Build fixes.

This commit is contained in:
Adam Ierymenko 2020-05-18 09:44:23 -07:00
parent 996589894d
commit d537428421
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
20 changed files with 575 additions and 436 deletions

View file

@ -57,8 +57,8 @@ else(WIN32)
-Wall
-Wno-deprecated
-Wno-unused-function
-mmacosx-version-min=10.9
$<$<CONFIG:Debug>:-g>
-mmacosx-version-min=10.12
$<$<CONFIG:DEBUG>:-g>
$<$<CONFIG:DEBUG>:-O0>
$<$<CONFIG:RELEASE>:-Ofast>
$<$<CONFIG:RELEASE>:-ffast-math>
@ -79,7 +79,7 @@ else(WIN32)
-Wno-deprecated
-Wno-unused-function
-Wno-format
$<$<CONFIG:Debug>:-g>
$<$<CONFIG:DEBUG>:-g>
$<$<CONFIG:DEBUG>:-O0>
$<$<CONFIG:RELEASE>:-O3>
$<$<CONFIG:RELEASE>:-ffast-math>

View file

@ -14,9 +14,6 @@
#include "MIMC52.hpp"
#include "SHA512.hpp"
#include "Utils.hpp"
#include "Speck128.hpp"
#include <cstdio>
// This gets defined on any architecture whose FPU is not capable of doing the mulmod52() FPU trick.
//#define ZT_MIMC52_NO_FPU
@ -114,7 +111,7 @@ uint64_t mimc52Delay(const void *const salt,const unsigned int saltSize,const un
uint64_t x = Utils::swapBytes(hash[1]) % p;
#endif
Speck128<8> roundConstantGenerator(hash + 2);
//Speck128<8> roundConstantGenerator(hash + 2);
const uint64_t e = ((p * 2) - 1) / 3;
const uint64_t m52 = 0xfffffffffffffULL;
const uint64_t rmin1 = rounds - 1;
@ -122,7 +119,7 @@ uint64_t mimc52Delay(const void *const salt,const unsigned int saltSize,const un
#pragma unroll 16
for(unsigned long r=0;r<rounds;++r) {
uint64_t sx = sxx,sy = rmin1 - r;
roundConstantGenerator.encryptXY(sx,sy);
//roundConstantGenerator.encryptXY(sx,sy);
x = (x - sy) & m52;
x = modpow52(x,e,p);
}
@ -143,7 +140,7 @@ bool mimc52Verify(const void *const salt,const unsigned int saltSize,unsigned lo
uint64_t x = Utils::swapBytes(hash[1]) % p;
#endif
Speck128<8> roundConstantGenerator(hash + 2);
//Speck128<8> roundConstantGenerator(hash + 2);
const uint64_t m52 = 0xfffffffffffffULL;
uint64_t y = proof & m52;
const uint64_t sxx = hash[4];
@ -154,7 +151,7 @@ bool mimc52Verify(const void *const salt,const unsigned int saltSize,unsigned lo
#pragma unroll 16
for(unsigned long r=0;r<rounds;++r) {
uint64_t sx = sxx,sy = r;
roundConstantGenerator.encryptXY(sx,sy);
//roundConstantGenerator.encryptXY(sx,sy);
#ifdef ZT_MIMC52_NO_FPU
#ifdef x64_cubemod
x64_cubemod(y,p);

View file

@ -137,6 +137,8 @@ public:
template<typename V>
class Vector : public std::vector< V,Utils::Mallocator<V> >
{
public:
ZT_INLINE Vector() {}
};
template<typename V>

View file

@ -46,11 +46,11 @@ namespace ZeroTier {
* @tparam P Type for pointer to a path object (default: SharedPtr<Path>)
*/
template<
unsigned int MF = ZT_MAX_PACKET_FRAGMENTS,
unsigned int MFP = ZT_MAX_INCOMING_FRAGMENTS_PER_PATH,
unsigned int GCS = (ZT_MAX_PACKET_FRAGMENTS * 2),
unsigned int GCT = (ZT_MAX_PACKET_FRAGMENTS * 4),
typename P = SharedPtr<Path> >
unsigned int MF = ZT_MAX_PACKET_FRAGMENTS,
unsigned int MFP = ZT_MAX_INCOMING_FRAGMENTS_PER_PATH,
unsigned int GCS = (ZT_MAX_PACKET_FRAGMENTS * 2),
unsigned int GCT = (ZT_MAX_PACKET_FRAGMENTS * 4),
typename P = SharedPtr <Path> >
class Defragmenter
{
public:
@ -96,7 +96,8 @@ public:
ERR_OUT_OF_MEMORY
};
ZT_INLINE Defragmenter() {} // NOLINT(hicpp-use-equals-default,modernize-use-equals-default)
ZT_INLINE Defragmenter()
{} // NOLINT(hicpp-use-equals-default,modernize-use-equals-default)
/**
* Process a fragment of a multi-part message
@ -141,8 +142,8 @@ public:
*/
ZT_INLINE ResultCode assemble(
const uint64_t messageId,
FCV< Buf::Slice,MF > &message,
SharedPtr<Buf> &fragment,
FCV <Buf::Slice, MF> &message,
SharedPtr <Buf> &fragment,
const unsigned int fragmentDataIndex,
const unsigned int fragmentDataSize,
const unsigned int fragmentNo,
@ -151,7 +152,7 @@ public:
const P &via)
{
// Sanity checks for malformed fragments or invalid input parameters.
if ((fragmentNo >= totalFragmentsExpected)||(totalFragmentsExpected > MF)||(totalFragmentsExpected == 0))
if ((fragmentNo >= totalFragmentsExpected) || (totalFragmentsExpected > MF) || (totalFragmentsExpected == 0))
return ERR_INVALID_FRAGMENT;
// We hold the read lock on _messages unless we need to add a new entry or do GC.
@ -166,15 +167,15 @@ public:
// under the target size. This tries to minimize the amount of time the write
// lock is held since many threads can hold the read lock but all threads must
// wait if someone holds the write lock.
std::vector<std::pair<int64_t,uint64_t> > messagesByLastUsedTime;
std::vector<std::pair<int64_t, uint64_t> > messagesByLastUsedTime;
messagesByLastUsedTime.reserve(m_messages.size());
for(typename Map< uint64_t,p_E >::const_iterator i(m_messages.begin());i != m_messages.end();++i)
messagesByLastUsedTime.push_back(std::pair<int64_t,uint64_t>(i->second.lastUsed,i->first));
std::sort(messagesByLastUsedTime.begin(),messagesByLastUsedTime.end());
for (typename Map<uint64_t, p_E>::const_iterator i(m_messages.begin());i != m_messages.end();++i)
messagesByLastUsedTime.push_back(std::pair<int64_t, uint64_t>(i->second.lastUsed, i->first));
std::sort(messagesByLastUsedTime.begin(), messagesByLastUsedTime.end());
ml.writing(); // acquire write lock on _messages
for (unsigned long x = 0,y = (messagesByLastUsedTime.size() - GCS); x <= y; ++x)
for (unsigned long x = 0, y = (messagesByLastUsedTime.size() - GCS);x <= y;++x)
m_messages.erase(messagesByLastUsedTime[x].second);
} catch (...) {
return ERR_OUT_OF_MEMORY;
@ -187,7 +188,7 @@ public:
ml.writing(); // acquire write lock on _messages if not already
try {
e = &(m_messages[messageId]);
} catch ( ... ) {
} catch (...) {
return ERR_OUT_OF_MEMORY;
}
e->id = messageId;
@ -214,7 +215,7 @@ public:
// If there is a path associated with this fragment make sure we've registered
// ourselves as in flight, check the limit, and abort if exceeded.
if ((via)&&(!e->via)) {
if ((via) && (!e->via)) {
e->via = via;
bool tooManyPerPath = false;
via->m_inboundFragmentedMessages_l.lock();
@ -224,7 +225,7 @@ public:
} else {
tooManyPerPath = true;
}
} catch ( ... ) {
} catch (...) {
// This would indicate something like bad_alloc thrown by the set. Treat
// it as limit exceeded.
tooManyPerPath = true;
@ -252,7 +253,7 @@ public:
++e->fragmentsReceived;
// If we now have all fragments then assemble them.
if ((e->fragmentsReceived >= e->totalFragmentsExpected)&&(e->totalFragmentsExpected > 0)) {
if ((e->fragmentsReceived >= e->totalFragmentsExpected) && (e->totalFragmentsExpected > 0)) {
// This message is done so de-register it with its path if one is associated.
if (e->via) {
e->via->m_inboundFragmentedMessages_l.lock();
@ -294,20 +295,22 @@ private:
// p_E is an entry in the message queue.
struct p_E
{
ZT_INLINE p_E() noexcept :
ZT_INLINE p_E() noexcept:
id(0),
lastUsed(0),
totalFragmentsExpected(0),
fragmentsReceived(0) {}
fragmentsReceived(0)
{}
ZT_INLINE p_E(const p_E &e) noexcept :
ZT_INLINE p_E(const p_E &e) noexcept:
id(e.id),
lastUsed(e.lastUsed),
totalFragmentsExpected(e.totalFragmentsExpected),
fragmentsReceived(e.fragmentsReceived),
via(e.via),
message(e.message),
lock() {}
lock()
{}
ZT_INLINE ~p_E()
{
@ -336,11 +339,11 @@ private:
unsigned int totalFragmentsExpected;
unsigned int fragmentsReceived;
P via;
FCV< Buf::Slice,MF > message;
FCV <Buf::Slice, MF> message;
Mutex lock;
};
Map< uint64_t,Defragmenter<MF,MFP,GCS,GCT,P>::p_E > m_messages;
Map <uint64_t, Defragmenter<MF, MFP, GCS, GCT, P>::p_E> m_messages;
RWMutex m_messages_l;
};

View file

@ -16,7 +16,6 @@
#include "SHA512.hpp"
#include "Salsa20.hpp"
#include "Utils.hpp"
#include "AES.hpp"
#include <algorithm>
@ -26,102 +25,102 @@ namespace {
// This is the memory-intensive hash function used to compute v0 identities from v0 public keys.
#define ZT_V0_IDENTITY_GEN_MEMORY 2097152
void identityV0ProofOfWorkFrankenhash(const void *const publicKey,unsigned int publicKeyBytes,void *const digest,void *const genmem) noexcept
void identityV0ProofOfWorkFrankenhash(const void *const publicKey, unsigned int publicKeyBytes, void *const digest, void *const genmem) noexcept
{
// Digest publicKey[] to obtain initial digest
SHA512(digest,publicKey,publicKeyBytes);
SHA512(digest, publicKey, publicKeyBytes);
// Initialize genmem[] using Salsa20 in a CBC-like configuration since
// ordinary Salsa20 is randomly seek-able. This is good for a cipher
// but is not what we want for sequential memory-hardness.
Utils::zero<ZT_V0_IDENTITY_GEN_MEMORY>(genmem);
Salsa20 s20(digest,(char *)digest + 32);
s20.crypt20((char *)genmem,(char *)genmem,64);
for(unsigned long i=64;i<ZT_V0_IDENTITY_GEN_MEMORY;i+=64) {
Salsa20 s20(digest, (char *) digest + 32);
s20.crypt20((char *) genmem, (char *) genmem, 64);
for (unsigned long i = 64;i < ZT_V0_IDENTITY_GEN_MEMORY;i += 64) {
unsigned long k = i - 64;
*((uint64_t *)((char *)genmem + i)) = *((uint64_t *)((char *)genmem + k));
*((uint64_t *)((char *)genmem + i + 8)) = *((uint64_t *)((char *)genmem + k + 8));
*((uint64_t *)((char *)genmem + i + 16)) = *((uint64_t *)((char *)genmem + k + 16));
*((uint64_t *)((char *)genmem + i + 24)) = *((uint64_t *)((char *)genmem + k + 24));
*((uint64_t *)((char *)genmem + i + 32)) = *((uint64_t *)((char *)genmem + k + 32));
*((uint64_t *)((char *)genmem + i + 40)) = *((uint64_t *)((char *)genmem + k + 40));
*((uint64_t *)((char *)genmem + i + 48)) = *((uint64_t *)((char *)genmem + k + 48));
*((uint64_t *)((char *)genmem + i + 56)) = *((uint64_t *)((char *)genmem + k + 56));
s20.crypt20((char *)genmem + i,(char *)genmem + i,64);
*((uint64_t *) ((char *) genmem + i)) = *((uint64_t *) ((char *) genmem + k));
*((uint64_t *) ((char *) genmem + i + 8)) = *((uint64_t *) ((char *) genmem + k + 8));
*((uint64_t *) ((char *) genmem + i + 16)) = *((uint64_t *) ((char *) genmem + k + 16));
*((uint64_t *) ((char *) genmem + i + 24)) = *((uint64_t *) ((char *) genmem + k + 24));
*((uint64_t *) ((char *) genmem + i + 32)) = *((uint64_t *) ((char *) genmem + k + 32));
*((uint64_t *) ((char *) genmem + i + 40)) = *((uint64_t *) ((char *) genmem + k + 40));
*((uint64_t *) ((char *) genmem + i + 48)) = *((uint64_t *) ((char *) genmem + k + 48));
*((uint64_t *) ((char *) genmem + i + 56)) = *((uint64_t *) ((char *) genmem + k + 56));
s20.crypt20((char *) genmem + i, (char *) genmem + i, 64);
}
// Render final digest using genmem as a lookup table
for(unsigned long i=0;i<(ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (64 / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
uint64_t tmp = ((uint64_t *)genmem)[idx2];
((uint64_t *)genmem)[idx2] = ((uint64_t *)digest)[idx1];
((uint64_t *)digest)[idx1] = tmp;
s20.crypt20(digest,digest,64);
for (unsigned long i = 0;i < (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
unsigned long idx1 = (unsigned long) (Utils::ntoh(((uint64_t *) genmem)[i++]) % (64 / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
unsigned long idx2 = (unsigned long) (Utils::ntoh(((uint64_t *) genmem)[i++]) % (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
uint64_t tmp = ((uint64_t *) genmem)[idx2];
((uint64_t *) genmem)[idx2] = ((uint64_t *) digest)[idx1];
((uint64_t *) digest)[idx1] = tmp;
s20.crypt20(digest, digest, 64);
}
}
struct identityV0ProofOfWorkCriteria
{
ZT_INLINE identityV0ProofOfWorkCriteria(unsigned char *sb,char *gm) noexcept : digest(sb),genmem(gm) {}
ZT_INLINE identityV0ProofOfWorkCriteria(unsigned char *sb, char *gm) noexcept: digest(sb), genmem(gm)
{}
ZT_INLINE bool operator()(const uint8_t pub[ZT_C25519_COMBINED_PUBLIC_KEY_SIZE]) const noexcept
{
identityV0ProofOfWorkFrankenhash(pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,digest,genmem);
identityV0ProofOfWorkFrankenhash(pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, digest, genmem);
return (digest[0] < 17);
}
unsigned char *digest;
char *genmem;
};
#define ZT_IDENTITY_V1_POW_MEMORY_SIZE 131072
// This is a simpler memory-intensive hash function for V1 identity generation.
// It's not quite as heavy as the V0 frankenhash, is a little more orderly in
// its design, but remains relatively resistant to GPU acceleration due to memory
// requirements for efficient computation.
#define ZT_IDENTITY_V1_POW_MEMORY_SIZE 262144
#define ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64 32768
bool identityV1ProofOfWorkCriteria(const void *in,const unsigned int len)
bool identityV1ProofOfWorkCriteria(const void *in, const unsigned int len)
{
uint64_t b[ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64];
uint64_t b[ZT_IDENTITY_V1_POW_MEMORY_SIZE / 8];
SHA512(b,in,len);
AES c(b);
for(unsigned int i=8;i<ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64;i+=8) {
SHA512(b + i,b + (i - 8),64);
if (unlikely((b[i] % 31ULL) == (b[i - 1] >> 59U)))
c.encrypt(b + i,b + i);
}
SHA384(b, in, len);
Utils::zero<ZT_IDENTITY_V1_POW_MEMORY_SIZE - 48>(b + 6);
Salsa20(b,b + 4).crypt12(b,b,ZT_IDENTITY_V1_POW_MEMORY_SIZE);
#if __BYTE_ORDER == __BIG_ENDIAN
for(unsigned int i=0;i<ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64;i+=4) {
for (unsigned int i=0;i<(ZT_IDENTITY_V1_POW_MEMORY_SIZE / 8);) {
const unsigned int i1 = i + 1;
const unsigned int i2 = i + 2;
const unsigned int i3 = i + 3;
b[i] = Utils::swapBytes(b[i]);
b[i + 1] = Utils::swapBytes(b[i + 1]);
b[i + 2] = Utils::swapBytes(b[i + 2]);
b[i + 3] = Utils::swapBytes(b[i + 3]);
i += 4;
b[i1] = Utils::swapBytes(b[i1]);
b[i2] = Utils::swapBytes(b[i2]);
b[i3] = Utils::swapBytes(b[i3]);
}
#endif
std::sort(b,b + ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64);
std::sort(b,b + (ZT_IDENTITY_V1_POW_MEMORY_SIZE / 8));
#if __BYTE_ORDER == __BIG_ENDIAN
for(unsigned int i=0;i<ZT_IDENTITY_V1_POW_MEMORY_SIZE_U64;i+=4) {
for (unsigned int i=0;i<(ZT_IDENTITY_V1_POW_MEMORY_SIZE / 8);) {
const unsigned int i1 = i + 1;
const unsigned int i2 = i + 2;
const unsigned int i3 = i + 3;
b[i] = Utils::swapBytes(b[i]);
b[i + 1] = Utils::swapBytes(b[i + 1]);
b[i + 2] = Utils::swapBytes(b[i + 2]);
b[i + 3] = Utils::swapBytes(b[i + 3]);
i += 4;
b[i1] = Utils::swapBytes(b[i1]);
b[i2] = Utils::swapBytes(b[i2]);
b[i3] = Utils::swapBytes(b[i3]);
}
#endif
// Hash resulting sorted array to get final result for PoW criteria test.
// We also include the original input after so that cryptographically this
// is exactly like SHA384(in). This should make any FIPS types happy as
// this means the identity hash is SHA384 and not some weird construction.
SHA384(b,b,ZT_IDENTITY_V1_POW_MEMORY_SIZE,in,len);
SHA384(b, b, ZT_IDENTITY_V1_POW_MEMORY_SIZE, in, len);
// PoW passes if sum of first two 64-bit integers (treated as little-endian) mod 180 is 0.
// This value was picked to yield about 1-2s total on typical desktop and server cores in 2020.
#if __BYTE_ORDER == __BIG_ENDIAN
const uint64_t finalHash = Utils::swapBytes(b[0]) + Utils::swapBytes(b[1]);
#else
const uint64_t finalHash = b[0] + b[1];
#endif
return (finalHash % 180U) == 0;
return (b[0] % 1093U) == 0;
}
} // anonymous namespace
@ -133,7 +132,7 @@ bool Identity::generate(const Type t)
m_type = t;
m_hasPrivate = true;
switch(t) {
switch (t) {
case C25519: {
// Generate C25519/Ed25519 key pair whose hash satisfies a "hashcash" criterion and generate the
@ -142,7 +141,7 @@ bool Identity::generate(const Type t)
char *const genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
Address address;
do {
C25519::generateSatisfying(identityV0ProofOfWorkCriteria(digest,genmem),m_pub,m_priv);
C25519::generateSatisfying(identityV0ProofOfWorkCriteria(digest, genmem), m_pub, m_priv);
address.setTo(digest + 59);
} while (address.isReserved());
delete[] genmem;
@ -151,18 +150,18 @@ bool Identity::generate(const Type t)
} break;
case P384: {
for(;;) {
for (;;) {
// Loop until we pass the PoW criteria. The nonce is only 8 bits, so generate
// some new key material every time it wraps. The ECC384 generator is slightly
// faster so use that one.
m_pub[0] = 0; // zero nonce
C25519::generateCombined(m_pub + 1,m_priv + 1);
ECC384GenerateKey(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
for(;;) {
if (identityV1ProofOfWorkCriteria(m_pub,sizeof(m_pub)))
C25519::generateCombined(m_pub + 1, m_priv + 1);
ECC384GenerateKey(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
for (;;) {
if (identityV1ProofOfWorkCriteria(m_pub, sizeof(m_pub)))
break;
if (++m_pub[0] == 0)
ECC384GenerateKey(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
ECC384GenerateKey(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
}
// If we passed PoW then check that the address is valid, otherwise loop
@ -183,25 +182,25 @@ bool Identity::generate(const Type t)
bool Identity::locallyValidate() const noexcept
{
try {
if ((m_fp)&&((!m_fp.address().isReserved()))) {
if ((m_fp) && ((!m_fp.address().isReserved()))) {
switch (m_type) {
case C25519: {
uint8_t digest[64];
char *const genmem = (char *)malloc(ZT_V0_IDENTITY_GEN_MEMORY);
char *const genmem = (char *) malloc(ZT_V0_IDENTITY_GEN_MEMORY);
if (!genmem)
return false;
identityV0ProofOfWorkFrankenhash(m_pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,digest,genmem);
identityV0ProofOfWorkFrankenhash(m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, digest, genmem);
free(genmem);
return ((m_fp.address() == Address(digest + 59)) && (digest[0] < 17));
}
case P384: {
if (m_fp.address() != Address(m_fp.hash()))
return false;
return identityV1ProofOfWorkCriteria(m_pub,sizeof(m_pub));
return identityV1ProofOfWorkCriteria(m_pub, sizeof(m_pub));
}
}
}
} catch ( ... ) {}
} catch (...) {}
return false;
}
@ -210,10 +209,10 @@ void Identity::hashWithPrivate(uint8_t h[ZT_FINGERPRINT_HASH_SIZE]) const
if (m_hasPrivate) {
switch (m_type) {
case C25519:
SHA384(h,m_pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,m_priv,ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
SHA384(h, m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
break;
case P384:
SHA384(h,m_pub,sizeof(m_pub),m_priv,sizeof(m_priv));
SHA384(h, m_pub, sizeof(m_pub), m_priv, sizeof(m_priv));
break;
}
return;
@ -221,21 +220,21 @@ void Identity::hashWithPrivate(uint8_t h[ZT_FINGERPRINT_HASH_SIZE]) const
Utils::zero<48>(h);
}
unsigned int Identity::sign(const void *data,unsigned int len,void *sig,unsigned int siglen) const
unsigned int Identity::sign(const void *data, unsigned int len, void *sig, unsigned int siglen) const
{
if (m_hasPrivate) {
switch(m_type) {
switch (m_type) {
case C25519:
if (siglen >= ZT_C25519_SIGNATURE_LEN) {
C25519::sign(m_priv,m_pub,data,len,sig);
C25519::sign(m_priv, m_pub, data, len, sig);
return ZT_C25519_SIGNATURE_LEN;
}
case P384:
if (siglen >= ZT_ECC384_SIGNATURE_SIZE) {
// SECURITY: signatures also include the public keys to further enforce their coupling.
uint8_t h[48];
SHA384(h,data,len,m_pub,sizeof(m_pub));
ECC384ECDSASign(m_priv + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,h,(uint8_t *)sig);
SHA384(h, data, len, m_pub, sizeof(m_pub));
ECC384ECDSASign(m_priv + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, h, (uint8_t *) sig);
return ZT_ECC384_SIGNATURE_SIZE;
}
}
@ -243,23 +242,23 @@ unsigned int Identity::sign(const void *data,unsigned int len,void *sig,unsigned
return 0;
}
bool Identity::verify(const void *data,unsigned int len,const void *sig,unsigned int siglen) const
bool Identity::verify(const void *data, unsigned int len, const void *sig, unsigned int siglen) const
{
switch(m_type) {
switch (m_type) {
case C25519:
return C25519::verify(m_pub,data,len,sig,siglen);
return C25519::verify(m_pub, data, len, sig, siglen);
case P384:
if (siglen == ZT_ECC384_SIGNATURE_SIZE) {
uint8_t h[48];
SHA384(h,data,len,m_pub,sizeof(m_pub));
return ECC384ECDSAVerify(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,h,(const uint8_t *)sig);
SHA384(h, data, len, m_pub, sizeof(m_pub));
return ECC384ECDSAVerify(m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, h, (const uint8_t *) sig);
}
break;
}
return false;
}
bool Identity::agree(const Identity &id,uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) const
bool Identity::agree(const Identity &id, uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) const
{
uint8_t rawkey[128];
uint8_t h[64];
@ -268,9 +267,9 @@ bool Identity::agree(const Identity &id,uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) cons
if ((id.m_type == C25519) || (id.m_type == P384)) {
// If we are a C25519 key we can agree with another C25519 key or with only the
// C25519 portion of a type 1 P-384 key.
C25519::agree(m_priv,id.m_pub,rawkey);
SHA512(h,rawkey,ZT_C25519_ECDH_SHARED_SECRET_SIZE);
Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key,h);
C25519::agree(m_priv, id.m_pub, rawkey);
SHA512(h, rawkey, ZT_C25519_ECDH_SHARED_SECRET_SIZE);
Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key, h);
return true;
}
} else if (m_type == P384) {
@ -280,16 +279,16 @@ bool Identity::agree(const Identity &id,uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) cons
// P384 to be kosher, the C25519 secret can be considered a "salt"
// or something. For those who don't trust P384 this means the privacy of
// your traffic is also protected by C25519.
C25519::agree(m_priv,id.m_pub,rawkey);
ECC384ECDH(id.m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE,rawkey + ZT_C25519_ECDH_SHARED_SECRET_SIZE);
SHA384(h,rawkey,ZT_C25519_ECDH_SHARED_SECRET_SIZE + ZT_ECC384_SHARED_SECRET_SIZE);
Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key,h);
C25519::agree(m_priv, id.m_pub, rawkey);
ECC384ECDH(id.m_pub + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE, rawkey + ZT_C25519_ECDH_SHARED_SECRET_SIZE);
SHA384(h, rawkey, ZT_C25519_ECDH_SHARED_SECRET_SIZE + ZT_ECC384_SHARED_SECRET_SIZE);
Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key, h);
return true;
} else if (id.m_type == C25519) {
// If the other identity is a C25519 identity we can agree using only that type.
C25519::agree(m_priv,id.m_pub,rawkey);
SHA512(h,rawkey,ZT_C25519_ECDH_SHARED_SECRET_SIZE);
Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key,h);
C25519::agree(m_priv, id.m_pub, rawkey);
SHA512(h, rawkey, ZT_C25519_ECDH_SHARED_SECRET_SIZE);
Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key, h);
return true;
}
}
@ -297,40 +296,40 @@ bool Identity::agree(const Identity &id,uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) cons
return false;
}
char *Identity::toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
char *Identity::toString(bool includePrivate, char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
{
char *p = buf;
m_fp.address().toString(p);
p += 10;
*(p++) = ':';
switch(m_type) {
switch (m_type) {
case C25519: {
*(p++) = '0';
*(p++) = ':';
Utils::hex(m_pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,p);
Utils::hex(m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, p);
p += ZT_C25519_COMBINED_PUBLIC_KEY_SIZE * 2;
if ((m_hasPrivate)&&(includePrivate)) {
if ((m_hasPrivate) && (includePrivate)) {
*(p++) = ':';
Utils::hex(m_priv,ZT_C25519_COMBINED_PRIVATE_KEY_SIZE,p);
Utils::hex(m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE, p);
p += ZT_C25519_COMBINED_PRIVATE_KEY_SIZE * 2;
}
*p = (char)0;
*p = (char) 0;
return buf;
}
case P384: {
*(p++) = '1';
*(p++) = ':';
int el = Utils::b32e(m_pub,sizeof(m_pub),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
int el = Utils::b32e(m_pub, sizeof(m_pub), p, (int) (ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t) (p - buf)));
if (el <= 0) return nullptr;
p += el;
if ((m_hasPrivate)&&(includePrivate)) {
if ((m_hasPrivate) && (includePrivate)) {
*(p++) = ':';
el = Utils::b32e(m_priv,sizeof(m_priv),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
el = Utils::b32e(m_priv, sizeof(m_priv), p, (int) (ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t) (p - buf)));
if (el <= 0) return nullptr;
p += el;
}
*p = (char)0;
*p = (char) 0;
return buf;
}
}
@ -342,13 +341,13 @@ bool Identity::fromString(const char *str)
{
char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH];
memoryZero(this);
if ((!str)||(!Utils::scopy(tmp,sizeof(tmp),str)))
if ((!str) || (!Utils::scopy(tmp, sizeof(tmp), str)))
return false;
int fno = 0;
char *saveptr = nullptr;
for(char *f=Utils::stok(tmp,":",&saveptr);((f)&&(fno < 4));f=Utils::stok(nullptr,":",&saveptr)) {
switch(fno++) {
for (char *f = Utils::stok(tmp, ":", &saveptr);((f) && (fno < 4));f = Utils::stok(nullptr, ":", &saveptr)) {
switch (fno++) {
case 0:
m_fp.m_cfp.address = Utils::hexStrToU64(f) & ZT_ADDRESS_MASK;
@ -359,9 +358,9 @@ bool Identity::fromString(const char *str)
break;
case 1:
if ((f[0] == '0')&&(!f[1])) {
if ((f[0] == '0') && (!f[1])) {
m_type = C25519;
} else if ((f[0] == '1')&&(!f[1])) {
} else if ((f[0] == '1') && (!f[1])) {
m_type = P384;
} else {
memoryZero(this);
@ -370,17 +369,17 @@ bool Identity::fromString(const char *str)
break;
case 2:
switch(m_type) {
switch (m_type) {
case C25519:
if (Utils::unhex(f,strlen(f),m_pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) != ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) {
if (Utils::unhex(f, strlen(f), m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) != ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) {
memoryZero(this);
return false;
}
break;
case P384:
if (Utils::b32d(f,m_pub,sizeof(m_pub)) != sizeof(m_pub)) {
if (Utils::b32d(f, m_pub, sizeof(m_pub)) != sizeof(m_pub)) {
memoryZero(this);
return false;
}
@ -391,10 +390,10 @@ bool Identity::fromString(const char *str)
case 3:
if (strlen(f) > 1) {
switch(m_type) {
switch (m_type) {
case C25519:
if (Utils::unhex(f,strlen(f),m_priv,ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) != ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) {
if (Utils::unhex(f, strlen(f), m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) != ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) {
memoryZero(this);
return false;
} else {
@ -403,7 +402,7 @@ bool Identity::fromString(const char *str)
break;
case P384:
if (Utils::b32d(f,m_priv,sizeof(m_priv)) != sizeof(m_priv)) {
if (Utils::b32d(f, m_priv, sizeof(m_priv)) != sizeof(m_priv)) {
memoryZero(this);
return false;
} else {
@ -424,7 +423,7 @@ bool Identity::fromString(const char *str)
}
m_computeHash();
if ((m_type == P384)&&(m_fp.address() != Address(m_fp.hash()))) {
if ((m_type == P384) && (m_fp.address() != Address(m_fp.hash()))) {
memoryZero(this);
return false;
}
@ -432,17 +431,17 @@ bool Identity::fromString(const char *str)
return true;
}
int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate) const noexcept
int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX], const bool includePrivate) const noexcept
{
m_fp.address().copyTo(data);
switch(m_type) {
switch (m_type) {
case C25519:
data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519;
Utils::copy<ZT_C25519_COMBINED_PUBLIC_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1,m_pub);
if ((includePrivate)&&(m_hasPrivate)) {
data[ZT_ADDRESS_LENGTH] = (uint8_t) C25519;
Utils::copy<ZT_C25519_COMBINED_PUBLIC_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1, m_pub);
if ((includePrivate) && (m_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE] = ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
Utils::copy<ZT_C25519_COMBINED_PRIVATE_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1,m_priv);
Utils::copy<ZT_C25519_COMBINED_PRIVATE_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1, m_priv);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
} else {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE] = 0;
@ -450,11 +449,11 @@ int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool incl
}
case P384:
data[ZT_ADDRESS_LENGTH] = (uint8_t)P384;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1,m_pub);
if ((includePrivate)&&(m_hasPrivate)) {
data[ZT_ADDRESS_LENGTH] = (uint8_t) P384;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1, m_pub);
if ((includePrivate) && (m_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,m_priv);
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1, m_priv);
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
} else {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0;
@ -465,7 +464,7 @@ int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool incl
return -1;
}
int Identity::unmarshal(const uint8_t *data,const int len) noexcept
int Identity::unmarshal(const uint8_t *data, const int len) noexcept
{
memoryZero(this);
@ -474,13 +473,13 @@ int Identity::unmarshal(const uint8_t *data,const int len) noexcept
m_fp.m_cfp.address = Address(data).toInt();
unsigned int privlen;
switch((m_type = (Type)data[ZT_ADDRESS_LENGTH])) {
switch ((m_type = (Type) data[ZT_ADDRESS_LENGTH])) {
case C25519:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1))
return -1;
Utils::copy<ZT_C25519_COMBINED_PUBLIC_KEY_SIZE>(m_pub,data + ZT_ADDRESS_LENGTH + 1);
Utils::copy<ZT_C25519_COMBINED_PUBLIC_KEY_SIZE>(m_pub, data + ZT_ADDRESS_LENGTH + 1);
m_computeHash();
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE];
@ -488,7 +487,7 @@ int Identity::unmarshal(const uint8_t *data,const int len) noexcept
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE))
return -1;
m_hasPrivate = true;
Utils::copy<ZT_C25519_COMBINED_PRIVATE_KEY_SIZE>(m_priv,data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1);
Utils::copy<ZT_C25519_COMBINED_PRIVATE_KEY_SIZE>(m_priv, data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
} else if (privlen == 0) {
m_hasPrivate = false;
@ -500,7 +499,7 @@ int Identity::unmarshal(const uint8_t *data,const int len) noexcept
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1))
return -1;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(m_pub,data + ZT_ADDRESS_LENGTH + 1);
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(m_pub, data + ZT_ADDRESS_LENGTH + 1);
m_computeHash(); // this sets the address for P384
if (m_fp.address() != Address(m_fp.hash())) // this sanity check is possible with V1 identities
return -1;
@ -525,15 +524,15 @@ int Identity::unmarshal(const uint8_t *data,const int len) noexcept
void Identity::m_computeHash()
{
switch(m_type) {
switch (m_type) {
default:
m_fp.zero();
break;
case C25519:
SHA384(m_fp.m_cfp.hash,m_pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE);
SHA384(m_fp.m_cfp.hash, m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE);
break;
case P384:
SHA384(m_fp.m_cfp.hash,m_pub,sizeof(m_pub));
SHA384(m_fp.m_cfp.hash, m_pub, sizeof(m_pub));
m_fp.m_cfp.address = Address(m_fp.m_cfp.hash).toInt();
break;
}
@ -545,13 +544,13 @@ extern "C" {
ZT_Identity *ZT_Identity_new(enum ZT_Identity_Type type)
{
if ((type != ZT_IDENTITY_TYPE_C25519)&&(type != ZT_IDENTITY_TYPE_P384))
if ((type != ZT_IDENTITY_TYPE_C25519) && (type != ZT_IDENTITY_TYPE_P384))
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity(); // NOLINT(hicpp-use-auto,modernize-use-auto)
id->generate((ZeroTier::Identity::Type)type);
id->generate((ZeroTier::Identity::Type) type);
return reinterpret_cast<ZT_Identity *>(id);
} catch ( ... ) {
} catch (...) {
return nullptr;
}
}
@ -567,7 +566,7 @@ ZT_Identity *ZT_Identity_fromString(const char *idStr)
return nullptr;
}
return reinterpret_cast<ZT_Identity *>(id);
} catch ( ... ) {
} catch (...) {
return nullptr;
}
}
@ -579,34 +578,34 @@ int ZT_Identity_validate(const ZT_Identity *id)
return reinterpret_cast<const ZeroTier::Identity *>(id)->locallyValidate() ? 1 : 0;
}
unsigned int ZT_Identity_sign(const ZT_Identity *id,const void *data,unsigned int len,void *signature,unsigned int signatureBufferLength)
unsigned int ZT_Identity_sign(const ZT_Identity *id, const void *data, unsigned int len, void *signature, unsigned int signatureBufferLength)
{
if (!id)
return 0;
if (signatureBufferLength < ZT_SIGNATURE_BUFFER_SIZE)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data,len,signature,signatureBufferLength);
return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data, len, signature, signatureBufferLength);
}
int ZT_Identity_verify(const ZT_Identity *id,const void *data,unsigned int len,const void *signature,unsigned int sigLen)
int ZT_Identity_verify(const ZT_Identity *id, const void *data, unsigned int len, const void *signature, unsigned int sigLen)
{
if ((!id)||(!signature)||(!sigLen))
if ((!id) || (!signature) || (!sigLen))
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data,len,signature,sigLen) ? 1 : 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data, len, signature, sigLen) ? 1 : 0;
}
enum ZT_Identity_Type ZT_Identity_type(const ZT_Identity *id)
{
if (!id)
return (ZT_Identity_Type)0;
return (enum ZT_Identity_Type)reinterpret_cast<const ZeroTier::Identity *>(id)->type();
return (ZT_Identity_Type) 0;
return (enum ZT_Identity_Type) reinterpret_cast<const ZeroTier::Identity *>(id)->type();
}
char *ZT_Identity_toString(const ZT_Identity *id,char *buf,int capacity,int includePrivate)
char *ZT_Identity_toString(const ZT_Identity *id, char *buf, int capacity, int includePrivate)
{
if ((!id)||(!buf)||(capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
if ((!id) || (!buf) || (capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
return nullptr;
reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0,buf);
reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0, buf);
return buf;
}

View file

@ -20,20 +20,23 @@
namespace ZeroTier {
const InetAddress InetAddress::LO4((const void *)("\x7f\x00\x00\x01"),4,0);
const InetAddress InetAddress::LO6((const void *)("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"),16,0);
const InetAddress InetAddress::LO4((const void *) ("\x7f\x00\x00\x01"), 4, 0);
const InetAddress InetAddress::LO6((const void *) ("\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01"), 16, 0);
const InetAddress InetAddress::NIL;
InetAddress::IpScope InetAddress::ipScope() const noexcept
{
switch(as.ss.ss_family) {
switch (as.ss.ss_family) {
case AF_INET: {
const uint32_t ip = Utils::ntoh((uint32_t)as.sa_in.sin_addr.s_addr);
switch(ip >> 24U) {
case 0x00: return IP_SCOPE_NONE; // 0.0.0.0/8 (reserved, never used)
case 0x06: return IP_SCOPE_PSEUDOPRIVATE; // 6.0.0.0/8 (US Army)
case 0x0a: return IP_SCOPE_PRIVATE; // 10.0.0.0/8
switch (ip >> 24U) {
case 0x00:
return IP_SCOPE_NONE; // 0.0.0.0/8 (reserved, never used)
case 0x06:
return IP_SCOPE_PSEUDOPRIVATE; // 6.0.0.0/8 (US Army)
case 0x0a:
return IP_SCOPE_PRIVATE; // 10.0.0.0/8
case 0x0b: //return IP_SCOPE_PSEUDOPRIVATE; // 11.0.0.0/8 (US DoD)
case 0x15: //return IP_SCOPE_PSEUDOPRIVATE; // 21.0.0.0/8 (US DDN-RVN)
case 0x16: //return IP_SCOPE_PSEUDOPRIVATE; // 22.0.0.0/8 (US DISA)
@ -44,11 +47,13 @@ InetAddress::IpScope InetAddress::ipScope() const noexcept
case 0x1e: //return IP_SCOPE_PSEUDOPRIVATE; // 30.0.0.0/8 (US DISA)
case 0x33: //return IP_SCOPE_PSEUDOPRIVATE; // 51.0.0.0/8 (UK Department of Social Security)
case 0x37: //return IP_SCOPE_PSEUDOPRIVATE; // 55.0.0.0/8 (US DoD)
case 0x38: return IP_SCOPE_PSEUDOPRIVATE; // 56.0.0.0/8 (US Postal Service)
case 0x38:
return IP_SCOPE_PSEUDOPRIVATE; // 56.0.0.0/8 (US Postal Service)
case 0x64:
if ((ip & 0xffc00000) == 0x64400000) return IP_SCOPE_PRIVATE; // 100.64.0.0/10
break;
case 0x7f: return IP_SCOPE_LOOPBACK; // 127.0.0.0/8
case 0x7f:
return IP_SCOPE_LOOPBACK; // 127.0.0.0/8
case 0xa9:
if ((ip & 0xffff0000) == 0xa9fe0000) return IP_SCOPE_LINK_LOCAL; // 169.254.0.0/16
break;
@ -58,11 +63,14 @@ InetAddress::IpScope InetAddress::ipScope() const noexcept
case 0xc0:
if ((ip & 0xffff0000) == 0xc0a80000) return IP_SCOPE_PRIVATE; // 192.168.0.0/16
break;
case 0xff: return IP_SCOPE_NONE; // 255.0.0.0/8 (broadcast, or unused/unusable)
case 0xff:
return IP_SCOPE_NONE; // 255.0.0.0/8 (broadcast, or unused/unusable)
}
switch(ip >> 28U) {
case 0xe: return IP_SCOPE_MULTICAST; // 224.0.0.0/4
case 0xf: return IP_SCOPE_PSEUDOPRIVATE; // 240.0.0.0/4 ("reserved," usually unusable)
switch (ip >> 28U) {
case 0xe:
return IP_SCOPE_MULTICAST; // 224.0.0.0/4
case 0xf:
return IP_SCOPE_PSEUDOPRIVATE; // 240.0.0.0/4 ("reserved," usually unusable)
}
return IP_SCOPE_GLOBAL;
}
@ -71,17 +79,17 @@ InetAddress::IpScope InetAddress::ipScope() const noexcept
const uint8_t *const ip = as.sa_in6.sin6_addr.s6_addr;
if ((ip[0] & 0xf0U) == 0xf0) {
if (ip[0] == 0xff) return IP_SCOPE_MULTICAST; // ff00::/8
if ((ip[0] == 0xfe)&&((ip[1] & 0xc0U) == 0x80)) {
if ((ip[0] == 0xfe) && ((ip[1] & 0xc0U) == 0x80)) {
unsigned int k = 2;
while ((!ip[k])&&(k < 15)) ++k;
if ((k == 15)&&(ip[15] == 0x01))
while ((!ip[k]) && (k < 15)) ++k;
if ((k == 15) && (ip[15] == 0x01))
return IP_SCOPE_LOOPBACK; // fe80::1/128
else return IP_SCOPE_LINK_LOCAL; // fe80::/10
}
if ((ip[0] & 0xfeU) == 0xfc) return IP_SCOPE_PRIVATE; // fc00::/7
}
unsigned int k = 0;
while ((!ip[k])&&(k < 15)) ++k;
while ((!ip[k]) && (k < 15)) ++k;
if (k == 15) { // all 0's except last byte
if (ip[15] == 0x01) return IP_SCOPE_LOOPBACK; // ::1/128
if (ip[15] == 0x00) return IP_SCOPE_NONE; // ::/128
@ -93,28 +101,28 @@ InetAddress::IpScope InetAddress::ipScope() const noexcept
return IP_SCOPE_NONE;
}
void InetAddress::set(const void *ipBytes,unsigned int ipLen,unsigned int port) noexcept
void InetAddress::set(const void *ipBytes, unsigned int ipLen, unsigned int port) noexcept
{
memoryZero(this);
if (ipLen == 4) {
as.sa_in.sin_family = AF_INET;
as.sa_in.sin_port = Utils::hton((uint16_t)port);
as.sa_in.sin_port = Utils::hton((uint16_t) port);
as.sa_in.sin_addr.s_addr = Utils::loadAsIsEndian<uint32_t>(ipBytes);
} else if (ipLen == 16) {
as.sa_in6.sin6_family = AF_INET6;
as.sa_in6.sin6_port = Utils::hton((uint16_t)port);
Utils::copy<16>(as.sa_in6.sin6_addr.s6_addr,ipBytes);
as.sa_in6.sin6_port = Utils::hton((uint16_t) port);
Utils::copy<16>(as.sa_in6.sin6_addr.s6_addr, ipBytes);
}
}
bool InetAddress::isDefaultRoute() const noexcept
{
switch(as.ss.ss_family) {
switch (as.ss.ss_family) {
case AF_INET:
return ((as.sa_in.sin_port == 0)&&(as.sa_in.sin_addr.s_addr == 0));
return ((as.sa_in.sin_port == 0) && (as.sa_in.sin_addr.s_addr == 0));
case AF_INET6:
if (as.sa_in6.sin6_port == 0) {
for (unsigned int i=0;i<16;++i) {
for (unsigned int i = 0;i < 16;++i) {
if (as.sa_in6.sin6_addr.s6_addr[i])
return false;
}
@ -132,17 +140,21 @@ char *InetAddress::toString(char buf[ZT_INETADDRESS_STRING_SIZE_MAX]) const noex
if (*p) {
while (*p) ++p;
*(p++) = '/';
Utils::decimal(port(),p);
Utils::decimal(port(), p);
}
return buf;
}
char *InetAddress::toIpString(char buf[ZT_INETADDRESS_STRING_SIZE_MAX]) const noexcept
{
buf[0] = (char)0;
switch(as.ss.ss_family) {
case AF_INET: inet_ntop(AF_INET,&as.sa_in.sin_addr.s_addr,buf,INET_ADDRSTRLEN); break;
case AF_INET6: inet_ntop(AF_INET6,as.sa_in6.sin6_addr.s6_addr,buf,INET6_ADDRSTRLEN); break;
buf[0] = (char) 0;
switch (as.ss.ss_family) {
case AF_INET:
inet_ntop(AF_INET, &as.sa_in.sin_addr.s_addr, buf, INET_ADDRSTRLEN);
break;
case AF_INET6:
inet_ntop(AF_INET6, as.sa_in6.sin6_addr.s6_addr, buf, INET6_ADDRSTRLEN);
break;
}
return buf;
}
@ -155,27 +167,27 @@ bool InetAddress::fromString(const char *ipSlashPort) noexcept
if (!*ipSlashPort)
return true;
if (!Utils::scopy(buf,sizeof(buf),ipSlashPort))
if (!Utils::scopy(buf, sizeof(buf), ipSlashPort))
return false;
char *portAt = buf;
while ((*portAt)&&(*portAt != '/'))
while ((*portAt) && (*portAt != '/'))
++portAt;
unsigned int port = 0;
if (*portAt) {
*(portAt++) = (char)0;
*(portAt++) = (char) 0;
port = Utils::strToUInt(portAt) & 0xffffU;
}
if (strchr(buf,':')) {
if (strchr(buf, ':')) {
as.sa_in6.sin6_family = AF_INET6;
as.sa_in6.sin6_port = Utils::hton((uint16_t)port);
inet_pton(AF_INET6,buf,as.sa_in6.sin6_addr.s6_addr);
as.sa_in6.sin6_port = Utils::hton((uint16_t) port);
inet_pton(AF_INET6, buf, as.sa_in6.sin6_addr.s6_addr);
return true;
} else if (strchr(buf,'.')) {
} else if (strchr(buf, '.')) {
as.sa_in.sin_family = AF_INET;
as.sa_in.sin_port = Utils::hton((uint16_t)port);
inet_pton(AF_INET,buf,&as.sa_in.sin_addr.s_addr);
as.sa_in.sin_port = Utils::hton((uint16_t) port);
inet_pton(AF_INET, buf, &as.sa_in.sin_addr.s_addr);
return true;
}
@ -185,22 +197,23 @@ bool InetAddress::fromString(const char *ipSlashPort) noexcept
InetAddress InetAddress::netmask() const noexcept
{
InetAddress r(*this);
switch(r.as.ss.ss_family) {
switch (r.as.ss.ss_family) {
case AF_INET:
r.as.sa_in.sin_addr.s_addr = Utils::hton((uint32_t)(0xffffffffU << (32 - netmaskBits())));
r.as.sa_in.sin_addr.s_addr = Utils::hton((uint32_t) (0xffffffffU << (32 - netmaskBits())));
break;
case AF_INET6: {
uint64_t nm[2];
const unsigned int bits = netmaskBits();
if(bits) {
nm[0] = Utils::hton((uint64_t)((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits))));
nm[1] = Utils::hton((uint64_t)((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits))));
if (bits) {
nm[0] = Utils::hton((uint64_t) ((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits))));
nm[1] = Utils::hton((uint64_t) ((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits))));
} else {
nm[0] = 0;
nm[1] = 0;
}
Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr,nm);
} break;
Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr, nm);
}
break;
}
return r;
}
@ -209,7 +222,7 @@ InetAddress InetAddress::broadcast() const noexcept
{
if (as.ss.ss_family == AF_INET) {
InetAddress r(*this);
reinterpret_cast<sockaddr_in *>(&r)->sin_addr.s_addr |= Utils::hton((uint32_t)(0xffffffffU >> netmaskBits()));
reinterpret_cast<sockaddr_in *>(&r)->sin_addr.s_addr |= Utils::hton((uint32_t) (0xffffffffU >> netmaskBits()));
return r;
}
return InetAddress();
@ -218,18 +231,19 @@ InetAddress InetAddress::broadcast() const noexcept
InetAddress InetAddress::network() const noexcept
{
InetAddress r(*this);
switch(r.as.ss.ss_family) {
switch (r.as.ss.ss_family) {
case AF_INET:
r.as.sa_in.sin_addr.s_addr &= Utils::hton((uint32_t)(0xffffffffU << (32 - netmaskBits())));
r.as.sa_in.sin_addr.s_addr &= Utils::hton((uint32_t) (0xffffffffU << (32 - netmaskBits())));
break;
case AF_INET6: {
uint64_t nm[2];
const unsigned int bits = netmaskBits();
Utils::copy<16>(nm,reinterpret_cast<sockaddr_in6 *>(&r)->sin6_addr.s6_addr);
nm[0] &= Utils::hton((uint64_t)((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits))));
nm[1] &= Utils::hton((uint64_t)((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits))));
Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr,nm);
} break;
Utils::copy<16>(nm, reinterpret_cast<sockaddr_in6 *>(&r)->sin6_addr.s6_addr);
nm[0] &= Utils::hton((uint64_t) ((bits >= 64) ? 0xffffffffffffffffULL : (0xffffffffffffffffULL << (64 - bits))));
nm[1] &= Utils::hton((uint64_t) ((bits <= 64) ? 0ULL : (0xffffffffffffffffULL << (128 - bits))));
Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr, nm);
}
break;
}
return r;
}
@ -237,7 +251,7 @@ InetAddress InetAddress::network() const noexcept
bool InetAddress::isEqualPrefix(const InetAddress &addr) const noexcept
{
if (addr.as.ss.ss_family == as.ss.ss_family) {
switch(as.ss.ss_family) {
switch (as.ss.ss_family) {
case AF_INET6: {
const InetAddress mask(netmask());
InetAddress addr_mask(addr.netmask());
@ -245,7 +259,7 @@ bool InetAddress::isEqualPrefix(const InetAddress &addr) const noexcept
const uint8_t *const m = mask.as.sa_in6.sin6_addr.s6_addr;
const uint8_t *const a = addr.as.sa_in6.sin6_addr.s6_addr;
const uint8_t *const b = as.sa_in6.sin6_addr.s6_addr;
for(unsigned int i=0;i<16;++i) {
for (unsigned int i = 0;i < 16;++i) {
if ((a[i] & m[i]) != (b[i] & n[i]))
return false;
}
@ -259,14 +273,14 @@ bool InetAddress::isEqualPrefix(const InetAddress &addr) const noexcept
bool InetAddress::containsAddress(const InetAddress &addr) const noexcept
{
if (addr.as.ss.ss_family == as.ss.ss_family) {
switch(as.ss.ss_family) {
switch (as.ss.ss_family) {
case AF_INET: {
const unsigned int bits = netmaskBits();
if (bits == 0)
return true;
return (
(Utils::ntoh((uint32_t)addr.as.sa_in.sin_addr.s_addr) >> (32 - bits)) ==
(Utils::ntoh((uint32_t)as.sa_in.sin_addr.s_addr) >> (32 - bits))
(Utils::ntoh((uint32_t) addr.as.sa_in.sin_addr.s_addr) >> (32 - bits)) ==
(Utils::ntoh((uint32_t) as.sa_in.sin_addr.s_addr) >> (32 - bits))
);
}
case AF_INET6: {
@ -274,7 +288,7 @@ bool InetAddress::containsAddress(const InetAddress &addr) const noexcept
const uint8_t *const m = mask.as.sa_in6.sin6_addr.s6_addr;
const uint8_t *const a = addr.as.sa_in6.sin6_addr.s6_addr;
const uint8_t *const b = as.sa_in6.sin6_addr.s6_addr;
for(unsigned int i=0;i<16;++i) {
for (unsigned int i = 0;i < 16;++i) {
if ((a[i] & m[i]) != b[i])
return false;
}
@ -287,14 +301,14 @@ bool InetAddress::containsAddress(const InetAddress &addr) const noexcept
bool InetAddress::isNetwork() const noexcept
{
switch(as.ss.ss_family) {
switch (as.ss.ss_family) {
case AF_INET: {
unsigned int bits = netmaskBits();
if (bits <= 0)
return false;
if (bits >= 32)
return false;
const uint32_t ip = Utils::ntoh((uint32_t)as.sa_in.sin_addr.s_addr);
const uint32_t ip = Utils::ntoh((uint32_t) as.sa_in.sin_addr.s_addr);
return ((ip & (0xffffffffU >> bits)) == 0);
}
case AF_INET6: {
@ -320,23 +334,23 @@ bool InetAddress::isNetwork() const noexcept
int InetAddress::marshal(uint8_t data[ZT_INETADDRESS_MARSHAL_SIZE_MAX]) const noexcept
{
unsigned int port;
switch(as.ss.ss_family) {
switch (as.ss.ss_family) {
case AF_INET:
port = Utils::ntoh((uint16_t)reinterpret_cast<const sockaddr_in *>(this)->sin_port);
port = Utils::ntoh((uint16_t) reinterpret_cast<const sockaddr_in *>(this)->sin_port);
data[0] = 4;
data[1] = reinterpret_cast<const uint8_t *>(&as.sa_in.sin_addr.s_addr)[0];
data[2] = reinterpret_cast<const uint8_t *>(&as.sa_in.sin_addr.s_addr)[1];
data[3] = reinterpret_cast<const uint8_t *>(&as.sa_in.sin_addr.s_addr)[2];
data[4] = reinterpret_cast<const uint8_t *>(&as.sa_in.sin_addr.s_addr)[3];
data[5] = (uint8_t)(port >> 8U);
data[6] = (uint8_t)port;
data[5] = (uint8_t) (port >> 8U);
data[6] = (uint8_t) port;
return 7;
case AF_INET6:
port = Utils::ntoh((uint16_t)as.sa_in6.sin6_port);
port = Utils::ntoh((uint16_t) as.sa_in6.sin6_port);
data[0] = 6;
Utils::copy<16>(data + 1,as.sa_in6.sin6_addr.s6_addr);
data[17] = (uint8_t)(port >> 8U);
data[18] = (uint8_t)port;
Utils::copy<16>(data + 1, as.sa_in6.sin6_addr.s6_addr);
data[17] = (uint8_t) (port >> 8U);
data[18] = (uint8_t) port;
return 19;
default:
data[0] = 0;
@ -344,12 +358,12 @@ int InetAddress::marshal(uint8_t data[ZT_INETADDRESS_MARSHAL_SIZE_MAX]) const no
}
}
int InetAddress::unmarshal(const uint8_t *restrict data,const int len) noexcept
int InetAddress::unmarshal(const uint8_t *restrict data, const int len) noexcept
{
memoryZero(this);
if (unlikely(len <= 0))
return -1;
switch(data[0]) {
switch (data[0]) {
case 0:
return 1;
case 4:
@ -364,7 +378,7 @@ int InetAddress::unmarshal(const uint8_t *restrict data,const int len) noexcept
return -1;
as.sa_in6.sin6_family = AF_INET6;
as.sa_in6.sin6_port = Utils::loadAsIsEndian<uint16_t>(data + 17);
Utils::copy<16>(as.sa_in6.sin6_addr.s6_addr,data + 1);
Utils::copy<16>(as.sa_in6.sin6_addr.s6_addr, data + 1);
return 19;
default:
return -1;
@ -395,46 +409,46 @@ InetAddress InetAddress::makeIpv6LinkLocal(const MAC &mac) noexcept
return r;
}
InetAddress InetAddress::makeIpv6rfc4193(uint64_t nwid,uint64_t zeroTierAddress) noexcept
InetAddress InetAddress::makeIpv6rfc4193(uint64_t nwid, uint64_t zeroTierAddress) noexcept
{
InetAddress r;
r.as.sa_in6.sin6_family = AF_INET6;
r.as.sa_in6.sin6_port = ZT_CONST_TO_BE_UINT16(88); // /88 includes 0xfd + network ID, discriminating by device ID below that
r.as.sa_in6.sin6_addr.s6_addr[0] = 0xfd;
r.as.sa_in6.sin6_addr.s6_addr[1] = (uint8_t)(nwid >> 56U);
r.as.sa_in6.sin6_addr.s6_addr[2] = (uint8_t)(nwid >> 48U);
r.as.sa_in6.sin6_addr.s6_addr[3] = (uint8_t)(nwid >> 40U);
r.as.sa_in6.sin6_addr.s6_addr[4] = (uint8_t)(nwid >> 32U);
r.as.sa_in6.sin6_addr.s6_addr[5] = (uint8_t)(nwid >> 24U);
r.as.sa_in6.sin6_addr.s6_addr[6] = (uint8_t)(nwid >> 16U);
r.as.sa_in6.sin6_addr.s6_addr[7] = (uint8_t)(nwid >> 8U);
r.as.sa_in6.sin6_addr.s6_addr[8] = (uint8_t)nwid;
r.as.sa_in6.sin6_addr.s6_addr[1] = (uint8_t) (nwid >> 56U);
r.as.sa_in6.sin6_addr.s6_addr[2] = (uint8_t) (nwid >> 48U);
r.as.sa_in6.sin6_addr.s6_addr[3] = (uint8_t) (nwid >> 40U);
r.as.sa_in6.sin6_addr.s6_addr[4] = (uint8_t) (nwid >> 32U);
r.as.sa_in6.sin6_addr.s6_addr[5] = (uint8_t) (nwid >> 24U);
r.as.sa_in6.sin6_addr.s6_addr[6] = (uint8_t) (nwid >> 16U);
r.as.sa_in6.sin6_addr.s6_addr[7] = (uint8_t) (nwid >> 8U);
r.as.sa_in6.sin6_addr.s6_addr[8] = (uint8_t) nwid;
r.as.sa_in6.sin6_addr.s6_addr[9] = 0x99;
r.as.sa_in6.sin6_addr.s6_addr[10] = 0x93;
r.as.sa_in6.sin6_addr.s6_addr[11] = (uint8_t)(zeroTierAddress >> 32U);
r.as.sa_in6.sin6_addr.s6_addr[12] = (uint8_t)(zeroTierAddress >> 24U);
r.as.sa_in6.sin6_addr.s6_addr[13] = (uint8_t)(zeroTierAddress >> 16U);
r.as.sa_in6.sin6_addr.s6_addr[14] = (uint8_t)(zeroTierAddress >> 8U);
r.as.sa_in6.sin6_addr.s6_addr[15] = (uint8_t)zeroTierAddress;
r.as.sa_in6.sin6_addr.s6_addr[11] = (uint8_t) (zeroTierAddress >> 32U);
r.as.sa_in6.sin6_addr.s6_addr[12] = (uint8_t) (zeroTierAddress >> 24U);
r.as.sa_in6.sin6_addr.s6_addr[13] = (uint8_t) (zeroTierAddress >> 16U);
r.as.sa_in6.sin6_addr.s6_addr[14] = (uint8_t) (zeroTierAddress >> 8U);
r.as.sa_in6.sin6_addr.s6_addr[15] = (uint8_t) zeroTierAddress;
return r;
}
InetAddress InetAddress::makeIpv66plane(uint64_t nwid,uint64_t zeroTierAddress) noexcept
InetAddress InetAddress::makeIpv66plane(uint64_t nwid, uint64_t zeroTierAddress) noexcept
{
nwid ^= (nwid >> 32U);
InetAddress r;
r.as.sa_in6.sin6_family = AF_INET6;
r.as.sa_in6.sin6_port = ZT_CONST_TO_BE_UINT16(40);
r.as.sa_in6.sin6_addr.s6_addr[0] = 0xfc;
r.as.sa_in6.sin6_addr.s6_addr[1] = (uint8_t)(nwid >> 24U);
r.as.sa_in6.sin6_addr.s6_addr[2] = (uint8_t)(nwid >> 16U);
r.as.sa_in6.sin6_addr.s6_addr[3] = (uint8_t)(nwid >> 8U);
r.as.sa_in6.sin6_addr.s6_addr[4] = (uint8_t)nwid;
r.as.sa_in6.sin6_addr.s6_addr[5] = (uint8_t)(zeroTierAddress >> 32U);
r.as.sa_in6.sin6_addr.s6_addr[6] = (uint8_t)(zeroTierAddress >> 24U);
r.as.sa_in6.sin6_addr.s6_addr[7] = (uint8_t)(zeroTierAddress >> 16U);
r.as.sa_in6.sin6_addr.s6_addr[8] = (uint8_t)(zeroTierAddress >> 8U);
r.as.sa_in6.sin6_addr.s6_addr[9] = (uint8_t)zeroTierAddress;
r.as.sa_in6.sin6_addr.s6_addr[1] = (uint8_t) (nwid >> 24U);
r.as.sa_in6.sin6_addr.s6_addr[2] = (uint8_t) (nwid >> 16U);
r.as.sa_in6.sin6_addr.s6_addr[3] = (uint8_t) (nwid >> 8U);
r.as.sa_in6.sin6_addr.s6_addr[4] = (uint8_t) nwid;
r.as.sa_in6.sin6_addr.s6_addr[5] = (uint8_t) (zeroTierAddress >> 32U);
r.as.sa_in6.sin6_addr.s6_addr[6] = (uint8_t) (zeroTierAddress >> 24U);
r.as.sa_in6.sin6_addr.s6_addr[7] = (uint8_t) (zeroTierAddress >> 16U);
r.as.sa_in6.sin6_addr.s6_addr[8] = (uint8_t) (zeroTierAddress >> 8U);
r.as.sa_in6.sin6_addr.s6_addr[9] = (uint8_t) zeroTierAddress;
r.as.sa_in6.sin6_addr.s6_addr[15] = 0x01;
return r;
}

View file

@ -71,28 +71,54 @@ public:
};
// Hasher for unordered sets and maps in C++11
struct Hasher { ZT_INLINE std::size_t operator()(const InetAddress &a) const noexcept { return (std::size_t)a.hashCode(); } };
struct Hasher
{
ZT_INLINE std::size_t operator()(const InetAddress &a) const noexcept
{ return (std::size_t) a.hashCode(); }
};
ZT_INLINE InetAddress() noexcept { memoryZero(this); }
ZT_INLINE InetAddress() noexcept
{ memoryZero(this); }
explicit ZT_INLINE InetAddress(const sockaddr_storage &ss) noexcept { *this = ss; }
explicit ZT_INLINE InetAddress(const sockaddr_storage *const ss) noexcept { *this = ss; }
explicit ZT_INLINE InetAddress(const sockaddr &sa) noexcept { *this = sa; }
explicit ZT_INLINE InetAddress(const sockaddr *const sa) noexcept { *this = sa; }
explicit ZT_INLINE InetAddress(const sockaddr_in &sa) noexcept { *this = sa; }
explicit ZT_INLINE InetAddress(const sockaddr_in *const sa) noexcept { *this = sa; }
explicit ZT_INLINE InetAddress(const sockaddr_in6 &sa) noexcept { *this = sa; }
explicit ZT_INLINE InetAddress(const sockaddr_in6 *const sa) noexcept { *this = sa; }
explicit ZT_INLINE InetAddress(const sockaddr_storage &ss) noexcept
{ *this = ss; }
ZT_INLINE InetAddress(const void *const ipBytes,const unsigned int ipLen,const unsigned int port) noexcept { this->set(ipBytes,ipLen,port); }
ZT_INLINE InetAddress(const uint32_t ipv4,const unsigned int port) noexcept { this->set(&ipv4,4,port); }
explicit ZT_INLINE InetAddress(const char *const ipSlashPort) noexcept { this->fromString(ipSlashPort); }
explicit ZT_INLINE InetAddress(const sockaddr_storage *const ss) noexcept
{ *this = ss; }
explicit ZT_INLINE InetAddress(const sockaddr &sa) noexcept
{ *this = sa; }
explicit ZT_INLINE InetAddress(const sockaddr *const sa) noexcept
{ *this = sa; }
explicit ZT_INLINE InetAddress(const sockaddr_in &sa) noexcept
{ *this = sa; }
explicit ZT_INLINE InetAddress(const sockaddr_in *const sa) noexcept
{ *this = sa; }
explicit ZT_INLINE InetAddress(const sockaddr_in6 &sa) noexcept
{ *this = sa; }
explicit ZT_INLINE InetAddress(const sockaddr_in6 *const sa) noexcept
{ *this = sa; }
ZT_INLINE InetAddress(const void *const ipBytes, const unsigned int ipLen, const unsigned int port) noexcept
{ this->set(ipBytes, ipLen, port); }
ZT_INLINE InetAddress(const uint32_t ipv4, const unsigned int port) noexcept
{ this->set(&ipv4, 4, port); }
explicit ZT_INLINE InetAddress(const char *const ipSlashPort) noexcept
{ this->fromString(ipSlashPort); }
ZT_INLINE InetAddress &operator=(const sockaddr_storage &ss) noexcept
{
as.ss = ss;
return *this;
}
ZT_INLINE InetAddress &operator=(const sockaddr_storage *ss) noexcept
{
if (ss)
@ -100,11 +126,13 @@ public:
else memoryZero(this);
return *this;
}
ZT_INLINE InetAddress &operator=(const sockaddr_in &sa) noexcept
{
as.sa_in = sa;
return *this;
}
ZT_INLINE InetAddress &operator=(const sockaddr_in *sa) noexcept
{
if (sa)
@ -112,11 +140,13 @@ public:
else memoryZero(this);
return *this;
}
ZT_INLINE InetAddress &operator=(const sockaddr_in6 &sa) noexcept
{
as.sa_in6 = sa;
return *this;
}
ZT_INLINE InetAddress &operator=(const sockaddr_in6 *sa) noexcept
{
if (sa)
@ -124,6 +154,7 @@ public:
else memoryZero(this);
return *this;
}
ZT_INLINE InetAddress &operator=(const sockaddr &sa) noexcept
{
if (sa.sa_family == AF_INET)
@ -133,6 +164,7 @@ public:
else memoryZero(this);
return *this;
}
ZT_INLINE InetAddress &operator=(const sockaddr *sa) noexcept
{
if (sa) {
@ -147,12 +179,14 @@ public:
return *this;
}
ZT_INLINE void clear() noexcept { memoryZero(this); }
ZT_INLINE void clear() noexcept
{ memoryZero(this); }
/**
* @return Address family (ss_family in sockaddr_storage)
*/
ZT_INLINE uint8_t family() const noexcept { return as.ss.ss_family; }
ZT_INLINE uint8_t family() const noexcept
{ return as.ss.ss_family; }
/**
* @return IP scope classification (e.g. loopback, link-local, private, global)
@ -166,7 +200,7 @@ public:
* @param ipLen Length of IP address: 4 or 16
* @param port Port number or 0 for none
*/
void set(const void *ipBytes,unsigned int ipLen,unsigned int port) noexcept;
void set(const void *ipBytes, unsigned int ipLen, unsigned int port) noexcept;
/**
* Set the port component
@ -175,9 +209,13 @@ public:
*/
ZT_INLINE void setPort(unsigned int port) noexcept
{
switch(as.ss.ss_family) {
case AF_INET: as.sa_in.sin_port = Utils::hton((uint16_t)port); break;
case AF_INET6: as.sa_in6.sin6_port = Utils::hton((uint16_t)port); break;
switch (as.ss.ss_family) {
case AF_INET:
as.sa_in.sin_port = Utils::hton((uint16_t) port);
break;
case AF_INET6:
as.sa_in6.sin6_port = Utils::hton((uint16_t) port);
break;
}
}
@ -190,13 +228,25 @@ public:
* @return ASCII IP/port format representation
*/
char *toString(char buf[ZT_INETADDRESS_STRING_SIZE_MAX]) const noexcept;
ZT_INLINE String toString() const { char buf[ZT_INETADDRESS_STRING_SIZE_MAX]; toString(buf); return String(buf); }
ZT_INLINE String toString() const
{
char buf[ZT_INETADDRESS_STRING_SIZE_MAX];
toString(buf);
return String(buf);
}
/**
* @return IP portion only, in ASCII string format
*/
char *toIpString(char buf[ZT_INETADDRESS_STRING_SIZE_MAX]) const noexcept;
ZT_INLINE String toIpString() const { char buf[ZT_INETADDRESS_STRING_SIZE_MAX]; toIpString(buf); return String(buf); }
ZT_INLINE String toIpString() const
{
char buf[ZT_INETADDRESS_STRING_SIZE_MAX];
toIpString(buf);
return String(buf);
}
/**
* @param ipSlashPort IP/port (port is optional, will be 0 if not included)
@ -209,10 +259,13 @@ public:
*/
ZT_INLINE unsigned int port() const noexcept
{
switch(as.ss.ss_family) {
case AF_INET: return Utils::ntoh((uint16_t)as.sa_in.sin_port);
case AF_INET6: return Utils::ntoh((uint16_t)as.sa_in6.sin6_port);
default: return 0;
switch (as.ss.ss_family) {
case AF_INET:
return Utils::ntoh((uint16_t) as.sa_in.sin_port);
case AF_INET6:
return Utils::ntoh((uint16_t) as.sa_in6.sin6_port);
default:
return 0;
}
}
@ -225,7 +278,8 @@ public:
*
* @return Netmask bits
*/
ZT_INLINE unsigned int netmaskBits() const noexcept { return port(); }
ZT_INLINE unsigned int netmaskBits() const noexcept
{ return port(); }
/**
* @return True if netmask bits is valid for the address type
@ -233,9 +287,11 @@ public:
ZT_INLINE bool netmaskBitsValid() const noexcept
{
const unsigned int n = port();
switch(as.ss.ss_family) {
case AF_INET: return (n <= 32);
case AF_INET6: return (n <= 128);
switch (as.ss.ss_family) {
case AF_INET:
return (n <= 32);
case AF_INET6:
return (n <= 128);
}
return false;
}
@ -248,7 +304,8 @@ public:
*
* @return Gateway metric
*/
ZT_INLINE unsigned int metric() const noexcept { return port(); }
ZT_INLINE unsigned int metric() const noexcept
{ return port(); }
/**
* Construct a full netmask as an InetAddress
@ -293,22 +350,27 @@ public:
/**
* @return True if this is an IPv4 address
*/
ZT_INLINE bool isV4() const noexcept { return (as.ss.ss_family == AF_INET); }
ZT_INLINE bool isV4() const noexcept
{ return (as.ss.ss_family == AF_INET); }
/**
* @return True if this is an IPv6 address
*/
ZT_INLINE bool isV6() const noexcept { return (as.ss.ss_family == AF_INET6); }
ZT_INLINE bool isV6() const noexcept
{ return (as.ss.ss_family == AF_INET6); }
/**
* @return pointer to raw address bytes or NULL if not available
*/
ZT_INLINE const void *rawIpData() const noexcept
{
switch(as.ss.ss_family) {
case AF_INET: return reinterpret_cast<const void *>(&(as.sa_in.sin_addr.s_addr));
case AF_INET6: return reinterpret_cast<const void *>(as.sa_in6.sin6_addr.s6_addr);
default: return nullptr;
switch (as.ss.ss_family) {
case AF_INET:
return reinterpret_cast<const void *>(&(as.sa_in.sin_addr.s_addr));
case AF_INET6:
return reinterpret_cast<const void *>(as.sa_in6.sin6_addr.s6_addr);
default:
return nullptr;
}
}
@ -318,14 +380,14 @@ public:
ZT_INLINE InetAddress ipOnly() const noexcept
{
InetAddress r;
switch(as.ss.ss_family) {
switch (as.ss.ss_family) {
case AF_INET:
r.as.sa_in.sin_family = AF_INET;
r.as.sa_in.sin_addr.s_addr = as.sa_in.sin_addr.s_addr;
break;
case AF_INET6:
r.as.sa_in6.sin6_family = AF_INET6;
Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr,as.sa_in6.sin6_addr.s6_addr);
Utils::copy<16>(r.as.sa_in6.sin6_addr.s6_addr, as.sa_in6.sin6_addr.s6_addr);
break;
}
return r;
@ -344,8 +406,8 @@ public:
if (f == AF_INET)
return as.sa_in.sin_addr.s_addr == a.as.sa_in.sin_addr.s_addr;
if (f == AF_INET6)
return memcmp(as.sa_in6.sin6_addr.s6_addr,a.as.sa_in6.sin6_addr.s6_addr,16) == 0;
return memcmp(this,&a,sizeof(InetAddress)) == 0;
return memcmp(as.sa_in6.sin6_addr.s6_addr, a.as.sa_in6.sin6_addr.s6_addr, 16) == 0;
return memcmp(this, &a, sizeof(InetAddress)) == 0;
}
return false;
}
@ -365,8 +427,8 @@ public:
if (f == AF_INET)
return as.sa_in.sin_addr.s_addr == a.as.sa_in.sin_addr.s_addr;
if (f == AF_INET6)
return memcmp(as.sa_in6.sin6_addr.s6_addr,a.as.sa_in6.sin6_addr.s6_addr,8) == 0;
return (memcmp(this,&a,sizeof(InetAddress)) == 0);
return memcmp(as.sa_in6.sin6_addr.s6_addr, a.as.sa_in6.sin6_addr.s6_addr, 8) == 0;
return (memcmp(this, &a, sizeof(InetAddress)) == 0);
}
return false;
}
@ -374,15 +436,15 @@ public:
ZT_INLINE unsigned long hashCode() const noexcept
{
if (as.ss.ss_family == AF_INET) {
return (unsigned long)Utils::hash32(((uint32_t)as.sa_in.sin_addr.s_addr + (uint32_t)as.sa_in.sin_port) ^ (uint32_t)Utils::s_mapNonce);
return (unsigned long) Utils::hash32(((uint32_t) as.sa_in.sin_addr.s_addr + (uint32_t) as.sa_in.sin_port) ^ (uint32_t) Utils::s_mapNonce);
} else if (as.ss.ss_family == AF_INET6) {
return (unsigned long)Utils::hash64(
return (unsigned long) Utils::hash64(
(Utils::loadAsIsEndian<uint64_t>(as.sa_in6.sin6_addr.s6_addr) +
Utils::loadAsIsEndian<uint64_t>(as.sa_in6.sin6_addr.s6_addr + 8) +
(uint64_t)as.sa_in6.sin6_port) ^
(uint64_t) as.sa_in6.sin6_port) ^
Utils::s_mapNonce);
}
return Utils::fnv1a32(this,sizeof(InetAddress));
return Utils::fnv1a32(this, sizeof(InetAddress));
}
/**
@ -398,48 +460,61 @@ public:
/**
* @return True if address family is non-zero
*/
explicit ZT_INLINE operator bool() const noexcept { return (as.ss.ss_family != 0); }
explicit ZT_INLINE operator bool() const noexcept
{ return (as.ss.ss_family != 0); }
static constexpr int marshalSizeMax() noexcept
{ return ZT_INETADDRESS_MARSHAL_SIZE_MAX; }
static constexpr int marshalSizeMax() noexcept { return ZT_INETADDRESS_MARSHAL_SIZE_MAX; }
int marshal(uint8_t data[ZT_INETADDRESS_MARSHAL_SIZE_MAX]) const noexcept;
int unmarshal(const uint8_t *restrict data,int len) noexcept;
int unmarshal(const uint8_t *restrict data, int len) noexcept;
ZT_INLINE bool operator==(const InetAddress &a) const noexcept
{
if (as.ss.ss_family == a.as.ss.ss_family) {
if (as.ss.ss_family == AF_INET)
return ((as.sa_in.sin_port == a.as.sa_in.sin_port)&&(as.sa_in.sin_addr.s_addr == a.as.sa_in.sin_addr.s_addr));
return ((as.sa_in.sin_port == a.as.sa_in.sin_port) && (as.sa_in.sin_addr.s_addr == a.as.sa_in.sin_addr.s_addr));
if (as.ss.ss_family == AF_INET6)
return ((as.sa_in6.sin6_port == a.as.sa_in6.sin6_port)&&(memcmp(as.sa_in6.sin6_addr.s6_addr,a.as.sa_in6.sin6_addr.s6_addr,16) == 0));
return memcmp(this,&a,sizeof(InetAddress)) == 0;
return ((as.sa_in6.sin6_port == a.as.sa_in6.sin6_port) && (memcmp(as.sa_in6.sin6_addr.s6_addr, a.as.sa_in6.sin6_addr.s6_addr, 16) == 0));
return memcmp(this, &a, sizeof(InetAddress)) == 0;
}
return false;
}
ZT_INLINE bool operator<(const InetAddress &a) const noexcept
{
if (as.ss.ss_family == a.as.ss.ss_family) {
if (as.ss.ss_family == AF_INET) {
const uint16_t p0 = Utils::ntoh((uint16_t)as.sa_in.sin_port);
const uint16_t p1 = Utils::ntoh((uint16_t)a.as.sa_in.sin_port);
const uint16_t p0 = Utils::ntoh((uint16_t) as.sa_in.sin_port);
const uint16_t p1 = Utils::ntoh((uint16_t) a.as.sa_in.sin_port);
if (p0 == p1)
return Utils::ntoh((uint32_t)as.sa_in.sin_addr.s_addr) < Utils::ntoh((uint32_t)a.as.sa_in.sin_addr.s_addr);
return Utils::ntoh((uint32_t) as.sa_in.sin_addr.s_addr) < Utils::ntoh((uint32_t) a.as.sa_in.sin_addr.s_addr);
return p0 < p1;
}
if (as.ss.ss_family == AF_INET6) {
const uint16_t p0 = Utils::ntoh((uint16_t)as.sa_in6.sin6_port);
const uint16_t p1 = Utils::ntoh((uint16_t)a.as.sa_in6.sin6_port);
const uint16_t p0 = Utils::ntoh((uint16_t) as.sa_in6.sin6_port);
const uint16_t p1 = Utils::ntoh((uint16_t) a.as.sa_in6.sin6_port);
if (p0 == p1)
return memcmp(as.sa_in6.sin6_addr.s6_addr,a.as.sa_in6.sin6_addr.s6_addr,16) < 0;
return memcmp(as.sa_in6.sin6_addr.s6_addr, a.as.sa_in6.sin6_addr.s6_addr, 16) < 0;
return p0 < p1;
}
return memcmp(this,&a,sizeof(InetAddress)) < 0;
return memcmp(this, &a, sizeof(InetAddress)) < 0;
}
return as.ss.ss_family < a.as.ss.ss_family;
}
ZT_INLINE bool operator!=(const InetAddress &a) const noexcept { return !(*this == a); }
ZT_INLINE bool operator>(const InetAddress &a) const noexcept { return (a < *this); }
ZT_INLINE bool operator<=(const InetAddress &a) const noexcept { return !(a < *this); }
ZT_INLINE bool operator>=(const InetAddress &a) const noexcept { return !(*this < a); }
ZT_INLINE bool operator!=(const InetAddress &a) const noexcept
{ return !(*this == a); }
ZT_INLINE bool operator>(const InetAddress &a) const noexcept
{ return (a < *this); }
ZT_INLINE bool operator<=(const InetAddress &a) const noexcept
{ return !(a < *this); }
ZT_INLINE bool operator>=(const InetAddress &a) const noexcept
{ return !(*this < a); }
/**
* Compute an IPv6 link-local address
@ -490,17 +565,18 @@ public:
* @param zeroTierAddress 40-bit device address (in least significant 40 bits, highest 24 bits ignored)
* @return IPv6 private unicast address with /88 netmask
*/
static InetAddress makeIpv6rfc4193(uint64_t nwid,uint64_t zeroTierAddress) noexcept;
static InetAddress makeIpv6rfc4193(uint64_t nwid, uint64_t zeroTierAddress) noexcept;
/**
* Compute a private IPv6 "6plane" unicast address from network ID and ZeroTier address
*/
static InetAddress makeIpv66plane(uint64_t nwid,uint64_t zeroTierAddress) noexcept;
static InetAddress makeIpv66plane(uint64_t nwid, uint64_t zeroTierAddress) noexcept;
/**
* Union allowing this to be accessed as a sockaddr of any supported type.
*/
union {
union
{
sockaddr_storage ss;
sockaddr sa;
sockaddr_in sa_in;
@ -508,22 +584,53 @@ public:
} as;
};
static ZT_INLINE InetAddress *asInetAddress(sockaddr_in *const p) noexcept { return reinterpret_cast<InetAddress *>(p); }
static ZT_INLINE InetAddress *asInetAddress(sockaddr_in6 *const p) noexcept { return reinterpret_cast<InetAddress *>(p); }
static ZT_INLINE InetAddress *asInetAddress(sockaddr *const p) noexcept { return reinterpret_cast<InetAddress *>(p); }
static ZT_INLINE InetAddress *asInetAddress(sockaddr_storage *const p) noexcept { return reinterpret_cast<InetAddress *>(p); }
static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_in *const p) noexcept { return reinterpret_cast<const InetAddress *>(p); }
static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_in6 *const p) noexcept { return reinterpret_cast<const InetAddress *>(p); }
static ZT_INLINE const InetAddress *asInetAddress(const sockaddr *const p) noexcept { return reinterpret_cast<const InetAddress *>(p); }
static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_storage *const p) noexcept { return reinterpret_cast<const InetAddress *>(p); }
static ZT_INLINE InetAddress &asInetAddress(sockaddr_in &p) noexcept { return *reinterpret_cast<InetAddress *>(&p); }
static ZT_INLINE InetAddress &asInetAddress(sockaddr_in6 &p) noexcept { return *reinterpret_cast<InetAddress *>(&p); }
static ZT_INLINE InetAddress &asInetAddress(sockaddr &p) noexcept { return *reinterpret_cast<InetAddress *>(&p); }
static ZT_INLINE InetAddress &asInetAddress(sockaddr_storage &p) noexcept { return *reinterpret_cast<InetAddress *>(&p); }
static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_in &p) noexcept { return *reinterpret_cast<const InetAddress *>(&p); }
static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_in6 &p) noexcept { return *reinterpret_cast<const InetAddress *>(&p); }
static ZT_INLINE const InetAddress &asInetAddress(const sockaddr &p) noexcept { return *reinterpret_cast<const InetAddress *>(&p); }
static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_storage &p) noexcept { return *reinterpret_cast<const InetAddress *>(&p); }
static ZT_INLINE InetAddress *asInetAddress(sockaddr_in *const p) noexcept
{ return reinterpret_cast<InetAddress *>(p); }
static ZT_INLINE InetAddress *asInetAddress(sockaddr_in6 *const p) noexcept
{ return reinterpret_cast<InetAddress *>(p); }
static ZT_INLINE InetAddress *asInetAddress(sockaddr *const p) noexcept
{ return reinterpret_cast<InetAddress *>(p); }
static ZT_INLINE InetAddress *asInetAddress(sockaddr_storage *const p) noexcept
{ return reinterpret_cast<InetAddress *>(p); }
static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_in *const p) noexcept
{ return reinterpret_cast<const InetAddress *>(p); }
static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_in6 *const p) noexcept
{ return reinterpret_cast<const InetAddress *>(p); }
static ZT_INLINE const InetAddress *asInetAddress(const sockaddr *const p) noexcept
{ return reinterpret_cast<const InetAddress *>(p); }
static ZT_INLINE const InetAddress *asInetAddress(const sockaddr_storage *const p) noexcept
{ return reinterpret_cast<const InetAddress *>(p); }
static ZT_INLINE InetAddress &asInetAddress(sockaddr_in &p) noexcept
{ return *reinterpret_cast<InetAddress *>(&p); }
static ZT_INLINE InetAddress &asInetAddress(sockaddr_in6 &p) noexcept
{ return *reinterpret_cast<InetAddress *>(&p); }
static ZT_INLINE InetAddress &asInetAddress(sockaddr &p) noexcept
{ return *reinterpret_cast<InetAddress *>(&p); }
static ZT_INLINE InetAddress &asInetAddress(sockaddr_storage &p) noexcept
{ return *reinterpret_cast<InetAddress *>(&p); }
static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_in &p) noexcept
{ return *reinterpret_cast<const InetAddress *>(&p); }
static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_in6 &p) noexcept
{ return *reinterpret_cast<const InetAddress *>(&p); }
static ZT_INLINE const InetAddress &asInetAddress(const sockaddr &p) noexcept
{ return *reinterpret_cast<const InetAddress *>(&p); }
static ZT_INLINE const InetAddress &asInetAddress(const sockaddr_storage &p) noexcept
{ return *reinterpret_cast<const InetAddress *>(&p); }
} // namespace ZeroTier

View file

@ -15,7 +15,7 @@
namespace ZeroTier {
bool Locator::sign(const int64_t ts,const Identity &id) noexcept
bool Locator::sign(const int64_t ts, const Identity &id) noexcept
{
uint8_t signData[ZT_LOCATOR_MARSHAL_SIZE_MAX];
if (!id.hasPrivate())
@ -23,7 +23,7 @@ bool Locator::sign(const int64_t ts,const Identity &id) noexcept
m_ts = ts;
if (m_endpointCount > 0)
std::sort(m_at, m_at + m_endpointCount);
const unsigned int signLen = marshal(signData,true);
const unsigned int signLen = marshal(signData, true);
m_signatureLength = id.sign(signData, signLen, m_signature, sizeof(m_signature));
return (m_signatureLength > 0);
}
@ -33,11 +33,11 @@ bool Locator::verify(const Identity &id) const noexcept
if ((m_ts == 0) || (m_endpointCount > ZT_LOCATOR_MAX_ENDPOINTS) || (m_signatureLength > ZT_SIGNATURE_BUFFER_SIZE))
return false;
uint8_t signData[ZT_LOCATOR_MARSHAL_SIZE_MAX];
const unsigned int signLen = marshal(signData,true);
const unsigned int signLen = marshal(signData, true);
return id.verify(signData, signLen, m_signature, m_signatureLength);
}
int Locator::marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX],const bool excludeSignature) const noexcept
int Locator::marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX], const bool excludeSignature) const noexcept
{
if ((m_endpointCount > ZT_LOCATOR_MAX_ENDPOINTS) || (m_signatureLength > ZT_SIGNATURE_BUFFER_SIZE))
return -1;
@ -47,7 +47,7 @@ int Locator::marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX],const bool exclud
int p = 9;
if (m_ts > 0) {
Utils::storeBigEndian(data + p,(uint16_t)m_endpointCount);
Utils::storeBigEndian(data + p, (uint16_t) m_endpointCount);
p += 2;
for (unsigned int i = 0;i < m_endpointCount;++i) {
int tmp = m_at[i].marshal(data + p);
@ -57,10 +57,10 @@ int Locator::marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX],const bool exclud
}
if (!excludeSignature) {
Utils::storeBigEndian(data + p,(uint16_t)m_signatureLength);
Utils::storeBigEndian(data + p, (uint16_t) m_signatureLength);
p += 2;
Utils::copy(data + p, m_signature, m_signatureLength);
p += (int)m_signatureLength;
p += (int) m_signatureLength;
}
Utils::storeBigEndian(data + p, m_flags);
@ -70,7 +70,7 @@ int Locator::marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX],const bool exclud
return p;
}
int Locator::unmarshal(const uint8_t *restrict data,const int len) noexcept
int Locator::unmarshal(const uint8_t *restrict data, const int len) noexcept
{
if (len <= (1 + 8 + 2 + 48))
return -1;
@ -86,7 +86,7 @@ int Locator::unmarshal(const uint8_t *restrict data,const int len) noexcept
if (ec > ZT_LOCATOR_MAX_ENDPOINTS)
return -1;
m_endpointCount = ec;
for (unsigned int i = 0; i < ec; ++i) {
for (unsigned int i = 0;i < ec;++i) {
int tmp = m_at[i].unmarshal(data + p, len - p);
if (tmp < 0)
return -1;
@ -100,10 +100,10 @@ int Locator::unmarshal(const uint8_t *restrict data,const int len) noexcept
if (sl > ZT_SIGNATURE_BUFFER_SIZE)
return -1;
m_signatureLength = sl;
if ((p + (int)sl) > len)
if ((p + (int) sl) > len)
return -1;
Utils::copy(m_signature, data + p, sl);
p += (int)sl;
p += (int) sl;
if ((p + 2) > len)
return -1;

View file

@ -52,7 +52,7 @@ public:
/**
* @return True if locator is signed
*/
ZT_INLINE bool isSigned() const noexcept { return (m_signatureLength > 0); }
ZT_INLINE bool isSigned() const noexcept { return m_signatureLength > 0; }
/**
* @return Length of signature in bytes or 0 if none
@ -110,7 +110,7 @@ public:
*/
bool verify(const Identity &id) const noexcept;
explicit ZT_INLINE operator bool() const noexcept { return (m_ts != 0); }
explicit ZT_INLINE operator bool() const noexcept { return m_ts != 0; }
static constexpr int marshalSizeMax() noexcept { return ZT_LOCATOR_MARSHAL_SIZE_MAX; }
int marshal(uint8_t data[ZT_LOCATOR_MARSHAL_SIZE_MAX],bool excludeSignature = false) const noexcept;

View file

@ -33,6 +33,7 @@ void Membership::pushCredentials(const RuntimeEnvironment *RR,void *tPtr,const i
if (!nconf.com) // sanity check
return;
#if 0
SharedPtr<Buf> outp(new Buf());
Protocol::Header &ph = outp->as<Protocol::Header>(); // NOLINT(hicpp-use-auto,modernize-use-auto)
@ -109,6 +110,7 @@ void Membership::pushCredentials(const RuntimeEnvironment *RR,void *tPtr,const i
// TODO
}
}
#endif
m_lastPushedCredentials = now;
}

View file

@ -103,7 +103,7 @@ public:
template<typename T>
ZT_INLINE bool peerOwnsAddress(const NetworkConfig &nconf,const T &r) const noexcept
{
if (s_isUnspoofableAddress(nconf, r))
if (m_isUnspoofableAddress(nconf, r))
return true;
for(Map< uint32_t,CertificateOfOwnership >::const_iterator i(m_remoteCoos.begin());i != m_remoteCoos.end();++i) {
if (m_isCredentialTimestampValid(nconf, i->second) && (i->second.owns(r)))
@ -158,7 +158,7 @@ private:
// This returns true if a resource is an IPv6 NDP-emulated address. These embed the ZT
// address of the peer and therefore cannot be spoofed, causing peerOwnsAddress() to
// always return true for them. A certificate is not required for these.
ZT_INLINE static bool s_isUnspoofableAddress(const NetworkConfig &nconf, const MAC &m) noexcept { return false; }
constexpr bool m_isUnspoofableAddress(const NetworkConfig &nconf, const MAC &m) const noexcept { return false; }
bool m_isUnspoofableAddress(const NetworkConfig &nconf, const InetAddress &ip) const noexcept;
// This compares the remote credential's timestamp to the timestamp in our network config

View file

@ -34,7 +34,7 @@ namespace ZeroTier {
* @tparam TUNIT Unit of time in milliseconds (default: 1000 for one second)
* @tparam LSIZE Log size in units of time (default: 10 for 10s worth of data)
*/
template<int64_t TUNIT = 1000,unsigned long LSIZE = 10>
template<int64_t TUNIT = 1000, unsigned long LSIZE = 10>
class Meter
{
public:
@ -43,7 +43,8 @@ public:
*
* @param now Start time
*/
ZT_INLINE Meter() noexcept {} // NOLINT(cppcoreguidelines-pro-type-member-init,hicpp-member-init,hicpp-use-equals-default,modernize-use-equals-default)
ZT_INLINE Meter() noexcept
{} // NOLINT(cppcoreguidelines-pro-type-member-init,hicpp-member-init,hicpp-use-equals-default,modernize-use-equals-default)
/**
* Add a measurement
@ -51,7 +52,7 @@ public:
* @param now Current time
* @param count Count of items (usually bytes)
*/
ZT_INLINE void log(const int64_t now,uint64_t count) noexcept
ZT_INLINE void log(const int64_t now, uint64_t count) noexcept
{
// We log by choosing a log bucket based on the current time in units modulo
// the log size and then if it's a new bucket setting it or otherwise adding
@ -71,12 +72,12 @@ public:
* @param rate Result parameter: rate in count/TUNIT
* @param total Total count for life of object
*/
ZT_INLINE void rate(double &rate,uint64_t &total) const noexcept
ZT_INLINE void rate(double &rate, uint64_t &total) const noexcept
{
total = 0;
for(unsigned long i=0;i<LSIZE;++i)
for (unsigned long i = 0;i < LSIZE;++i)
total += m_counts[i].load();
rate = (double)total / (double)LSIZE;
rate = (double) total / (double) LSIZE;
total += m_totalExclCounts.load();
}

View file

@ -539,8 +539,8 @@ Network::Network(const RuntimeEnvironment *renv,void *tPtr,uint64_t nwid,const F
m_id(nwid),
m_mac(renv->identity.address(), nwid),
m_portInitialized(false),
m_lastConfigUpdate(0),
m_destroyed(false),
m_lastConfigUpdate(0),
_netconfFailure(NETCONF_FAILURE_NONE)
{
if (controllerFingerprint)
@ -556,7 +556,7 @@ Network::Network(const RuntimeEnvironment *renv,void *tPtr,uint64_t nwid,const F
bool got = false;
try {
Dictionary dict;
std::vector<uint8_t> nconfData(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp));
Vector<uint8_t> nconfData(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp));
if (nconfData.size() > 2) {
nconfData.push_back(0);
if (dict.decode(nconfData.data(),(unsigned int)nconfData.size())) {
@ -864,7 +864,7 @@ void Network::multicastSubscribe(void *tPtr,const MulticastGroup &mg)
void Network::multicastUnsubscribe(const MulticastGroup &mg)
{
Mutex::Lock l(m_myMulticastGroups_l);
std::vector<MulticastGroup>::iterator i(std::lower_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg));
Vector<MulticastGroup>::iterator i(std::lower_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg));
if ((i != m_myMulticastGroups.end()) && (*i == mg) )
m_myMulticastGroups.erase(i);
}
@ -984,7 +984,7 @@ uint64_t Network::handleConfigChunk(void *tPtr,uint64_t packetId,const SharedPtr
c->chunks[chunkIndex].assign(chunkData,chunkData + chunkLen);
int haveLength = 0;
for(std::map< int,std::vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
for(std::map< int,Vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
haveLength += (int)ch->second.size();
if (haveLength > ZT_MAX_NETWORK_CONFIG_BYTES) {
c->touchCtr = 0;
@ -994,8 +994,8 @@ uint64_t Network::handleConfigChunk(void *tPtr,uint64_t packetId,const SharedPtr
}
if (haveLength == totalLength) {
std::vector<uint8_t> assembledConfig;
for(std::map< int,std::vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
Vector<uint8_t> assembledConfig;
for(std::map< int,Vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
assembledConfig.insert(assembledConfig.end(),ch->second.begin(),ch->second.end());
Dictionary dict;
@ -1048,10 +1048,10 @@ int Network::setConfiguration(void *tPtr,const NetworkConfig &nconf,bool saveToD
if (saveToDisk) {
try {
Dictionary d;
if (nconf.toDictionary(d,false)) {
if (nconf.toDictionary(d)) {
uint64_t tmp[2];
tmp[0] = m_id; tmp[1] = 0;
std::vector<uint8_t> d2;
Vector<uint8_t> d2;
d.encode(d2);
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp,d2.data(),(unsigned int)d2.size());
}
@ -1445,7 +1445,7 @@ void Network::m_externalConfig(ZT_VirtualNetworkConfig *ec) const
ec->status = m_status();
ec->type = (m_config) ? (m_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE;
ec->mtu = (m_config) ? m_config.mtu : ZT_DEFAULT_MTU;
std::vector<Address> ab;
Vector<Address> ab;
for(unsigned int i=0;i < m_config.specialistCount;++i) {
if ((m_config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0)
ab.push_back(Address(m_config.specialists[i]));
@ -1503,7 +1503,7 @@ void Network::m_announceMulticastGroupsTo(void *tPtr, const Address &peer, const
// Assumes _myMulticastGroups_l and _memberships_l are locked
ScopedPtr<Packet> outp(new Packet(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE));
for(std::vector<MulticastGroup>::const_iterator mg(allMulticastGroups.begin());mg!=allMulticastGroups.end();++mg) {
for(Vector<MulticastGroup>::const_iterator mg(allMulticastGroups.begin());mg!=allMulticastGroups.end();++mg) {
if ((outp->size() + 24) >= ZT_PROTO_MAX_PACKET_LENGTH) {
outp->compress();
RR->sw->send(tPtr,*outp,true);
@ -1529,7 +1529,7 @@ Vector<MulticastGroup> Network::m_allMulticastGroups() const
Vector<MulticastGroup> mgs;
mgs.reserve(m_myMulticastGroups.size() + m_multicastGroupsBehindMe.size() + 1);
mgs.insert(mgs.end(), m_myMulticastGroups.begin(), m_myMulticastGroups.end());
for(Map<MulticastGroup,uint64_t>::const_iterator i(m_multicastGroupsBehindMe.begin());i != m_multicastGroupsBehindMe.end();++i)
for(Map<MulticastGroup,int64_t>::const_iterator i(m_multicastGroupsBehindMe.begin());i != m_multicastGroupsBehindMe.end();++i)
mgs.push_back(i->first);
if ((m_config) && (m_config.enableBroadcast()))
mgs.push_back(Network::BROADCAST);

View file

@ -31,13 +31,7 @@ namespace ZeroTier {
namespace {
/**
* All core objects of a ZeroTier node.
*
* This is just a box that allows us to allocate all core objects
* and data structures at once for a bit of memory saves and improved
* cache adjacency.
*/
// Structure containing all the core objects for a ZeroTier node to reduce memory allocations.
struct _NodeObjects
{
ZT_INLINE _NodeObjects(RuntimeEnvironment *const RR,void *const tPtr) :
@ -195,7 +189,7 @@ struct _processBackgroundTasks_eachPeer
Node *const parent;
void *const tPtr;
bool online;
std::vector< SharedPtr<Peer> > rootsNotOnline;
Vector< SharedPtr<Peer> > rootsNotOnline;
ZT_INLINE void operator()(const SharedPtr<Peer> &peer,const bool isRoot) noexcept
{
peer->pulse(tPtr,now,isRoot);
@ -226,7 +220,7 @@ ZT_ResultCode Node::processBackgroundTasks(void *tPtr,int64_t now,volatile int64
postEvent(tPtr, m_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
}
RR->topology->rankRoots(now);
RR->topology->rankRoots();
if (pf.online) {
// If we have at least one online root, request whois for roots not online.
@ -234,7 +228,7 @@ ZT_ResultCode Node::processBackgroundTasks(void *tPtr,int64_t now,volatile int64
// IP addresses. It will also auto-discover IPs for roots that were not added
// with an initial bootstrap address.
// TODO
//for (std::vector<Address>::const_iterator r(pf.rootsNotOnline.begin()); r != pf.rootsNotOnline.end(); ++r)
//for (Vector<Address>::const_iterator r(pf.rootsNotOnline.begin()); r != pf.rootsNotOnline.end(); ++r)
// RR->sw->requestWhois(tPtr,now,*r);
}
} catch ( ... ) {
@ -360,7 +354,7 @@ ZT_ResultCode Node::removeRoot(void *tPtr,const ZT_Identity *identity)
{
if (!identity)
return ZT_RESULT_ERROR_BAD_PARAMETER;
RR->topology->removeRoot(*reinterpret_cast<const Identity *>(identity));
RR->topology->removeRoot(tPtr, *reinterpret_cast<const Identity *>(identity));
return ZT_RESULT_OK;
}
@ -380,7 +374,7 @@ void Node::status(ZT_NodeStatus *status) const
ZT_PeerList *Node::peers() const
{
std::vector< SharedPtr<Peer> > peers;
Vector< SharedPtr<Peer> > peers;
RR->topology->getAllPeers(peers);
std::sort(peers.begin(),peers.end(),_sortPeerPtrsByAddress());
@ -393,7 +387,7 @@ ZT_PeerList *Node::peers() const
const int64_t now = m_now;
pl->peerCount = 0;
for(std::vector< SharedPtr<Peer> >::iterator pi(peers.begin());pi!=peers.end();++pi) { // NOLINT(modernize-use-auto,modernize-loop-convert,hicpp-use-auto)
for(Vector< SharedPtr<Peer> >::iterator pi(peers.begin());pi!=peers.end();++pi) { // NOLINT(modernize-use-auto,modernize-loop-convert,hicpp-use-auto)
ZT_Peer *const p = &(pl->peers[pl->peerCount]);
p->address = (*pi)->address().toInt();
@ -420,14 +414,15 @@ ZT_PeerList *Node::peers() const
Utils::copy<sizeof(sockaddr_storage)>(&(p->bootstrap[p->bootstrapAddressCount++]),&(*i));
}
std::vector< SharedPtr<Path> > paths;
Vector< SharedPtr<Path> > paths;
(*pi)->getAllPaths(paths);
p->pathCount = 0;
for(std::vector< SharedPtr<Path> >::iterator path(paths.begin());path!=paths.end();++path) { // NOLINT(modernize-use-auto,modernize-loop-convert,hicpp-use-auto)
for(Vector< SharedPtr<Path> >::iterator path(paths.begin());path!=paths.end();++path) { // NOLINT(modernize-use-auto,modernize-loop-convert,hicpp-use-auto)
Utils::copy<sizeof(sockaddr_storage)>(&(p->paths[p->pathCount].address),&((*path)->address()));
p->paths[p->pathCount].lastSend = (*path)->lastOut();
p->paths[p->pathCount].lastReceive = (*path)->lastIn();
p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address());
// TODO
//p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address());
p->paths[p->pathCount].alive = (*path)->alive(now) ? 1 : 0;
p->paths[p->pathCount].preferred = (p->pathCount == 0) ? 1 : 0;
++p->pathCount;
@ -613,15 +608,17 @@ void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &de
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(nwid));
if (!n) return;
if (!n)
return;
n->setConfiguration((void *)0,nc,true);
} else {
Dictionary dconf;
if (nc.toDictionary(dconf,sendLegacyFormatConfig)) {
if (nc.toDictionary(dconf)) {
uint64_t configUpdateId = Utils::random();
if (!configUpdateId) ++configUpdateId;
if (!configUpdateId)
++configUpdateId;
std::vector<uint8_t> ddata;
Vector<uint8_t> ddata;
dconf.encode(ddata);
// TODO
/*

View file

@ -164,11 +164,10 @@ void Peer::send(void *tPtr,int64_t now,const void *data,unsigned int len) noexce
sent(now,len);
}
unsigned int Peer::hello(void *tPtr,int64_t localSocket,const InetAddress &atAddress,int64_t now)
unsigned int Peer::hello(void *tPtr,int64_t localSocket,const InetAddress &atAddress,const int64_t now)
{
Buf outp;
const int64_t now = RR->node->now();
const uint64_t packetId = m_identityKey->nextMessage(RR->identity.address(),m_id.address());
int ii = Protocol::newPacket(outp,packetId,m_id.address(),RR->identity.address(),Protocol::VERB_HELLO);

View file

@ -32,6 +32,13 @@ public:
void update(const void *data,unsigned int len) noexcept;
void finish(void *auth) noexcept;
static ZT_INLINE void compute(void *const auth, const void *const data, const unsigned int len, const void *const key) noexcept
{
Poly1305 p(key);
p.update(data,len);
p.finish(auth);
}
private:
struct {
size_t aligner;

View file

@ -27,13 +27,15 @@ namespace ZeroTier {
class _ResetWithinScope
{
public:
ZT_INLINE _ResetWithinScope(void *tPtr,int64_t now,int inetAddressFamily,InetAddress::IpScope scope) :
ZT_INLINE _ResetWithinScope(void *tPtr, int64_t now, int inetAddressFamily, InetAddress::IpScope scope) :
_now(now),
_tPtr(tPtr),
_family(inetAddressFamily),
_scope(scope) {}
_scope(scope)
{}
ZT_INLINE void operator()(const SharedPtr<Peer> &p) { p->resetWithinScope(_tPtr,_scope,_family,_now); }
ZT_INLINE void operator()(const SharedPtr<Peer> &p)
{ p->resetWithinScope(_tPtr, _scope, _family, _now); }
private:
int64_t _now;
@ -47,17 +49,17 @@ SelfAwareness::SelfAwareness(const RuntimeEnvironment *renv) :
{
}
void SelfAwareness::iam(void *tPtr,const Identity &reporter,const int64_t receivedOnLocalSocket,const InetAddress &reporterPhysicalAddress,const InetAddress &myPhysicalAddress,bool trusted,int64_t now)
void SelfAwareness::iam(void *tPtr, const Identity &reporter, const int64_t receivedOnLocalSocket, const InetAddress &reporterPhysicalAddress, const InetAddress &myPhysicalAddress, bool trusted, int64_t now)
{
const InetAddress::IpScope scope = myPhysicalAddress.ipScope();
if ((scope != reporterPhysicalAddress.ipScope())||(scope == InetAddress::IP_SCOPE_NONE)||(scope == InetAddress::IP_SCOPE_LOOPBACK)||(scope == InetAddress::IP_SCOPE_MULTICAST))
if ((scope != reporterPhysicalAddress.ipScope()) || (scope == InetAddress::IP_SCOPE_NONE) || (scope == InetAddress::IP_SCOPE_LOOPBACK) || (scope == InetAddress::IP_SCOPE_MULTICAST))
return;
Mutex::Lock l(m_phy_l);
p_PhySurfaceEntry &entry = m_phy[p_PhySurfaceKey(reporter.address(), receivedOnLocalSocket, reporterPhysicalAddress, scope)];
if ( (trusted) && ((now - entry.ts) < ZT_SELFAWARENESS_ENTRY_TIMEOUT) && (!entry.mySurface.ipsEqual(myPhysicalAddress)) ) {
if ((trusted) && ((now - entry.ts) < ZT_SELFAWARENESS_ENTRY_TIMEOUT) && (!entry.mySurface.ipsEqual(myPhysicalAddress))) {
// Changes to external surface reported by trusted peers causes path reset in this scope
entry.mySurface = myPhysicalAddress;
entry.ts = now;
@ -66,17 +68,17 @@ void SelfAwareness::iam(void *tPtr,const Identity &reporter,const int64_t receiv
// Erase all entries in this scope that were not reported from this remote address to prevent 'thrashing'
// due to multiple reports of endpoint change.
// Don't use 'entry' after this since hash table gets modified.
for(Map<p_PhySurfaceKey,p_PhySurfaceEntry>::iterator i(m_phy.begin());i != m_phy.end();) {
if ((i->first.scope == scope)&&(i->first.reporterPhysicalAddress != reporterPhysicalAddress))
for (Map<p_PhySurfaceKey, p_PhySurfaceEntry>::iterator i(m_phy.begin());i != m_phy.end();) {
if ((i->first.scope == scope) && (i->first.reporterPhysicalAddress != reporterPhysicalAddress))
m_phy.erase(i++);
else ++i;
}
// Reset all paths within this scope and address family
_ResetWithinScope rset(tPtr,now,myPhysicalAddress.family(),(InetAddress::IpScope)scope);
_ResetWithinScope rset(tPtr, now, myPhysicalAddress.family(), (InetAddress::IpScope) scope);
RR->topology->eachPeer<_ResetWithinScope &>(rset);
RR->t->resettingPathsInScope(tPtr,0x9afff100,reporter,reporterPhysicalAddress,entry.mySurface,myPhysicalAddress,scope);
RR->t->resettingPathsInScope(tPtr, 0x9afff100, reporter, reporterPhysicalAddress, entry.mySurface, myPhysicalAddress, scope);
} else {
// Otherwise just update DB to use to determine external surface info
entry.mySurface = myPhysicalAddress;
@ -88,30 +90,30 @@ void SelfAwareness::iam(void *tPtr,const Identity &reporter,const int64_t receiv
void SelfAwareness::clean(int64_t now)
{
Mutex::Lock l(m_phy_l);
for(Map<p_PhySurfaceKey,p_PhySurfaceEntry>::iterator i(m_phy.begin());i != m_phy.end();) {
for (Map<p_PhySurfaceKey, p_PhySurfaceEntry>::iterator i(m_phy.begin());i != m_phy.end();) {
if ((now - i->second.ts) >= ZT_SELFAWARENESS_ENTRY_TIMEOUT)
m_phy.erase(i++);
else ++i;
}
}
MultiMap<unsigned int,InetAddress> SelfAwareness::externalAddresses(const int64_t now) const
MultiMap<unsigned int, InetAddress> SelfAwareness::externalAddresses(const int64_t now) const
{
MultiMap<unsigned int,InetAddress> r;
MultiMap<unsigned int, InetAddress> r;
// Count endpoints reporting each IP/port combo
Map<InetAddress,unsigned long> counts;
Map<InetAddress, unsigned long> counts;
{
Mutex::Lock l(m_phy_l);
for(Map<p_PhySurfaceKey,p_PhySurfaceEntry>::const_iterator i(m_phy.begin());i != m_phy.end();++i) {
for (Map<p_PhySurfaceKey, p_PhySurfaceEntry>::const_iterator i(m_phy.begin());i != m_phy.end();++i) {
if ((now - i->second.ts) < ZT_SELFAWARENESS_ENTRY_TIMEOUT)
++counts[i->second.mySurface];
}
}
// Invert to create a map from count to address
for(Map<InetAddress,unsigned long>::iterator i(counts.begin());i!=counts.end();++i)
r.insert(std::pair<unsigned long,InetAddress>(i->second,i->first));
for (Map<InetAddress, unsigned long>::iterator i(counts.begin());i != counts.end();++i)
r.insert(std::pair<unsigned long, InetAddress>(i->second, i->first));
return r;
}

View file

@ -144,7 +144,8 @@ public:
ZT_INLINE bool weakGC()
{
if (m_ptr) {
if (m_ptr->__refCount.compare_exchange_strong(1,0)) {
int one = 1;
if (m_ptr->__refCount.compare_exchange_strong(one,(int)0)) {
delete m_ptr;
m_ptr = nullptr;
return true;

View file

@ -413,7 +413,7 @@ extern "C" const char *ZTT_general()
return "FCV object life cycle test failed (2)";
}
test.clear();
if (cnt != (long)test.size()) {
if (cnt != (long)test2.size()) {
ZT_T_PRINTF("FAILED (expected 512 objects, got %lu (3))" ZT_EOL_S,cnt);
return "FCV object life cycle test failed (3)";
}
@ -515,7 +515,7 @@ extern "C" const char *ZTT_general()
FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS> message;
FCV<Buf::Slice,ZT_MAX_PACKET_FRAGMENTS> ref;
int frags = 1 + (int)(Utils::random() % 16);
int frags = 1 + (int)(Utils::random() % ZT_MAX_PACKET_FRAGMENTS);
int skip = ((k & 3) == 1) ? -1 : (int)(Utils::random() % frags);
bool complete = false;
message.resize(frags);
@ -803,12 +803,12 @@ extern "C" const char *ZTT_crypto()
{
uint8_t tag[16];
ZT_T_PRINTF("[crypto] Testing Poly1305... ");
poly1305(tag,POLY1305_TV0_INPUT,sizeof(POLY1305_TV0_INPUT),POLY1305_TV0_KEY);
Poly1305::compute(tag,POLY1305_TV0_INPUT,sizeof(POLY1305_TV0_INPUT),POLY1305_TV0_KEY);
if (memcmp(tag,POLY1305_TV0_TAG,16) != 0) {
ZT_T_PRINTF("FAILED (test vector 0)" ZT_EOL_S);
return "poly1305 test vector 0 failed";
}
poly1305(tag,POLY1305_TV1_INPUT,sizeof(POLY1305_TV1_INPUT),POLY1305_TV1_KEY);
Poly1305::compute(tag,POLY1305_TV1_INPUT,sizeof(POLY1305_TV1_INPUT),POLY1305_TV1_KEY);
if (memcmp(tag,POLY1305_TV1_TAG,16) != 0) {
ZT_T_PRINTF("FAILED (test vector 1)" ZT_EOL_S);
return "poly1305 test vector 1 failed";
@ -1014,7 +1014,7 @@ extern "C" const char *ZTT_benchmarkCrypto()
ZT_T_PRINTF("[crypto] Benchmarking Poly1305... ");
int64_t start = now();
for(long i=0;i<150000;++i)
poly1305(tag,tmp,sizeof(tmp),tag);
Poly1305::compute(tag,tmp,sizeof(tmp),tag);
int64_t end = now();
foo = tag[0]; // prevent optimization
ZT_T_PRINTF("%.4f MiB/sec" ZT_EOL_S,((16384.0 * 150000.0) / 1048576.0) / ((double)(end - start) / 1000.0));

View file

@ -51,6 +51,11 @@ namespace Utils {
#define ZT_CONST_TO_BE_UINT64(x) ((uint64_t)(x))
#endif
#define ZT_ROR64(x, r) (((x) >> (r)) | ((x) << (64 - (r))))
#define ZT_ROL64(x, r) (((x) << (r)) | ((x) >> (64 - (r))))
#define ZT_ROR32(x, r) (((x) >> (r)) | ((x) << (32 - (r))))
#define ZT_ROL32(x, r) (((x) << (r)) | ((x) >> (32 - (r))))
#ifdef ZT_ARCH_X64
struct CPUIDRegisters
{
@ -759,6 +764,9 @@ struct Mallocator
ZT_INLINE size_type max_size() const noexcept { return std::numeric_limits<size_t>::max() / sizeof(T); }
ZT_INLINE void construct(pointer p,const T& val) { new((void *)p) T(val); }
ZT_INLINE void destroy(pointer p) { p->~T(); }
constexpr bool operator==(const Mallocator &) const noexcept { return true; }
constexpr bool operator!=(const Mallocator &) const noexcept { return false; }
};
} // namespace Utils