t>(out,x);
Utils::storeLittleEndian<uint64_t>(reinterpret_cast<uint8_t *>(out) + 8,y);
}
/**
* Decrypt a block
*
* @param in 128-bit / 16 byte input
* @param out 128-bit / 16 byte output
*/
ZT_INLINE void decrypt(const void *const in,void *const out) const noexcept
{
uint64_t x = Utils::loadLittleEndian<uint64_t>(in);
uint64_t y = Utils::loadLittleEndian<uint64_t>(reinterpret_cast<const uint8_t *>(in) + 8);
decryptXY(x,y);
Utils::storeLittleEndian<uint64_t>(out,x);
Utils::storeLittleEndian<uint64_t>(reinterpret_cast<uint8_t *>(out) + 8,y);
}
private:
uint64_t m_expandedKey[R];
};
} // namespace ZeroTier
#endif

View file

@ -33,15 +33,22 @@ int Tag::marshal(uint8_t data[ZT_TAG_MARSHAL_SIZE_MAX],bool forSign) const noexc
for (int k = 0;k < 8;++k) for (int k = 0;k < 8;++k)
data[p++] = 0x7f; data[p++] = 0x7f;
} }
Utils::storeBigEndian<uint64_t>(data + p, m_networkId); p += 8; Utils::storeBigEndian<uint64_t>(data + p, m_networkId);
Utils::storeBigEndian<uint64_t>(data + p,(uint64_t)m_ts); p += 8; p += 8;
Utils::storeBigEndian<uint32_t>(data + p, m_id); p += 4; Utils::storeBigEndian<uint64_t>(data + p, (uint64_t) m_ts);
Utils::storeBigEndian<uint32_t>(data + p, m_value); p += 4; p += 8;
m_issuedTo.copyTo(data + p); p += ZT_ADDRESS_LENGTH; Utils::storeBigEndian<uint32_t>(data + p, m_id);
m_signedBy.copyTo(data + p); p += ZT_ADDRESS_LENGTH; p += 4;
Utils::storeBigEndian<uint32_t>(data + p, m_value);
p += 4;
m_issuedTo.copyTo(data + p);
p += ZT_ADDRESS_LENGTH;
m_signedBy.copyTo(data + p);
p += ZT_ADDRESS_LENGTH;
if (!forSign) { if (!forSign) {
data[p++] = 1; data[p++] = 1;
Utils::storeBigEndian<uint16_t>(data + p,(uint16_t)m_signatureLength); p += 2; Utils::storeBigEndian<uint16_t>(data + p, (uint16_t) m_signatureLength);
p += 2;
Utils::copy(data + p, m_signature, m_signatureLength); Utils::copy(data + p, m_signature, m_signatureLength);
p += (int) m_signatureLength; p += (int) m_signatureLength;
} }

View file

@ -403,29 +403,29 @@ extern "C" const char *ZTT_general()
FCV<LifeCycleTracker,1024> test,test2; FCV<LifeCycleTracker,1024> test,test2;
for(unsigned int i=0;i<512;++i) for(unsigned int i=0;i<512;++i)
test.push_back(LifeCycleTracker(cnt)); test.push_back(LifeCycleTracker(cnt));
if (cnt != 512) { if (cnt != (long)test.size()) {
ZT_T_PRINTF("FAILED (expected 512 objects, got %lu (1))" ZT_EOL_S,cnt); ZT_T_PRINTF("FAILED (expected 512 objects, got %lu (1))" ZT_EOL_S,cnt);
return "FCV object life cycle test failed (1)"; return "FCV object life cycle test failed (1)";
} }
test2 = test; test2 = test;
if (cnt != 1024) { if (cnt != (long)(test.size() + test2.size())) {
ZT_T_PRINTF("FAILED (expected 1024 objects, got %lu (2))" ZT_EOL_S,cnt); ZT_T_PRINTF("FAILED (expected 1024 objects, got %lu (2))" ZT_EOL_S,cnt);
return "FCV object life cycle test failed (2)"; return "FCV object life cycle test failed (2)";
} }
test.clear(); test.clear();
if (cnt != 512) { if (cnt != (long)test.size()) {
ZT_T_PRINTF("FAILED (expected 512 objects, got %lu (3))" ZT_EOL_S,cnt); ZT_T_PRINTF("FAILED (expected 512 objects, got %lu (3))" ZT_EOL_S,cnt);
return "FCV object life cycle test failed (3)"; return "FCV object life cycle test failed (3)";
} }
for(unsigned int i=0;i<512;++i) for(unsigned int i=0;i<512;++i)
test.push_back(LifeCycleTracker(cnt)); test.push_back(LifeCycleTracker(cnt));
if (cnt != 1024) { if (cnt != (long)(test.size() + test2.size())) {
ZT_T_PRINTF("FAILED (expected 1024 objects, got %lu (4))" ZT_EOL_S,cnt); ZT_T_PRINTF("FAILED (expected 1024 objects, got %lu (4))" ZT_EOL_S,cnt);
return "FCV object life cycle test failed (4)"; return "FCV object life cycle test failed (4)";
} }
test.clear(); test.clear();
test2.clear(); test2.clear();
if (cnt != 0) { if (cnt != (long)test.size()) {
ZT_T_PRINTF("FAILED (expected 0 objects, got %lu (5))" ZT_EOL_S,cnt); ZT_T_PRINTF("FAILED (expected 0 objects, got %lu (5))" ZT_EOL_S,cnt);
return "FCV object life cycle test failed (5)"; return "FCV object life cycle test failed (5)";
} }

View file

@ -19,7 +19,9 @@ Topology::Topology(const RuntimeEnvironment *renv,void *tPtr) :
RR(renv), RR(renv),
m_numConfiguredPhysicalPaths(0) m_numConfiguredPhysicalPaths(0)
{ {
uint64_t idtmp[2]; idtmp[0] = 0; idtmp[1] = 0; uint64_t idtmp[2];
idtmp[0] = 0;
idtmp[1] = 0;
Vector<uint8_t> data(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_ROOTS, idtmp)); Vector<uint8_t> data(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_ROOTS, idtmp));
if (!data.empty()) { if (!data.empty()) {
uint8_t *dptr = data.data(); uint8_t *dptr = data.data();

View file

@ -63,7 +63,7 @@ public:
{ {
RWMutex::RLock l(m_peers_l); RWMutex::RLock l(m_peers_l);
const SharedPtr<Peer> *const ap = m_peers.get(zta); const SharedPtr<Peer> *const ap = m_peers.get(zta);
if (ap) if (likely(ap != nullptr))
return *ap; return *ap;
} }
{ {
@ -95,7 +95,7 @@ public:
{ {
RWMutex::RLock lck(m_paths_l); RWMutex::RLock lck(m_paths_l);
SharedPtr<Path> *const p = m_paths.get(k); SharedPtr<Path> *const p = m_paths.get(k);
if (p) if (likely(p != nullptr))
return *p; return *p;
} }
{ {
@ -115,7 +115,7 @@ public:
ZT_INLINE SharedPtr<Peer> root() const ZT_INLINE SharedPtr<Peer> root() const
{ {
RWMutex::RLock l(m_peers_l); RWMutex::RLock l(m_peers_l);
if (m_rootPeers.empty()) if (unlikely(m_rootPeers.empty()))
return SharedPtr<Peer>(); return SharedPtr<Peer>();
return m_rootPeers.front(); return m_rootPeers.front();
} }
@ -167,10 +167,8 @@ public:
rootPeerPtrs.push_back((uintptr_t)rp->ptr()); rootPeerPtrs.push_back((uintptr_t)rp->ptr());
std::sort(rootPeerPtrs.begin(),rootPeerPtrs.end()); std::sort(rootPeerPtrs.begin(),rootPeerPtrs.end());
try {
for(Map< Address,SharedPtr<Peer> >::const_iterator i(m_peers.begin());i != m_peers.end();++i) for(Map< Address,SharedPtr<Peer> >::const_iterator i(m_peers.begin());i != m_peers.end();++i)
f(i->second,std::binary_search(rootPeerPtrs.begin(),rootPeerPtrs.end(),(uintptr_t)i->second.ptr())); f(i->second,std::binary_search(rootPeerPtrs.begin(),rootPeerPtrs.end(),(uintptr_t)i->second.ptr()));
} catch ( ... ) {} // should not throw
} }
/** /**
@ -185,56 +183,6 @@ public:
allPeers.push_back(i->second); allPeers.push_back(i->second);
} }
/**
* Get info about a path
*
* The supplied result variables are not modified if no special config info is found.
*
* @param physicalAddress Physical endpoint address
* @param mtu Variable set to MTU
* @param trustedPathId Variable set to trusted path ID
*/
ZT_INLINE void getOutboundPathInfo(const InetAddress &physicalAddress,unsigned int &mtu,uint64_t &trustedPathId)
{
for(unsigned int i=0,j=m_numConfiguredPhysicalPaths;i < j;++i) {
if (m_physicalPathConfig[i].first.containsAddress(physicalAddress)) {
trustedPathId = m_physicalPathConfig[i].second.trustedPathId;
mtu = m_physicalPathConfig[i].second.mtu;
return;
}
}
}
/**
* Get the outbound trusted path ID for a physical address, or 0 if none
*
* @param physicalAddress Physical address to which we are sending the packet
* @return Trusted path ID or 0 if none (0 is not a valid trusted path ID)
*/
ZT_INLINE uint64_t getOutboundPathTrust(const InetAddress &physicalAddress)
{
for(unsigned int i=0,j=m_numConfiguredPhysicalPaths;i < j;++i) {
if (m_physicalPathConfig[i].first.containsAddress(physicalAddress))
return m_physicalPathConfig[i].second.trustedPathId;
}
return 0;
}
/**
* Check whether in incoming trusted path marked packet is valid
*
* @param physicalAddress Originating physical address
* @param trustedPathId Trusted path ID from packet (from MAC field)
*/
ZT_INLINE bool shouldInboundPathBeTrusted(const InetAddress &physicalAddress,const uint64_t trustedPathId)
{
for(unsigned int i=0,j=m_numConfiguredPhysicalPaths;i < j;++i) {
if ((m_physicalPathConfig[i].second.trustedPathId == trustedPathId) && (m_physicalPathConfig[i].first.containsAddress(physicalAddress)))
return true;
}
return false;
}
/** /**
* Set or clear physical path configuration (called via Node::setPhysicalPathConfiguration) * Set or clear physical path configuration (called via Node::setPhysicalPathConfiguration)
*/ */
@ -259,7 +207,7 @@ public:
bool removeRoot(void *tPtr,const Identity &id); bool removeRoot(void *tPtr,const Identity &id);
/** /**
* Sort roots in asecnding order of apparent latency * Sort roots in ascending order of apparent latency
* *
* @param now Current time * @param now Current time
*/ */

View file

@ -15,7 +15,6 @@
#include "RuntimeEnvironment.hpp" #include "RuntimeEnvironment.hpp"
#include "Node.hpp" #include "Node.hpp"
#include "Peer.hpp" #include "Peer.hpp"
#include "Path.hpp"
#include "InetAddress.hpp" #include "InetAddress.hpp"
#include "FCV.hpp" #include "FCV.hpp"

View file

@ -11,15 +11,10 @@
*/ */
/****/ /****/
#include <cstdio>
#include <cstdlib>
#include <ctime>
#include "Utils.hpp" #include "Utils.hpp"
#include "Mutex.hpp" #include "Mutex.hpp"
#include "AES.hpp" #include "AES.hpp"
#include "SHA512.hpp" #include "SHA512.hpp"
#include "Speck128.hpp"
#ifdef __UNIX_LIKE__ #ifdef __UNIX_LIKE__
#include <unistd.h> #include <unistd.h>
@ -27,6 +22,8 @@
#include <sys/uio.h> #include <sys/uio.h>
#endif #endif
#include <time.h>
#ifdef __WINDOWS__ #ifdef __WINDOWS__
#include <wincrypt.h> #include <wincrypt.h>
#endif #endif
@ -189,38 +186,28 @@ unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen
} }
#define ZT_GETSECURERANDOM_STATE_SIZE 64 #define ZT_GETSECURERANDOM_STATE_SIZE 64
#define ZT_GETSECURERANDOM_BUF_SIZE 4096 #define ZT_GETSECURERANDOM_ITERATIONS_PER_GENERATOR 1048576
void getSecureRandom(void *const buf,const unsigned int bytes) noexcept void getSecureRandom(void *const buf,unsigned int bytes) noexcept
{ {
static Mutex globalLock; static Mutex globalLock;
static bool initialized = false; static bool initialized = false;
static uint64_t randomState[ZT_GETSECURERANDOM_STATE_SIZE]; // secret state static uint64_t randomState[ZT_GETSECURERANDOM_STATE_SIZE];
static uint64_t randomBuf[ZT_GETSECURERANDOM_BUF_SIZE]; // next batch of random bytes static unsigned int randomByteCounter = ZT_GETSECURERANDOM_ITERATIONS_PER_GENERATOR; // init on first run
static unsigned long randomPtr = sizeof(randomBuf); // refresh on first iteration static AES randomGen;
Mutex::Lock gl(globalLock); Mutex::Lock gl(globalLock);
// This could be a lot faster if we're not going to need a new block. // Re-initialize the generator every ITERATIONS_PER_GENERATOR bytes.
if ((randomPtr + (unsigned long)bytes) <= sizeof(randomBuf)) { if (unlikely((randomByteCounter += bytes) >= ZT_GETSECURERANDOM_ITERATIONS_PER_GENERATOR)) {
Utils::copy(buf,reinterpret_cast<uint8_t *>(randomBuf) + randomPtr,bytes); // On first run fill randomState with random bits from the system.
randomPtr += bytes; if (unlikely(!initialized)) {
return;
}
for(unsigned int i=0;i<bytes;++i) {
// Generate a new block of random data if we're at the end of the current block.
// Note that randomPtr is a byte pointer not a word pointer so we compare with sizeof.
if (randomPtr >= (unsigned long)sizeof(randomBuf)) {
randomPtr = 0;
if (!initialized) {
initialized = true; initialized = true;
// Don't let randomState be swapped to disk (if supported by OS).
Utils::memoryLock(randomState,sizeof(randomState)); Utils::memoryLock(randomState,sizeof(randomState));
Utils::memoryLock(randomBuf,sizeof(randomBuf));
// Fill randomState with entropy from the system. If this doesn't work this is a hard fail. // Fill randomState with entropy from the system. Failure equals hard exit.
Utils::zero<sizeof(randomState)>(randomState); Utils::zero<sizeof(randomState)>(randomState);
#ifdef __WINDOWS__ #ifdef __WINDOWS__
HCRYPTPROV cryptProvider = NULL; HCRYPTPROV cryptProvider = NULL;
@ -265,35 +252,32 @@ void getSecureRandom(void *const buf,const unsigned int bytes) noexcept
#endif #endif
} }
// Perturb state, hash, and overwrite the first 64 bytes with this hash. // Initialize or re-initialize generator by hashing the full state,
++randomState[ZT_GETSECURERANDOM_STATE_SIZE-1]; // replacing the first 64 bytes with this hash, and then re-initializing
// AES with the first 32 bytes.
randomByteCounter = 0;
SHA512(randomState,randomState,sizeof(randomState)); SHA512(randomState,randomState,sizeof(randomState));
randomGen.init(randomState);
// Use the part of the state that was overwritten with new state to key a
// stream cipher and re-fill the buffer. Use AES if we're HW accel or use
// Speck if not since it's way faster on tiny chips without AES units.
if (AES::accelerated()) {
AES aes(randomState);
uint64_t ctr[2];
ctr[0] = randomState[4];
ctr[1] = randomState[5];
for (int k = 0;k < ZT_GETSECURERANDOM_BUF_SIZE;k += 2) {
++ctr[0];
aes.encrypt(ctr,randomBuf + k);
}
} else {
Speck128<> speck(randomState);
uint64_t ctr[2];
ctr[0] = randomState[4];
ctr[1] = randomState[5];
for (int k = 0;k < ZT_GETSECURERANDOM_BUF_SIZE;k += 2) {
++ctr[0];
speck.encrypt(ctr,randomBuf + k);
}
}
} }
reinterpret_cast<uint8_t *>(buf)[i] = reinterpret_cast<uint8_t *>(randomBuf)[randomPtr++]; // Generate random bytes using AES and bytes 32-48 of randomState as an in-place
// AES-CTR counter. Counter can be machine endian; we don't care about portability
// for a random generator.
uint64_t *const ctr = randomState + 4;
uint8_t *out = reinterpret_cast<uint8_t *>(buf);
while (bytes >= 16) {
++*ctr;
randomGen.encrypt(ctr,out);
out += 16;
bytes -= 16;
}
if (bytes > 0) {
uint8_t tmp[16];
++*ctr;
randomGen.encrypt(ctr,tmp);
for(unsigned int i=0;i<bytes;++i)
out[i] = tmp[i];
Utils::burn(tmp,sizeof(tmp)); // don't leave used cryptographic randomness lying around!
} }
} }

View file

@ -49,6 +49,7 @@ struct p_SalsaPolyCopyFunction
s20.crypt12(Utils::ZERO256, macKey, ZT_POLY1305_KEY_SIZE); s20.crypt12(Utils::ZERO256, macKey, ZT_POLY1305_KEY_SIZE);
poly1305.init(macKey); poly1305.init(macKey);
} }
ZT_INLINE void operator()(void *dest, const void *src, unsigned int len) noexcept ZT_INLINE void operator()(void *dest, const void *src, unsigned int len) noexcept
{ {
if (hdrRemaining != 0) { if (hdrRemaining != 0) {
@ -76,6 +77,7 @@ struct p_PolyCopyFunction
Salsa20(salsaKey, salsaIv).crypt12(Utils::ZERO256, macKey, ZT_POLY1305_KEY_SIZE); Salsa20(salsaKey, salsaIv).crypt12(Utils::ZERO256, macKey, ZT_POLY1305_KEY_SIZE);
poly1305.init(macKey); poly1305.init(macKey);
} }
ZT_INLINE void operator()(void *dest, const void *src, unsigned int len) noexcept ZT_INLINE void operator()(void *dest, const void *src, unsigned int len) noexcept
{ {
if (hdrRemaining != 0) { if (hdrRemaining != 0) {
@ -226,7 +228,7 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
return; return;
} }
const SharedPtr<Peer> peer(m_HELLO(tPtr, path, *pkt, pktSize)); const SharedPtr<Peer> peer(m_HELLO(tPtr, path, *pkt, pktSize));
if (peer) if (likely(peer))
peer->received(tPtr, path, hops, packetId, pktSize - ZT_PROTO_PACKET_PAYLOAD_START, Protocol::VERB_HELLO, Protocol::VERB_NOP); peer->received(tPtr, path, hops, packetId, pktSize - ZT_PROTO_PACKET_PAYLOAD_START, Protocol::VERB_HELLO, Protocol::VERB_NOP);
return; return;
} }
@ -237,7 +239,7 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
unsigned int auth = 0; unsigned int auth = 0;
SharedPtr<Peer> peer(RR->topology->peer(tPtr, source)); SharedPtr<Peer> peer(RR->topology->peer(tPtr, source));
if (peer) { if (likely(peer)) {
switch (cipher) { switch (cipher) {
case ZT_PROTO_CIPHER_SUITE__POLY1305_NONE: { case ZT_PROTO_CIPHER_SUITE__POLY1305_NONE: {
@ -346,28 +348,65 @@ void VL1::onRemotePacket(void *const tPtr,const int64_t localSocket,const InetAd
// own internal authentication logic as usual. It would be abnormal to make it here with HELLO // own internal authentication logic as usual. It would be abnormal to make it here with HELLO
// but not invalid. // but not invalid.
bool ok = true;
Protocol::Verb inReVerb = Protocol::VERB_NOP; Protocol::Verb inReVerb = Protocol::VERB_NOP;
bool ok = true;
switch (verb) { switch (verb) {
case Protocol::VERB_NOP: break; case Protocol::VERB_NOP:
case Protocol::VERB_HELLO: ok = (bool)(m_HELLO(tPtr, path, *pkt, pktSize)); break; break;
case Protocol::VERB_ERROR: ok = m_ERROR(tPtr, packetId, auth, path, peer, *pkt, pktSize, inReVerb); break; case Protocol::VERB_HELLO:
case Protocol::VERB_OK: ok = m_OK(tPtr, packetId, auth, path, peer, *pkt, pktSize, inReVerb); break; ok = (bool) (m_HELLO(tPtr, path, *pkt, pktSize));
case Protocol::VERB_WHOIS: ok = m_WHOIS(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; break;
case Protocol::VERB_RENDEZVOUS: ok = m_RENDEZVOUS(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; case Protocol::VERB_ERROR:
case Protocol::VERB_FRAME: ok = RR->vl2->m_FRAME(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; ok = m_ERROR(tPtr, packetId, auth, path, peer, *pkt, pktSize, inReVerb);
case Protocol::VERB_EXT_FRAME: ok = RR->vl2->m_EXT_FRAME(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; break;
case Protocol::VERB_ECHO: ok = m_ECHO(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; case Protocol::VERB_OK:
case Protocol::VERB_MULTICAST_LIKE: ok = RR->vl2->m_MULTICAST_LIKE(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; ok = m_OK(tPtr, packetId, auth, path, peer, *pkt, pktSize, inReVerb);
case Protocol::VERB_NETWORK_CREDENTIALS: ok = RR->vl2->m_NETWORK_CREDENTIALS(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; break;
case Protocol::VERB_NETWORK_CONFIG_REQUEST: ok = RR->vl2->m_NETWORK_CONFIG_REQUEST(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; case Protocol::VERB_WHOIS:
case Protocol::VERB_NETWORK_CONFIG: ok = RR->vl2->m_NETWORK_CONFIG(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; ok = m_WHOIS(tPtr, packetId, auth, path, peer, *pkt, pktSize);
case Protocol::VERB_MULTICAST_GATHER: ok = RR->vl2->m_MULTICAST_GATHER(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; break;
case Protocol::VERB_MULTICAST_FRAME_deprecated: ok = RR->vl2->m_MULTICAST_FRAME_deprecated(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; case Protocol::VERB_RENDEZVOUS:
case Protocol::VERB_PUSH_DIRECT_PATHS: ok = m_PUSH_DIRECT_PATHS(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; ok = m_RENDEZVOUS(tPtr, packetId, auth, path, peer, *pkt, pktSize);
case Protocol::VERB_USER_MESSAGE: ok = m_USER_MESSAGE(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; break;
case Protocol::VERB_MULTICAST: ok = RR->vl2->m_MULTICAST(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; case Protocol::VERB_FRAME:
case Protocol::VERB_ENCAP: ok = m_ENCAP(tPtr, packetId, auth, path, peer, *pkt, pktSize); break; ok = RR->vl2->m_FRAME(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_EXT_FRAME:
ok = RR->vl2->m_EXT_FRAME(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_ECHO:
ok = m_ECHO(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_MULTICAST_LIKE:
ok = RR->vl2->m_MULTICAST_LIKE(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_NETWORK_CREDENTIALS:
ok = RR->vl2->m_NETWORK_CREDENTIALS(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_NETWORK_CONFIG_REQUEST:
ok = RR->vl2->m_NETWORK_CONFIG_REQUEST(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_NETWORK_CONFIG:
ok = RR->vl2->m_NETWORK_CONFIG(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_MULTICAST_GATHER:
ok = RR->vl2->m_MULTICAST_GATHER(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_MULTICAST_FRAME_deprecated:
ok = RR->vl2->m_MULTICAST_FRAME_deprecated(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_PUSH_DIRECT_PATHS:
ok = m_PUSH_DIRECT_PATHS(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_USER_MESSAGE:
ok = m_USER_MESSAGE(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_MULTICAST:
ok = RR->vl2->m_MULTICAST(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_ENCAP:
ok = m_ENCAP(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
default: default:
RR->t->incomingPacketDropped(tPtr, 0xeeeeeff0, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, verb, ZT_TRACE_PACKET_DROP_REASON_UNRECOGNIZED_VERB); RR->t->incomingPacketDropped(tPtr, 0xeeeeeff0, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, verb, ZT_TRACE_PACKET_DROP_REASON_UNRECOGNIZED_VERB);
@ -413,7 +452,7 @@ void VL1::m_sendPendingWhois(void *tPtr, int64_t now)
if (unlikely(!rootPath)) if (unlikely(!rootPath))
return; return;
std::vector<Address> toSend; Vector<Address> toSend;
{ {
Mutex::Lock wl(m_whoisQueue_l); Mutex::Lock wl(m_whoisQueue_l);
for (Map<Address, p_WhoisQueueItem>::iterator wi(m_whoisQueue.begin());wi != m_whoisQueue.end();++wi) { for (Map<Address, p_WhoisQueueItem>::iterator wi(m_whoisQueue.begin());wi != m_whoisQueue.end();++wi) {
@ -430,7 +469,7 @@ void VL1::m_sendPendingWhois(void *tPtr, int64_t now)
const SharedPtr<SymmetricKey> key(root->key()); const SharedPtr<SymmetricKey> key(root->key());
uint8_t outp[ZT_DEFAULT_UDP_MTU - ZT_PROTO_MIN_PACKET_LENGTH]; uint8_t outp[ZT_DEFAULT_UDP_MTU - ZT_PROTO_MIN_PACKET_LENGTH];
std::vector<Address>::iterator a(toSend.begin()); Vector<Address>::iterator a(toSend.begin());
while (a != toSend.end()) { while (a != toSend.end()) {
const uint64_t packetId = key->nextMessage(RR->identity.address(), root->address()); const uint64_t packetId = key->nextMessage(RR->identity.address(), root->address());
int p = Protocol::newPacket(outp, packetId, root->address(), RR->identity.address(), Protocol::VERB_WHOIS); int p = Protocol::newPacket(outp, packetId, root->address(), RR->identity.address(), Protocol::VERB_WHOIS);
@ -477,11 +516,11 @@ SharedPtr<Peer> VL1::m_HELLO(void *tPtr, const SharedPtr<Path> &path, Buf &pkt,
// Get the peer that matches this identity, or learn a new one if we don't know it. // Get the peer that matches this identity, or learn a new one if we don't know it.
SharedPtr<Peer> peer(RR->topology->peer(tPtr, id.address(), true)); SharedPtr<Peer> peer(RR->topology->peer(tPtr, id.address(), true));
if (peer) { if (peer) {
if (peer->identity() != id) { if (unlikely(peer->identity() != id)) {
RR->t->incomingPacketDropped(tPtr, 0x707a9891, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED); RR->t->incomingPacketDropped(tPtr, 0x707a9891, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return SharedPtr<Peer>(); return SharedPtr<Peer>();
} }
if (peer->deduplicateIncomingPacket(packetId)) { if (unlikely(peer->deduplicateIncomingPacket(packetId))) {
ZT_SPEW("discarding packet %.16llx from %s(%s): duplicate!", packetId, id.address().toString().c_str(), path->address().toString().c_str()); ZT_SPEW("discarding packet %.16llx from %s(%s): duplicate!", packetId, id.address().toString().c_str(), path->address().toString().c_str());
return SharedPtr<Peer>(); return SharedPtr<Peer>();
} }

View file

@ -27,7 +27,7 @@ VL2::VL2(const RuntimeEnvironment *renv)
{ {
} }
void VL2::onLocalEthernet(void *const tPtr,const uint64_t packetId,const unsigned int auth,const SharedPtr<Network> &network,const MAC &from,const MAC &to,const unsigned int etherType,unsigned int vlanId,SharedPtr<Buf> &data,unsigned int len) void VL2::onLocalEthernet(void *const tPtr,const SharedPtr<Network> &network,const MAC &from,const MAC &to,const unsigned int etherType,unsigned int vlanId,SharedPtr<Buf> &data,unsigned int len)
{ {
} }