Bunch of sync stuff including a neat set reconiciliation thing.

This commit is contained in:
Adam Ierymenko 2021-12-21 21:43:09 -05:00
parent 0d67fcee92
commit e55d3e4d4b
No known key found for this signature in database
GPG key ID: C8877CF2D7A5D7F3
8 changed files with 461 additions and 129 deletions

View file

@ -4,6 +4,5 @@ version = "0.1.0"
edition = "2021"
[dependencies]
sha2 = { version = "^0", features = ["asm"] }
smol = { version = "^1", features = [] }
getrandom = "^0"
zerotier-core-crypto = { path = "../zerotier-core-crypto" }

198
allthethings/src/iblt.rs Normal file
View file

@ -0,0 +1,198 @@
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/.
*
* (c)2021 ZeroTier, Inc.
* https://www.zerotier.com/
*/
use std::mem::zeroed;
use crate::IDENTITY_HASH_SIZE;
// The number of indexing sub-hashes to use, must be <= IDENTITY_HASH_SIZE / 8
const KEY_MAPPING_ITERATIONS: usize = IDENTITY_HASH_SIZE / 8;
#[inline(always)]
fn xorshift64(mut x: u64) -> u64 {
x ^= x.wrapping_shl(13);
x ^= x.wrapping_shr(7);
x ^= x.wrapping_shl(17);
x
}
#[repr(packed)]
struct IBLTEntry {
key_sum: [u64; IDENTITY_HASH_SIZE / 8],
check_hash_sum: u64,
count: i64,
}
impl Default for IBLTEntry {
fn default() -> Self { unsafe { zeroed() } }
}
/// An IBLT (invertible bloom lookup table) specialized for reconciling sets of identity hashes.
/// This skips some extra hashing that would be necessary in a universal implementation since identity
/// hashes are already randomly distributed strong hashes.
pub struct IBLT {
map: Box<[IBLTEntry]>,
}
impl IBLTEntry {
#[inline(always)]
fn is_singular(&self) -> bool {
if self.count == 1 || self.count == -1 {
u64::from_le(self.key_sum[0]).wrapping_add(xorshift64(u64::from_le(self.key_sum[1]))) == u64::from_le(self.check_hash_sum)
} else {
false
}
}
}
impl IBLT {
/// Construct a new IBLT with a given capacity.
pub fn new(buckets: usize) -> Self {
assert!(KEY_MAPPING_ITERATIONS <= (IDENTITY_HASH_SIZE / 8) && (IDENTITY_HASH_SIZE % 8) == 0);
assert!(buckets > 0);
Self {
map: {
let mut tmp = Vec::new();
tmp.resize_with(buckets, IBLTEntry::default);
tmp.into_boxed_slice()
}
}
}
fn ins_rem(&mut self, key: &[u64; IDENTITY_HASH_SIZE / 8], delta: i64) {
let check_hash = u64::from_le(key[0]).wrapping_add(xorshift64(u64::from_le(key[1]))).to_le();
for mapping_sub_hash in 0..KEY_MAPPING_ITERATIONS {
let b = unsafe { self.map.get_unchecked_mut((u64::from_le(key[mapping_sub_hash]) as usize) % self.map.len()) };
for j in 0..(IDENTITY_HASH_SIZE / 8) {
b.key_sum[j] ^= key[j];
}
b.check_hash_sum ^= check_hash;
b.count = i64::from_le(b.count).wrapping_add(delta).to_le();
}
}
#[cfg(any(target_arch = "x86_64", target_arch = "x86", target_arch = "aarch64", target_arch = "powerpc64"))]
#[inline(always)]
pub fn insert(&mut self, key: &[u8; IDENTITY_HASH_SIZE]) {
self.ins_rem(unsafe { &*key.as_ptr().cast::<[u64; IDENTITY_HASH_SIZE / 8]>() }, 1);
}
#[cfg(not(any(target_arch = "x86_64", target_arch = "x86", target_arch = "aarch64", target_arch = "powerpc64")))]
#[inline(always)]
pub fn insert(&mut self, key: &[u8; IDENTITY_HASH_SIZE]) {
let mut tmp = [0_u64; IDENTITY_HASH_SIZE / 8];
unsafe { copy_nonoverlapping(key.as_ptr(), tmp.as_mut_ptr().cast(), IDENTITY_HASH_SIZE) };
self.ins_rem(&tmp, 1);
}
#[cfg(any(target_arch = "x86_64", target_arch = "x86", target_arch = "aarch64", target_arch = "powerpc64"))]
#[inline(always)]
pub fn remove(&mut self, key: &[u8; IDENTITY_HASH_SIZE]) {
self.ins_rem(unsafe { &*key.as_ptr().cast::<[u64; IDENTITY_HASH_SIZE / 8]>() }, -1);
}
#[cfg(not(any(target_arch = "x86_64", target_arch = "x86", target_arch = "aarch64", target_arch = "powerpc64")))]
#[inline(always)]
pub fn remove(&mut self, key: &[u8; IDENTITY_HASH_SIZE]) {
let mut tmp = [0_u64; IDENTITY_HASH_SIZE / 8];
unsafe { copy_nonoverlapping(key.as_ptr(), tmp.as_mut_ptr().cast(), IDENTITY_HASH_SIZE) };
self.ins_rem(&tmp, -1);
}
/// Subtract another IBLT from this one to compute set difference.
pub fn subtract(&mut self, other: &IBLT) {
if other.map.len() == self.map.len() {
for i in 0..self.map.len() {
let self_b = unsafe { self.map.get_unchecked_mut(i) };
let other_b = unsafe { other.map.get_unchecked(i) };
for j in 0..(IDENTITY_HASH_SIZE / 8) {
self_b.key_sum[j] ^= other_b.key_sum[j];
}
self_b.check_hash_sum ^= other_b.check_hash_sum;
self_b.count = i64::from_le(self_b.count).wrapping_sub(i64::from_le(other_b.count)).to_le();
}
}
}
/// Call a function for every value that can be extracted from this IBLT.
///
/// The function is called with the key and a boolean. The boolean is meaningful
/// if this IBLT is the result of subtract(). In that case the boolean is true
/// if the "local" IBLT contained the item and false if the "remote" side contained
/// the item.
///
/// The starting_singular_bucket parameter must be the internal index of a
/// bucket with only one entry (1 or -1). It can be obtained from the return
/// values of either subtract() or singular_bucket().
pub fn list<F: FnMut(&[u8; IDENTITY_HASH_SIZE], bool) -> bool>(&mut self, mut f: F) {
let mut singular_buckets: Vec<usize> = Vec::with_capacity(1024);
let buckets = self.map.len();
for i in 0..buckets {
if unsafe { self.map.get_unchecked(i) }.is_singular() {
singular_buckets.push(i);
};
}
let mut key = [0_u64; IDENTITY_HASH_SIZE / 8];
while !singular_buckets.is_empty() {
let b = unsafe { self.map.get_unchecked_mut(singular_buckets.pop().unwrap()) };
if b.is_singular() {
for j in 0..(IDENTITY_HASH_SIZE / 8) {
key[j] = b.key_sum[j];
}
if f(unsafe { &*key.as_ptr().cast::<[u8; IDENTITY_HASH_SIZE]>() }, b.count == 1) {
let check_hash = u64::from_le(key[0]).wrapping_add(xorshift64(u64::from_le(key[1]))).to_le();
for mapping_sub_hash in 0..KEY_MAPPING_ITERATIONS {
let bi = (u64::from_le(key[mapping_sub_hash]) as usize) % buckets;
let b = unsafe { self.map.get_unchecked_mut(bi) };
for j in 0..(IDENTITY_HASH_SIZE / 8) {
b.key_sum[j] ^= key[j];
}
b.check_hash_sum ^= check_hash;
b.count = i64::from_le(b.count).wrapping_sub(1).to_le();
if b.is_singular() {
singular_buckets.push(bi);
}
}
} else {
break;
}
}
}
}
}
#[cfg(test)]
mod tests {
use zerotier_core_crypto::hash::SHA384;
use crate::iblt::IBLT;
#[allow(unused_variables)]
#[test]
fn insert_and_list() {
let mut t = IBLT::new(1024);
let expected_cnt = 512;
for i in 0..expected_cnt {
let k = SHA384::hash(&(i as u64).to_le_bytes());
t.insert(&k);
}
let mut cnt = 0;
t.list(|k, d| {
cnt += 1;
//println!("{} {}", zerotier_core_crypto::hex::to_string(k), d);
true
});
println!("retrieved {} keys", cnt);
assert_eq!(cnt, expected_cnt);
}
#[test]
fn benchmark() {
}
}

View file

@ -10,6 +10,22 @@ mod store;
mod replicator;
mod protocol;
mod varint;
mod memorystore;
mod iblt;
pub struct Config {
/// Number of P2P connections desired.
pub target_link_count: usize,
/// Maximum allowed size of an object.
pub max_object_size: usize,
/// TCP port to which this should bind.
pub tcp_port: u16,
/// A name for this replicated data set. This is just used to prevent linking to peers replicating different data.
pub domain: String,
}
pub(crate) fn ms_since_epoch() -> u64 {
std::time::SystemTime::now().duration_since(std::time::UNIX_EPOCH).unwrap().as_millis() as u64
@ -19,7 +35,8 @@ pub(crate) fn ms_monotonic() -> u64 {
std::time::Instant::now().elapsed().as_millis() as u64
}
/// SHA384 is the hash currently used. Others could be supported in the future.
pub const IDENTITY_HASH_SIZE: usize = 48;
pub use store::{Store, StoreObjectResult};
pub use replicator::{Replicator, Config};
pub use store::{Store, StorePutResult};
pub use replicator::Replicator;

View file

@ -0,0 +1,79 @@
use std::collections::Bound::Included;
use std::collections::BTreeMap;
use std::io::Write;
use std::sync::atomic::{AtomicU64, Ordering};
use std::sync::Mutex;
use smol::net::SocketAddr;
use zerotier_core_crypto::random::xorshift64_random;
use crate::{IDENTITY_HASH_SIZE, ms_since_epoch, Store, StorePutResult};
/// A Store that stores all objects in memory, mostly for testing.
pub struct MemoryStore(Mutex<BTreeMap<[u8; IDENTITY_HASH_SIZE], Vec<u8>>>, Mutex<Vec<SocketAddr>>, AtomicU64);
impl MemoryStore {
pub fn new() -> Self { Self(Mutex::new(BTreeMap::new()), Mutex::new(Vec::new()), AtomicU64::new(u64::MAX)) }
}
impl Store for MemoryStore {
fn get(&self, _reference_time: u64, identity_hash: &[u8; IDENTITY_HASH_SIZE], buffer: &mut Vec<u8>) -> bool {
buffer.clear();
self.0.lock().unwrap().get(identity_hash).map_or(false, |value| {
let _ = buffer.write_all(value.as_slice());
true
})
}
fn put(&self, _reference_time: u64, identity_hash: &[u8; IDENTITY_HASH_SIZE], object: &[u8]) -> StorePutResult {
let mut result = StorePutResult::Duplicate;
let _ = self.0.lock().unwrap().entry(identity_hash.clone()).or_insert_with(|| {
self.2.store(ms_since_epoch(), Ordering::Relaxed);
result = StorePutResult::Ok;
object.to_vec()
});
result
}
fn have(&self, _reference_time: u64, identity_hash: &[u8; IDENTITY_HASH_SIZE]) -> bool {
self.0.lock().unwrap().contains_key(identity_hash)
}
fn total_count(&self, _reference_time: u64) -> Option<u64> {
Some(self.0.lock().unwrap().len() as u64)
}
fn last_object_receive_time(&self) -> Option<u64> {
let rt = self.2.load(Ordering::Relaxed);
if rt == u64::MAX {
None
} else {
Some(rt)
}
}
fn count(&self, _reference_time: u64, start: &[u8; IDENTITY_HASH_SIZE], end: &[u8; IDENTITY_HASH_SIZE]) -> Option<u64> {
if start.le(end) {
Some(self.0.lock().unwrap().range((Included(*start), Included(*end))).count() as u64)
} else {
None
}
}
fn save_remote_endpoint(&self, to_address: &SocketAddr) {
let mut sv = self.1.lock().unwrap();
if !sv.contains(to_address) {
sv.push(to_address.clone());
}
}
fn get_remote_endpoint(&self) -> Option<SocketAddr> {
let sv = self.1.lock().unwrap();
if sv.is_empty() {
None
} else {
sv.get((xorshift64_random() as usize) % sv.len()).cloned()
}
}
}

View file

@ -6,24 +6,38 @@
* https://www.zerotier.com/
*/
pub(crate) const PROTOCOL_VERSION: u8 = 1;
pub const PROTOCOL_VERSION: u8 = 1;
pub const HASH_ALGORITHM_SHA384: u8 = 1;
pub(crate) const MESSAGE_TYPE_NOP: u8 = 0;
pub(crate) const MESSAGE_TYPE_HAVE_NEW_OBJECT: u8 = 1;
pub(crate) const MESSAGE_TYPE_OBJECT: u8 = 2;
pub(crate) const MESSAGE_TYPE_GET_OBJECTS: u8 = 3;
pub const MESSAGE_TYPE_NOP: u8 = 0;
pub const MESSAGE_TYPE_HAVE_NEW_OBJECT: u8 = 1;
pub const MESSAGE_TYPE_OBJECT: u8 = 2;
pub const MESSAGE_TYPE_GET_OBJECTS: u8 = 3;
/// HELLO message, which is all u8's and is packed and so can be parsed directly in place.
/// This message is sent at the start of any connection by both sides.
#[repr(packed)]
pub(crate) struct Hello {
pub struct Hello {
pub hello_size: u8, // technically a varint but below 0x80
pub protocol_version: u8,
pub hash_algorithm: u8,
pub flags: [u8; 4], // u32, little endian
pub clock: [u8; 8], // u64, little endian
pub data_set_size: [u8; 8], // u64, little endian
pub last_object_receive_time: [u8; 8], // u64, little endian, u64::MAX if unspecified
pub domain_hash: [u8; 48],
pub instance_id: [u8; 16],
pub loopback_check_code_salt: [u8; 8],
pub loopback_check_code_salt: [u8; 16],
pub loopback_check_code: [u8; 16],
}
#[cfg(test)]
mod tests {
use std::mem::size_of;
use crate::protocol::*;
#[test]
fn check_sizing() {
// Make sure packed structures are really packed.
assert_eq!(size_of::<Hello>(), 1 + 1 + 1 + 4 + 8 + 8 + 48 + 16 + 16 + 16);
}
}

View file

@ -10,53 +10,27 @@ use std::collections::HashMap;
use std::convert::TryInto;
use std::error::Error;
use std::hash::{Hash, Hasher};
use std::marker::PhantomData;
use std::mem::{size_of, transmute};
use std::sync::Arc;
use std::sync::atomic::{AtomicU64, Ordering};
use std::time::Duration;
use getrandom::getrandom;
use sha2::{Digest, Sha384};
use smol::{Executor, Task, Timer};
use smol::io::{AsyncReadExt, AsyncWriteExt, BufReader};
use smol::lock::Mutex;
use smol::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddrV4, SocketAddrV6, TcpListener, TcpStream, SocketAddr};
use smol::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6, TcpListener, TcpStream};
use smol::stream::StreamExt;
use crate::{IDENTITY_HASH_SIZE, ms_monotonic, ms_since_epoch, protocol};
use crate::store::{StoreObjectResult, Store};
use zerotier_core_crypto::hash::SHA384;
use zerotier_core_crypto::random;
use crate::{IDENTITY_HASH_SIZE, ms_monotonic, ms_since_epoch, protocol, Config};
use crate::store::{Store, StorePutResult};
use crate::varint;
const CONNECTION_TIMEOUT_SECONDS: u64 = 60;
const CONNECTION_SYNC_RESTART_TIMEOUT_SECONDS: u64 = 5;
static mut XORSHIFT64_STATE: u64 = 0;
/// Get a non-cryptographic random number.
fn xorshift64_random() -> u64 {
let mut x = unsafe { XORSHIFT64_STATE };
x ^= x.wrapping_shl(13);
x ^= x.wrapping_shr(7);
x ^= x.wrapping_shl(17);
unsafe { XORSHIFT64_STATE = x };
x
}
pub struct Config {
/// Number of P2P connections desired.
pub target_link_count: usize,
/// Maximum allowed size of an object.
pub max_object_size: usize,
/// TCP port to which this should bind.
pub tcp_port: u16,
/// A name for this replicated data set. This is just used to prevent linking to peers replicating different data.
pub domain: String,
}
#[derive(PartialEq, Eq, Clone)]
struct ConnectionKey {
instance_id: [u8; 16],
@ -74,33 +48,32 @@ impl Hash for ConnectionKey {
struct Connection {
remote_address: SocketAddr,
last_receive: Arc<AtomicU64>,
task: Task<()>
task: Task<()>,
}
struct ReplicatorImpl<'ex> {
executor: Arc<Executor<'ex>>,
instance_id: [u8; 16],
loopback_check_code_secret: [u8; 16],
loopback_check_code_secret: [u8; 48],
domain_hash: [u8; 48],
store: Arc<dyn Store>,
config: Config,
connections: Mutex<HashMap<ConnectionKey, Connection>>,
connections_in_progress: Mutex<HashMap<SocketAddr, Task<()>>>,
announced_objects_requested: Mutex<HashMap<[u8; IDENTITY_HASH_SIZE], u64>>,
}
pub struct Replicator<'ex> {
v4_listener_task: Option<Task<()>>,
v6_listener_task: Option<Task<()>>,
service_task: Task<()>,
_marker: PhantomData<std::cell::UnsafeCell<&'ex ()>>,
background_cleanup_task: Task<()>,
_impl: Arc<ReplicatorImpl<'ex>>
}
impl<'ex> Replicator<'ex> {
/// Create a new replicator to replicate the contents of the provided store.
/// All async tasks, sockets, and connections will be dropped if the replicator is dropped.
pub async fn start(executor: &Arc<Executor<'ex>>, store: Arc<dyn Store>, config: Config) -> Result<Replicator<'ex>, Box<dyn Error>> {
let _ = unsafe { getrandom(&mut *(&mut XORSHIFT64_STATE as *mut u64).cast::<[u8; 8]>()) };
let listener_v4 = TcpListener::bind(SocketAddrV4::new(Ipv4Addr::UNSPECIFIED, config.tcp_port)).await;
let listener_v6 = TcpListener::bind(SocketAddrV6::new(Ipv6Addr::UNSPECIFIED, config.tcp_port, 0, 0)).await;
if listener_v4.is_err() && listener_v6.is_err() {
@ -111,30 +84,27 @@ impl<'ex> Replicator<'ex> {
executor: executor.clone(),
instance_id: {
let mut tmp = [0_u8; 16];
getrandom(&mut tmp).expect("getrandom failed");
random::fill_bytes_secure(&mut tmp);
tmp
},
loopback_check_code_secret: {
let mut tmp = [0_u8; 16];
getrandom(&mut tmp).expect("getrandom failed");
let mut tmp = [0_u8; 48];
random::fill_bytes_secure(&mut tmp);
tmp
},
domain_hash: {
let mut h = Sha384::new();
h.update(config.domain.as_bytes());
h.finalize().as_ref().try_into().unwrap()
},
domain_hash: SHA384::hash(config.domain.as_bytes()),
config,
store,
connections: Mutex::new(HashMap::new()),
announced_objects_requested: Mutex::new(HashMap::new())
connections_in_progress: Mutex::new(HashMap::new()),
announced_objects_requested: Mutex::new(HashMap::new()),
});
Ok(Self {
v4_listener_task: listener_v4.map_or(None, |listener_v4| Some(executor.spawn(r.clone().listener_task_main(listener_v4)))),
v6_listener_task: listener_v6.map_or(None, |listener_v6| Some(executor.spawn(r.clone().listener_task_main(listener_v6)))),
service_task: executor.spawn(r.service_main()),
_marker: PhantomData::default(),
v4_listener_task: listener_v4.map_or(None, |listener_v4| Some(executor.spawn(r.clone().tcp_listener_task(listener_v4)))),
v6_listener_task: listener_v6.map_or(None, |listener_v6| Some(executor.spawn(r.clone().tcp_listener_task(listener_v6)))),
background_cleanup_task: executor.spawn(r.clone().background_cleanup_task()),
_impl: r
})
}
}
@ -144,47 +114,74 @@ unsafe impl<'ex> Send for Replicator<'ex> {}
unsafe impl<'ex> Sync for Replicator<'ex> {}
impl<'ex> ReplicatorImpl<'ex> {
async fn service_main(self: Arc<ReplicatorImpl<'ex>>) {
let mut timer = smol::Timer::interval(Duration::from_secs(5));
async fn background_cleanup_task(self: Arc<ReplicatorImpl<'ex>>) {
let mut timer = smol::Timer::interval(Duration::from_secs(CONNECTION_TIMEOUT_SECONDS / 10));
loop {
timer.next().await;
let now_mt = ms_monotonic();
self.announced_objects_requested.lock().await.retain(|_, ts| now_mt.saturating_sub(*ts) < (CONNECTION_TIMEOUT_SECONDS * 1000));
self.connections.lock().await.retain(|_, c| (now_mt.saturating_sub(c.last_receive.load(Ordering::Relaxed))) < (CONNECTION_TIMEOUT_SECONDS * 1000));
}
}
async fn listener_task_main(self: Arc<ReplicatorImpl<'ex>>, listener: TcpListener) {
loop {
let stream = listener.accept().await;
if stream.is_ok() {
let (stream, remote_address) = stream.unwrap();
self.handle_new_connection(stream, remote_address, false).await;
// Garbage collect the map used to track objects we've requested.
self.announced_objects_requested.lock().await.retain(|_, ts| now_mt.saturating_sub(*ts) < (CONNECTION_TIMEOUT_SECONDS * 1000));
let mut connections = self.connections.lock().await;
// Close connections that haven't spoken in too long.
connections.retain(|_, c| (now_mt.saturating_sub(c.last_receive.load(Ordering::Relaxed))) < (CONNECTION_TIMEOUT_SECONDS * 1000));
let num_connections = connections.len();
drop(connections); // release lock
// Try to connect to more nodes if the count is below the target count.
if num_connections < self.config.target_link_count {
let new_link_seed = self.store.get_remote_endpoint();
if new_link_seed.is_some() {
let new_link_seed = new_link_seed.unwrap();
let mut connections_in_progress = self.connections_in_progress.lock().await;
if !connections_in_progress.contains_key(&new_link_seed) {
let s2 = self.clone();
let _ = connections_in_progress.insert(new_link_seed.clone(), self.executor.spawn(async move {
let new_link = TcpStream::connect(&new_link_seed).await;
if new_link.is_ok() {
s2.handle_new_connection(new_link.unwrap(), new_link_seed, true).await;
} else {
let _task = s2.connections_in_progress.lock().await.remove(&new_link_seed);
}
}));
}
}
}
}
}
async fn handle_new_connection(self: &Arc<ReplicatorImpl<'ex>>, mut stream: TcpStream, remote_address: SocketAddr, outgoing: bool) {
stream.set_nodelay(true);
async fn tcp_listener_task(self: Arc<ReplicatorImpl<'ex>>, listener: TcpListener) {
loop {
let stream = listener.accept().await;
if stream.is_ok() {
let (stream, remote_address) = stream.unwrap();
let mut connections_in_progress = self.connections_in_progress.lock().await;
if !connections_in_progress.contains_key(&remote_address) {
let s2 = self.clone();
let _ = connections_in_progress.insert(remote_address, self.executor.spawn(s2.handle_new_connection(stream, remote_address.clone(), false)));
}
}
}
}
let mut loopback_check_code_salt = [0_u8; 8];
getrandom(&mut loopback_check_code_salt).expect("getrandom failed");
let mut h = Sha384::new();
h.update(&loopback_check_code_salt);
h.update(&self.loopback_check_code_secret);
let loopback_check_code: [u8; 48] = h.finalize().as_ref().try_into().unwrap();
async fn handle_new_connection(self: Arc<ReplicatorImpl<'ex>>, mut stream: TcpStream, remote_address: SocketAddr, outgoing: bool) {
let _ = stream.set_nodelay(true);
let mut loopback_check_code_salt = [0_u8; 16];
random::fill_bytes_secure(&mut loopback_check_code_salt);
let hello = protocol::Hello {
hello_size: size_of::<protocol::Hello>() as u8,
protocol_version: protocol::PROTOCOL_VERSION,
hash_algorithm: protocol::HASH_ALGORITHM_SHA384,
flags: [0_u8; 4],
clock: ms_since_epoch().to_le_bytes(),
data_set_size: self.store.total_size().to_le_bytes(),
last_object_receive_time: self.store.last_object_receive_time().unwrap_or(u64::MAX).to_le_bytes(),
domain_hash: self.domain_hash.clone(),
instance_id: self.instance_id.clone(),
loopback_check_code_salt,
loopback_check_code: (&loopback_check_code[0..16]).try_into().unwrap()
loopback_check_code: (&SHA384::hmac(&self.loopback_check_code_secret, &loopback_check_code_salt)[0..16]).try_into().unwrap(),
};
let hello: [u8; size_of::<protocol::Hello>()] = unsafe { transmute(hello) };
@ -194,48 +191,50 @@ impl<'ex> ReplicatorImpl<'ex> {
let hello: protocol::Hello = unsafe { transmute(hello_buf) };
// Sanity check HELLO packet. In the future we may support different versions and sizes.
if hello.hello_size == size_of::<protocol::Hello>() as u8 && hello.protocol_version == protocol::PROTOCOL_VERSION {
// If this hash's first 16 bytes are equal to the one in the HELLO, this connection is
// from this node and should be dropped.
let mut h = Sha384::new();
h.update(&hello.loopback_check_code_salt);
h.update(&self.loopback_check_code_secret);
let loopback_if_equal: [u8; 48] = h.finalize().as_ref().try_into().unwrap();
if !loopback_if_equal[0..16].eq(&hello.loopback_check_code) {
if hello.hello_size == size_of::<protocol::Hello>() as u8 && hello.protocol_version == protocol::PROTOCOL_VERSION && hello.hash_algorithm == protocol::HASH_ALGORITHM_SHA384 {
if !SHA384::hmac(&self.loopback_check_code_secret, &hello.loopback_check_code_salt)[0..16].eq(&hello.loopback_check_code) {
let k = ConnectionKey {
instance_id: hello.instance_id.clone(),
ip: remote_address.ip()
ip: remote_address.ip(),
};
let mut connections = self.connections.lock().await;
let s2 = self.clone();
let _ = connections.entry(k).or_insert_with(move || {
stream.set_nodelay(false);
let _ = stream.set_nodelay(false);
if outgoing {
s2.store.save_remote_endpoint(&remote_address);
}
let last_receive = Arc::new(AtomicU64::new(ms_monotonic()));
Connection {
remote_address,
last_receive: last_receive.clone(),
task: self.executor.spawn(self.clone().connection_io_task_main(stream, hello.instance_id, last_receive))
task: s2.executor.spawn(s2.clone().connection_io_task(stream, hello.instance_id, last_receive)),
}
});
}
}
}
}
let _task = self.connections_in_progress.lock().await.remove(&remote_address);
}
async fn connection_io_task_main(self: Arc<ReplicatorImpl<'ex>>, stream: TcpStream, remote_instance_id: [u8; 16], last_receive: Arc<AtomicU64>) {
async fn connection_io_task(self: Arc<ReplicatorImpl<'ex>>, stream: TcpStream, remote_instance_id: [u8; 16], last_receive: Arc<AtomicU64>) {
let mut reader = BufReader::with_capacity(65536, stream.clone());
let writer = Arc::new(Mutex::new(stream));
let writer2 = writer.clone();
let _sync_search_init_task = self.executor.spawn(async {
let writer = writer2;
//let writer2 = writer.clone();
let _sync_search_init_task = self.executor.spawn(async move {
//let writer = writer2;
let mut periodic_timer = Timer::interval(Duration::from_secs(1));
loop {
let _ = periodic_timer.next().await;
}
});
let mut get_buffer = Vec::new();
let mut tmp_mem = Vec::new();
tmp_mem.resize(self.config.max_object_size, 0);
let tmp = tmp_mem.as_mut_slice();
@ -248,7 +247,7 @@ impl<'ex> ReplicatorImpl<'ex> {
last_receive.store(ms_monotonic(), Ordering::Relaxed);
match message_type {
protocol::MESSAGE_TYPE_NOP => {},
protocol::MESSAGE_TYPE_NOP => {}
protocol::MESSAGE_TYPE_HAVE_NEW_OBJECT => {
if reader.read_exact(&mut tmp[0..IDENTITY_HASH_SIZE]).await.is_err() {
@ -256,7 +255,7 @@ impl<'ex> ReplicatorImpl<'ex> {
}
let identity_hash: [u8; 48] = (&tmp[0..IDENTITY_HASH_SIZE]).try_into().unwrap();
let mut announced_objects_requested = self.announced_objects_requested.lock().await;
if !announced_objects_requested.contains_key(&identity_hash) && !self.store.have(&identity_hash) {
if !announced_objects_requested.contains_key(&identity_hash) && !self.store.have(ms_since_epoch(), &identity_hash) {
announced_objects_requested.insert(identity_hash.clone(), ms_monotonic());
drop(announced_objects_requested); // release mutex
@ -285,23 +284,30 @@ impl<'ex> ReplicatorImpl<'ex> {
break 'main_io_loop;
}
let identity_hash: [u8; 48] = Sha384::digest(object.as_ref()).as_ref().try_into().unwrap();
match self.store.put(&identity_hash, object) {
StoreObjectResult::Invalid => {
let identity_hash: [u8; 48] = SHA384::hash(object);
match self.store.put(ms_since_epoch(), &identity_hash, object) {
StorePutResult::Invalid => {
break 'main_io_loop;
},
StoreObjectResult::Ok | StoreObjectResult::Duplicate => {
}
StorePutResult::Ok | StorePutResult::Duplicate => {
if self.announced_objects_requested.lock().await.remove(&identity_hash).is_some() {
// TODO: propagate rumor if we requested this object in response to a HAVE message.
}
},
}
_ => {
let _ = self.announced_objects_requested.lock().await.remove(&identity_hash);
}
}
},
}
protocol::MESSAGE_TYPE_GET_OBJECTS => {
// Get the reference time for this query.
let reference_time = varint::async_read(&mut reader).await;
if reference_time.is_err() {
break 'main_io_loop;
}
let reference_time = reference_time.unwrap();
// Read common prefix if the requester is requesting a set of hashes with the same beginning.
// A common prefix length of zero means they're requesting by full hash.
if reader.read_exact(&mut tmp[0..1]).await.is_err() {
@ -328,20 +334,17 @@ impl<'ex> ReplicatorImpl<'ex> {
break 'main_io_loop;
}
let identity_hash: [u8; IDENTITY_HASH_SIZE] = (&tmp[0..IDENTITY_HASH_SIZE]).try_into().unwrap();
let object = self.store.get(&identity_hash);
if object.is_some() {
let object2 = object.unwrap();
let object = object2.as_slice();
if self.store.get(reference_time, &identity_hash, &mut get_buffer) {
let mut w = writer.lock().await;
if varint::async_write(&mut *w, object.len() as u64).await.is_err() {
if varint::async_write(&mut *w, get_buffer.len() as u64).await.is_err() {
break 'main_io_loop;
}
if w.write_all(object).await.is_err() {
if w.write_all(get_buffer.as_slice()).await.is_err() {
break 'main_io_loop;
}
}
}
},
}
_ => {
break 'main_io_loop;

View file

@ -10,8 +10,10 @@ use smol::net::SocketAddr;
use crate::IDENTITY_HASH_SIZE;
/// Result code from the put() method in Database.
pub enum StoreObjectResult {
pub const MIN_IDENTITY_HASH: [u8; 48] = [0_u8; 48];
pub const MAX_IDENTITY_HASH: [u8; 48] = [0xff_u8; 48];
pub enum StorePutResult {
/// Datum stored successfully.
Ok,
/// Datum is one we already have.
@ -22,23 +24,28 @@ pub enum StoreObjectResult {
Ignored,
}
/// Trait that must be implemented for the data store that is to be replicated.
/// Trait that must be implemented by the data store that is to be replicated.
pub trait Store: Sync + Send {
/// Get the total size of this data set in objects.
fn total_size(&self) -> u64;
/// Get an object from the database.
fn get(&self, identity_hash: &[u8; IDENTITY_HASH_SIZE]) -> Option<Vec<u8>>;
/// Get an object from the database, storing it in the supplied buffer.
/// A return of 'false' leaves the buffer state undefined. If the return is true any previous
/// data in the supplied buffer will have been cleared and replaced with the retrieved object.
fn get(&self, reference_time: u64, identity_hash: &[u8; IDENTITY_HASH_SIZE], buffer: &mut Vec<u8>) -> bool;
/// Store an entry in the database.
fn put(&self, identity_hash: &[u8; IDENTITY_HASH_SIZE], object: &[u8]) -> StoreObjectResult;
fn put(&self, reference_time: u64, identity_hash: &[u8; IDENTITY_HASH_SIZE], object: &[u8]) -> StorePutResult;
/// Check if we have an object by its identity hash.
fn have(&self, identity_hash: &[u8; IDENTITY_HASH_SIZE]) -> bool;
fn have(&self, reference_time: u64, identity_hash: &[u8; IDENTITY_HASH_SIZE]) -> bool;
/// Get the total count of objects.
fn total_count(&self, reference_time: u64) -> Option<u64>;
/// Get the time the last object was received in milliseconds since epoch.
fn last_object_receive_time(&self) -> Option<u64>;
/// Count the number of identity hash keys in this range (inclusive) of identity hashes.
/// This may return None if an error occurs, but should return 0 if the set is empty.
fn count(&self, start: &[u8; IDENTITY_HASH_SIZE], end: &[u8; IDENTITY_HASH_SIZE]) -> Option<u64>;
fn count(&self, reference_time: u64, start: &[u8; IDENTITY_HASH_SIZE], end: &[u8; IDENTITY_HASH_SIZE]) -> Option<u64>;
/// Called when a connection to a remote node was successful.
/// This is always called on successful outbound connect.

View file

@ -59,3 +59,18 @@ pub fn next_u64_secure() -> u64 {
#[inline(always)]
pub fn fill_bytes_secure(dest: &mut [u8]) { randomize(Level::Strong, dest); }
static mut XORSHIFT64_STATE: u64 = 0;
/// Get a non-cryptographic random number.
pub fn xorshift64_random() -> u64 {
let mut x = unsafe { XORSHIFT64_STATE };
while x == 0 {
x = next_u64_secure();
}
x ^= x.wrapping_shl(13);
x ^= x.wrapping_shr(7);
x ^= x.wrapping_shl(17);
unsafe { XORSHIFT64_STATE = x };
x
}