mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-06-06 12:33:44 +02:00
Rename session protocol to ZSSP, merge p384 builtin code into p384.rs
This commit is contained in:
parent
2bf9521a09
commit
ea5abdc3db
6 changed files with 1270 additions and 1151 deletions
|
@ -12,7 +12,7 @@ lazy_static = "^1"
|
|||
openssl = {version = "^0", features = [], default-features = false}
|
||||
parking_lot = {version = "^0", features = [], default-features = false}
|
||||
poly1305 = {version = "0.7.2", features = [], default-features = false}
|
||||
pqc_kyber = {path = "../third_party/kyber", features = ["kyber512", "reference"], default-features = false}
|
||||
pqc_kyber = {path = "../third_party/kyber", features = ["kyber1024", "reference"], default-features = false}
|
||||
rand_core = "0.5.1"
|
||||
rand_core_062 = {package = "rand_core", version = "0.6.2"}
|
||||
subtle = "2.4.1"
|
||||
|
|
|
@ -5,7 +5,6 @@ pub mod aes_gmac_siv;
|
|||
pub mod hash;
|
||||
pub mod hex;
|
||||
pub mod kbkdf;
|
||||
pub mod noise;
|
||||
pub mod p384;
|
||||
pub mod poly1305;
|
||||
pub mod random;
|
||||
|
@ -13,7 +12,6 @@ pub mod salsa;
|
|||
pub mod secret;
|
||||
pub mod varint;
|
||||
pub mod x25519;
|
||||
|
||||
mod p384_internal;
|
||||
pub mod zssp;
|
||||
|
||||
pub const ZEROES: [u8; 16] = [0_u8; 16];
|
||||
|
|
|
@ -1,17 +1,923 @@
|
|||
// (c) 2020-2022 ZeroTier, Inc. -- currently propritery pending actual release and licensing. See LICENSE.md.
|
||||
|
||||
#![allow(dead_code, mutable_transmutes, non_camel_case_types, non_snake_case, non_upper_case_globals, unused_assignments, unused_mut)]
|
||||
|
||||
pub const P384_PUBLIC_KEY_SIZE: usize = 49;
|
||||
pub const P384_SECRET_KEY_SIZE: usize = 48;
|
||||
pub const P384_ECDSA_SIGNATURE_SIZE: usize = 96;
|
||||
pub const P384_ECDH_SHARED_SECRET_SIZE: usize = 48;
|
||||
|
||||
/// Version using the slightly faster code in p384_internal.rs
|
||||
mod internal {
|
||||
use crate::p384_internal::{ecc_make_key, ecdh_shared_secret, ecdsa_sign, ecdsa_verify};
|
||||
|
||||
// This is small and fast but may not be constant time and hasn't been well audited, so we don't
|
||||
// use it. It's left here though in case it proves useful in the future on embedded systems.
|
||||
#[cfg(target_feature = "builtin_nist_ecc")]
|
||||
mod builtin {
|
||||
use crate::hash::SHA384;
|
||||
use crate::secret::Secret;
|
||||
|
||||
// EASY-ECC by Kenneth MacKay
|
||||
// https://github.com/esxgx/easy-ecc (no longer there, but search GitHub for forks)
|
||||
//
|
||||
// Translated directly from C to Rust using: https://c2rust.com
|
||||
//
|
||||
// It inherits its original BSD 2-Clause license, not ZeroTier's license.
|
||||
|
||||
pub mod libc {
|
||||
pub type c_uchar = u8;
|
||||
pub type c_ulong = u64;
|
||||
pub type c_long = i64;
|
||||
pub type c_uint = u32;
|
||||
pub type c_int = i32;
|
||||
pub type c_ulonglong = u64;
|
||||
pub type c_longlong = i64;
|
||||
}
|
||||
|
||||
pub type uint8_t = libc::c_uchar;
|
||||
pub type uint64_t = libc::c_ulong;
|
||||
pub type uint = libc::c_uint;
|
||||
pub type uint128_t = u128;
|
||||
pub struct EccPoint {
|
||||
pub x: [u64; 6],
|
||||
pub y: [u64; 6],
|
||||
}
|
||||
static mut curve_p: [uint64_t; 6] = [
|
||||
0xffffffff as libc::c_uint as uint64_t,
|
||||
0xffffffff00000000 as libc::c_ulong,
|
||||
0xfffffffffffffffe as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
];
|
||||
static mut curve_b: [uint64_t; 6] = [
|
||||
0x2a85c8edd3ec2aef as libc::c_long as uint64_t,
|
||||
0xc656398d8a2ed19d as libc::c_ulong,
|
||||
0x314088f5013875a as libc::c_long as uint64_t,
|
||||
0x181d9c6efe814112 as libc::c_long as uint64_t,
|
||||
0x988e056be3f82d19 as libc::c_ulong,
|
||||
0xb3312fa7e23ee7e4 as libc::c_ulong,
|
||||
];
|
||||
static mut curve_G: EccPoint = {
|
||||
let mut init = EccPoint {
|
||||
x: [
|
||||
0x3a545e3872760ab7 as libc::c_long as uint64_t,
|
||||
0x5502f25dbf55296c as libc::c_long as uint64_t,
|
||||
0x59f741e082542a38 as libc::c_long as uint64_t,
|
||||
0x6e1d3b628ba79b98 as libc::c_long as uint64_t,
|
||||
0x8eb1c71ef320ad74 as libc::c_ulong,
|
||||
0xaa87ca22be8b0537 as libc::c_ulong,
|
||||
],
|
||||
y: [
|
||||
0x7a431d7c90ea0e5f as libc::c_long as uint64_t,
|
||||
0xa60b1ce1d7e819d as libc::c_long as uint64_t,
|
||||
0xe9da3113b5f0b8c0 as libc::c_ulong,
|
||||
0xf8f41dbd289a147c as libc::c_ulong,
|
||||
0x5d9e98bf9292dc29 as libc::c_long as uint64_t,
|
||||
0x3617de4a96262c6f as libc::c_long as uint64_t,
|
||||
],
|
||||
};
|
||||
init
|
||||
};
|
||||
static mut curve_n: [uint64_t; 6] = [
|
||||
0xecec196accc52973 as libc::c_ulong,
|
||||
0x581a0db248b0a77a as libc::c_long as uint64_t,
|
||||
0xc7634d81f4372ddf as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
];
|
||||
#[inline(always)]
|
||||
unsafe fn getRandomNumber(mut p_vli: *mut uint64_t) -> libc::c_int {
|
||||
crate::random::fill_bytes_secure(&mut *std::ptr::slice_from_raw_parts_mut(p_vli.cast(), 48));
|
||||
return 1 as libc::c_int;
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn vli_clear(mut p_vli: *mut uint64_t) {
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
*p_vli.offset(i as isize) = 0 as libc::c_int as uint64_t;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
/* Returns 1 if p_vli == 0, 0 otherwise. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_isZero(mut p_vli: *mut uint64_t) -> libc::c_int {
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
if *p_vli.offset(i as isize) != 0 {
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
return 1 as libc::c_int;
|
||||
}
|
||||
/* Returns nonzero if bit p_bit of p_vli is set. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_testBit(mut p_vli: *mut uint64_t, mut p_bit: uint) -> uint64_t {
|
||||
return *p_vli.offset(p_bit.wrapping_div(64 as libc::c_int as libc::c_uint) as isize) & (1 as libc::c_int as uint64_t) << p_bit.wrapping_rem(64 as libc::c_int as libc::c_uint);
|
||||
}
|
||||
/* Counts the number of 64-bit "digits" in p_vli. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_numDigits(mut p_vli: *mut uint64_t) -> uint {
|
||||
let mut i: libc::c_int = 0;
|
||||
/* Search from the end until we find a non-zero digit.
|
||||
We do it in reverse because we expect that most digits will be nonzero. */
|
||||
i = 48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int;
|
||||
while i >= 0 as libc::c_int && *p_vli.offset(i as isize) == 0 as libc::c_int as libc::c_ulong {
|
||||
i -= 1
|
||||
}
|
||||
return (i + 1 as libc::c_int) as uint;
|
||||
}
|
||||
/* Counts the number of bits required for p_vli. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_numBits(mut p_vli: *mut uint64_t) -> uint {
|
||||
let mut i: uint = 0;
|
||||
let mut l_digit: uint64_t = 0;
|
||||
let mut l_numDigits: uint = vli_numDigits(p_vli);
|
||||
if l_numDigits == 0 as libc::c_int as libc::c_uint {
|
||||
return 0 as libc::c_int as uint;
|
||||
}
|
||||
l_digit = *p_vli.offset(l_numDigits.wrapping_sub(1 as libc::c_int as libc::c_uint) as isize);
|
||||
i = 0 as libc::c_int as uint;
|
||||
while l_digit != 0 {
|
||||
l_digit >>= 1 as libc::c_int;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
return l_numDigits.wrapping_sub(1 as libc::c_int as libc::c_uint).wrapping_mul(64 as libc::c_int as libc::c_uint).wrapping_add(i);
|
||||
}
|
||||
/* Sets p_dest = p_src. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_set(mut p_dest: *mut uint64_t, mut p_src: *mut uint64_t) {
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
*p_dest.offset(i as isize) = *p_src.offset(i as isize);
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
/* Returns sign of p_left - p_right. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_cmp(mut p_left: *mut uint64_t, mut p_right: *mut uint64_t) -> libc::c_int {
|
||||
let mut i: libc::c_int = 0;
|
||||
i = 48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int;
|
||||
while i >= 0 as libc::c_int {
|
||||
if *p_left.offset(i as isize) > *p_right.offset(i as isize) {
|
||||
return 1 as libc::c_int;
|
||||
} else {
|
||||
if *p_left.offset(i as isize) < *p_right.offset(i as isize) {
|
||||
return -(1 as libc::c_int);
|
||||
}
|
||||
}
|
||||
i -= 1
|
||||
}
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
/* Computes p_result = p_in << c, returning carry. Can modify in place (if p_result == p_in). 0 < p_shift < 64. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_lshift(mut p_result: *mut uint64_t, mut p_in: *mut uint64_t, mut p_shift: uint) -> uint64_t {
|
||||
let mut l_carry: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut l_temp: uint64_t = *p_in.offset(i as isize);
|
||||
*p_result.offset(i as isize) = l_temp << p_shift | l_carry;
|
||||
l_carry = l_temp >> (64 as libc::c_int as libc::c_uint).wrapping_sub(p_shift);
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
return l_carry;
|
||||
}
|
||||
/* Computes p_vli = p_vli >> 1. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_rshift1(mut p_vli: *mut uint64_t) {
|
||||
let mut l_end: *mut uint64_t = p_vli;
|
||||
let mut l_carry: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
p_vli = p_vli.offset((48 as libc::c_int / 8 as libc::c_int) as isize);
|
||||
loop {
|
||||
let fresh0 = p_vli;
|
||||
p_vli = p_vli.offset(-1);
|
||||
if !(fresh0 > l_end) {
|
||||
break;
|
||||
}
|
||||
let mut l_temp: uint64_t = *p_vli;
|
||||
*p_vli = l_temp >> 1 as libc::c_int | l_carry;
|
||||
l_carry = l_temp << 63 as libc::c_int
|
||||
}
|
||||
}
|
||||
/* Computes p_result = p_left + p_right, returning carry. Can modify in place. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_add(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t) -> uint64_t {
|
||||
let mut l_carry: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut l_sum: uint64_t = (*p_left.offset(i as isize)).wrapping_add(*p_right.offset(i as isize)).wrapping_add(l_carry);
|
||||
if l_sum != *p_left.offset(i as isize) {
|
||||
l_carry = (l_sum < *p_left.offset(i as isize)) as libc::c_int as uint64_t
|
||||
}
|
||||
*p_result.offset(i as isize) = l_sum;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
return l_carry;
|
||||
}
|
||||
/* Computes p_result = p_left - p_right, returning borrow. Can modify in place. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_sub(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t) -> uint64_t {
|
||||
let mut l_borrow: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut l_diff: uint64_t = (*p_left.offset(i as isize)).wrapping_sub(*p_right.offset(i as isize)).wrapping_sub(l_borrow);
|
||||
if l_diff != *p_left.offset(i as isize) {
|
||||
l_borrow = (l_diff > *p_left.offset(i as isize)) as libc::c_int as uint64_t
|
||||
}
|
||||
*p_result.offset(i as isize) = l_diff;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
return l_borrow;
|
||||
}
|
||||
/* Computes p_result = p_left * p_right. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_mult(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t) {
|
||||
let mut r01: uint128_t = 0 as libc::c_int as uint128_t;
|
||||
let mut r2: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
let mut i: uint = 0;
|
||||
let mut k: uint = 0;
|
||||
/* Compute each digit of p_result in sequence, maintaining the carries. */
|
||||
k = 0 as libc::c_int as uint;
|
||||
while k < (48 as libc::c_int / 8 as libc::c_int * 2 as libc::c_int - 1 as libc::c_int) as libc::c_uint {
|
||||
let mut l_min: uint = if k < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
0 as libc::c_int as libc::c_uint
|
||||
} else {
|
||||
k.wrapping_add(1 as libc::c_int as libc::c_uint).wrapping_sub((48 as libc::c_int / 8 as libc::c_int) as libc::c_uint)
|
||||
};
|
||||
i = l_min;
|
||||
while i <= k && i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut l_product: uint128_t = (*p_left.offset(i as isize) as uint128_t).wrapping_mul(*p_right.offset(k.wrapping_sub(i) as isize) as u128);
|
||||
r01 = (r01 as u128).wrapping_add(l_product) as uint128_t as uint128_t;
|
||||
r2 = (r2 as libc::c_ulong).wrapping_add((r01 < l_product) as libc::c_int as libc::c_ulong) as uint64_t as uint64_t;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
*p_result.offset(k as isize) = r01 as uint64_t;
|
||||
r01 = r01 >> 64 as libc::c_int | (r2 as uint128_t) << 64 as libc::c_int;
|
||||
r2 = 0 as libc::c_int as uint64_t;
|
||||
k = k.wrapping_add(1)
|
||||
}
|
||||
*p_result.offset((48 as libc::c_int / 8 as libc::c_int * 2 as libc::c_int - 1 as libc::c_int) as isize) = r01 as uint64_t;
|
||||
}
|
||||
/* Computes p_result = p_left^2. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_square(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t) {
|
||||
let mut r01: uint128_t = 0 as libc::c_int as uint128_t;
|
||||
let mut r2: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
let mut i: uint = 0;
|
||||
let mut k: uint = 0;
|
||||
k = 0 as libc::c_int as uint;
|
||||
while k < (48 as libc::c_int / 8 as libc::c_int * 2 as libc::c_int - 1 as libc::c_int) as libc::c_uint {
|
||||
let mut l_min: uint = if k < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
0 as libc::c_int as libc::c_uint
|
||||
} else {
|
||||
k.wrapping_add(1 as libc::c_int as libc::c_uint).wrapping_sub((48 as libc::c_int / 8 as libc::c_int) as libc::c_uint)
|
||||
};
|
||||
i = l_min;
|
||||
while i <= k && i <= k.wrapping_sub(i) {
|
||||
let mut l_product: uint128_t = (*p_left.offset(i as isize) as uint128_t).wrapping_mul(*p_left.offset(k.wrapping_sub(i) as isize) as u128);
|
||||
if i < k.wrapping_sub(i) {
|
||||
r2 = (r2 as u128).wrapping_add(l_product >> 127 as libc::c_int) as uint64_t as uint64_t;
|
||||
l_product = (l_product as u128).wrapping_mul(2 as libc::c_int as u128) as uint128_t as uint128_t
|
||||
}
|
||||
r01 = (r01 as u128).wrapping_add(l_product) as uint128_t as uint128_t;
|
||||
r2 = (r2 as libc::c_ulong).wrapping_add((r01 < l_product) as libc::c_int as libc::c_ulong) as uint64_t as uint64_t;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
*p_result.offset(k as isize) = r01 as uint64_t;
|
||||
r01 = r01 >> 64 as libc::c_int | (r2 as uint128_t) << 64 as libc::c_int;
|
||||
r2 = 0 as libc::c_int as uint64_t;
|
||||
k = k.wrapping_add(1)
|
||||
}
|
||||
*p_result.offset((48 as libc::c_int / 8 as libc::c_int * 2 as libc::c_int - 1 as libc::c_int) as isize) = r01 as uint64_t;
|
||||
}
|
||||
/* #if SUPPORTS_INT128 */
|
||||
/* SUPPORTS_INT128 */
|
||||
/* Computes p_result = (p_left + p_right) % p_mod.
|
||||
Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modAdd(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t, mut p_mod: *mut uint64_t) {
|
||||
let mut l_carry: uint64_t = vli_add(p_result, p_left, p_right);
|
||||
if l_carry != 0 || vli_cmp(p_result, p_mod) >= 0 as libc::c_int {
|
||||
/* p_result > p_mod (p_result = p_mod + remainder), so subtract p_mod to get remainder. */
|
||||
vli_sub(p_result, p_result, p_mod);
|
||||
};
|
||||
}
|
||||
/* Computes p_result = (p_left - p_right) % p_mod.
|
||||
Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modSub(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t, mut p_mod: *mut uint64_t) {
|
||||
let mut l_borrow: uint64_t = vli_sub(p_result, p_left, p_right);
|
||||
if l_borrow != 0 {
|
||||
/* In this case, p_result == -diff == (max int) - diff.
|
||||
Since -x % d == d - x, we can get the correct result from p_result + p_mod (with overflow). */
|
||||
vli_add(p_result, p_result, p_mod);
|
||||
};
|
||||
}
|
||||
//#elif ECC_CURVE == secp384r1
|
||||
#[inline(always)]
|
||||
unsafe fn omega_mult(mut p_result: *mut uint64_t, mut p_right: *mut uint64_t) {
|
||||
let mut l_tmp: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_carry: uint64_t = 0;
|
||||
let mut l_diff: uint64_t = 0;
|
||||
/* Multiply by (2^128 + 2^96 - 2^32 + 1). */
|
||||
vli_set(p_result, p_right); /* 1 */
|
||||
l_carry = vli_lshift(l_tmp.as_mut_ptr(), p_right, 32 as libc::c_int as uint); /* 2^96 + 1 */
|
||||
*p_result.offset((1 as libc::c_int + 48 as libc::c_int / 8 as libc::c_int) as isize) = l_carry.wrapping_add(vli_add(p_result.offset(1 as libc::c_int as isize), p_result.offset(1 as libc::c_int as isize), l_tmp.as_mut_ptr())); /* 2^128 + 2^96 + 1 */
|
||||
*p_result.offset((2 as libc::c_int + 48 as libc::c_int / 8 as libc::c_int) as isize) = vli_add(p_result.offset(2 as libc::c_int as isize), p_result.offset(2 as libc::c_int as isize), p_right); /* 2^128 + 2^96 - 2^32 + 1 */
|
||||
l_carry = (l_carry as libc::c_ulong).wrapping_add(vli_sub(p_result, p_result, l_tmp.as_mut_ptr())) as uint64_t as uint64_t;
|
||||
l_diff = (*p_result.offset((48 as libc::c_int / 8 as libc::c_int) as isize)).wrapping_sub(l_carry);
|
||||
if l_diff > *p_result.offset((48 as libc::c_int / 8 as libc::c_int) as isize) {
|
||||
/* Propagate borrow if necessary. */
|
||||
let mut i: uint = 0;
|
||||
i = (1 as libc::c_int + 48 as libc::c_int / 8 as libc::c_int) as uint;
|
||||
loop {
|
||||
let ref mut fresh1 = *p_result.offset(i as isize);
|
||||
*fresh1 = (*fresh1).wrapping_sub(1);
|
||||
if *p_result.offset(i as isize) != -(1 as libc::c_int) as uint64_t {
|
||||
break;
|
||||
}
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
*p_result.offset((48 as libc::c_int / 8 as libc::c_int) as isize) = l_diff;
|
||||
}
|
||||
/* Computes p_result = p_product % curve_p
|
||||
see PDF "Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs"
|
||||
section "Curve-Specific Optimizations" */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_mmod_fast(mut p_result: *mut uint64_t, mut p_product: *mut uint64_t) {
|
||||
let mut l_tmp: [uint64_t; 12] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
while vli_isZero(p_product.offset((48 as libc::c_int / 8 as libc::c_int) as isize)) == 0 {
|
||||
/* While c1 != 0 */
|
||||
let mut l_carry: uint64_t = 0 as libc::c_int as uint64_t; /* tmp = w * c1 */
|
||||
let mut i: uint = 0; /* p = c0 */
|
||||
vli_clear(l_tmp.as_mut_ptr());
|
||||
vli_clear(l_tmp.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
omega_mult(l_tmp.as_mut_ptr(), p_product.offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
vli_clear(p_product.offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
/* (c1, c0) = c0 + w * c1 */
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int + 3 as libc::c_int) as libc::c_uint {
|
||||
let mut l_sum: uint64_t = (*p_product.offset(i as isize)).wrapping_add(l_tmp[i as usize]).wrapping_add(l_carry);
|
||||
if l_sum != *p_product.offset(i as isize) {
|
||||
l_carry = (l_sum < *p_product.offset(i as isize)) as libc::c_int as uint64_t
|
||||
}
|
||||
*p_product.offset(i as isize) = l_sum;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
while vli_cmp(p_product, curve_p.as_mut_ptr()) > 0 as libc::c_int {
|
||||
vli_sub(p_product, p_product, curve_p.as_mut_ptr());
|
||||
}
|
||||
vli_set(p_result, p_product);
|
||||
}
|
||||
//#endif
|
||||
/* Computes p_result = (p_left * p_right) % curve_p. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modMult_fast(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t) {
|
||||
let mut l_product: [uint64_t; 12] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
vli_mult(l_product.as_mut_ptr(), p_left, p_right);
|
||||
vli_mmod_fast(p_result, l_product.as_mut_ptr());
|
||||
}
|
||||
/* Computes p_result = p_left^2 % curve_p. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modSquare_fast(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t) {
|
||||
let mut l_product: [uint64_t; 12] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
vli_square(l_product.as_mut_ptr(), p_left);
|
||||
vli_mmod_fast(p_result, l_product.as_mut_ptr());
|
||||
}
|
||||
/* Computes p_result = (1 / p_input) % p_mod. All VLIs are the same size.
|
||||
See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
|
||||
https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modInv(mut p_result: *mut uint64_t, mut p_input: *mut uint64_t, mut p_mod: *mut uint64_t) {
|
||||
let mut a: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut b: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut u: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut v: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_carry: uint64_t = 0;
|
||||
let mut l_cmpResult: libc::c_int = 0;
|
||||
if vli_isZero(p_input) != 0 {
|
||||
vli_clear(p_result);
|
||||
return;
|
||||
}
|
||||
vli_set(a.as_mut_ptr(), p_input);
|
||||
vli_set(b.as_mut_ptr(), p_mod);
|
||||
vli_clear(u.as_mut_ptr());
|
||||
u[0 as libc::c_int as usize] = 1 as libc::c_int as uint64_t;
|
||||
vli_clear(v.as_mut_ptr());
|
||||
loop {
|
||||
l_cmpResult = vli_cmp(a.as_mut_ptr(), b.as_mut_ptr());
|
||||
if !(l_cmpResult != 0 as libc::c_int) {
|
||||
break;
|
||||
}
|
||||
l_carry = 0 as libc::c_int as uint64_t;
|
||||
if a[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong == 0 {
|
||||
vli_rshift1(a.as_mut_ptr());
|
||||
if u[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong != 0 {
|
||||
l_carry = vli_add(u.as_mut_ptr(), u.as_mut_ptr(), p_mod)
|
||||
}
|
||||
vli_rshift1(u.as_mut_ptr());
|
||||
if l_carry != 0 {
|
||||
u[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] = (u[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] as libc::c_ulonglong | 0x8000000000000000 as libc::c_ulonglong) as uint64_t
|
||||
}
|
||||
} else if b[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong == 0 {
|
||||
vli_rshift1(b.as_mut_ptr());
|
||||
if v[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong != 0 {
|
||||
l_carry = vli_add(v.as_mut_ptr(), v.as_mut_ptr(), p_mod)
|
||||
}
|
||||
vli_rshift1(v.as_mut_ptr());
|
||||
if l_carry != 0 {
|
||||
v[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] = (v[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] as libc::c_ulonglong | 0x8000000000000000 as libc::c_ulonglong) as uint64_t
|
||||
}
|
||||
} else if l_cmpResult > 0 as libc::c_int {
|
||||
vli_sub(a.as_mut_ptr(), a.as_mut_ptr(), b.as_mut_ptr());
|
||||
vli_rshift1(a.as_mut_ptr());
|
||||
if vli_cmp(u.as_mut_ptr(), v.as_mut_ptr()) < 0 as libc::c_int {
|
||||
vli_add(u.as_mut_ptr(), u.as_mut_ptr(), p_mod);
|
||||
}
|
||||
vli_sub(u.as_mut_ptr(), u.as_mut_ptr(), v.as_mut_ptr());
|
||||
if u[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong != 0 {
|
||||
l_carry = vli_add(u.as_mut_ptr(), u.as_mut_ptr(), p_mod)
|
||||
}
|
||||
vli_rshift1(u.as_mut_ptr());
|
||||
if l_carry != 0 {
|
||||
u[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] = (u[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] as libc::c_ulonglong | 0x8000000000000000 as libc::c_ulonglong) as uint64_t
|
||||
}
|
||||
} else {
|
||||
vli_sub(b.as_mut_ptr(), b.as_mut_ptr(), a.as_mut_ptr());
|
||||
vli_rshift1(b.as_mut_ptr());
|
||||
if vli_cmp(v.as_mut_ptr(), u.as_mut_ptr()) < 0 as libc::c_int {
|
||||
vli_add(v.as_mut_ptr(), v.as_mut_ptr(), p_mod);
|
||||
}
|
||||
vli_sub(v.as_mut_ptr(), v.as_mut_ptr(), u.as_mut_ptr());
|
||||
if v[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong != 0 {
|
||||
l_carry = vli_add(v.as_mut_ptr(), v.as_mut_ptr(), p_mod)
|
||||
}
|
||||
vli_rshift1(v.as_mut_ptr());
|
||||
if l_carry != 0 {
|
||||
v[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] = (v[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] as libc::c_ulonglong | 0x8000000000000000 as libc::c_ulonglong) as uint64_t
|
||||
}
|
||||
}
|
||||
}
|
||||
vli_set(p_result, u.as_mut_ptr());
|
||||
}
|
||||
/* ------ Point operations ------ */
|
||||
/* Returns 1 if p_point is the point at infinity, 0 otherwise. */
|
||||
#[inline(always)]
|
||||
unsafe fn EccPoint_isZero(mut p_point: *mut EccPoint) -> libc::c_int {
|
||||
return (vli_isZero((*p_point).x.as_mut_ptr()) != 0 && vli_isZero((*p_point).y.as_mut_ptr()) != 0) as libc::c_int;
|
||||
}
|
||||
/* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates.
|
||||
From http://eprint.iacr.org/2011/338.pdf
|
||||
*/
|
||||
/* Double in place */
|
||||
#[inline(always)]
|
||||
unsafe fn EccPoint_double_jacobian(mut X1: *mut uint64_t, mut Y1: *mut uint64_t, mut Z1: *mut uint64_t) {
|
||||
/* t1 = X, t2 = Y, t3 = Z */
|
||||
let mut t4: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t4 = y1^2 */
|
||||
let mut t5: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t5 = x1*y1^2 = A */
|
||||
if vli_isZero(Z1) != 0 {
|
||||
return;
|
||||
} /* t4 = y1^4 */
|
||||
vli_modSquare_fast(t4.as_mut_ptr(), Y1); /* t2 = y1*z1 = z3 */
|
||||
vli_modMult_fast(t5.as_mut_ptr(), X1, t4.as_mut_ptr()); /* t3 = z1^2 */
|
||||
vli_modSquare_fast(t4.as_mut_ptr(), t4.as_mut_ptr()); /* t1 = x1 + z1^2 */
|
||||
vli_modMult_fast(Y1, Y1, Z1); /* t3 = 2*z1^2 */
|
||||
vli_modSquare_fast(Z1, Z1); /* t3 = x1 - z1^2 */
|
||||
vli_modAdd(X1, X1, Z1, curve_p.as_mut_ptr()); /* t1 = x1^2 - z1^4 */
|
||||
vli_modAdd(Z1, Z1, Z1, curve_p.as_mut_ptr()); /* t3 = 2*(x1^2 - z1^4) */
|
||||
vli_modSub(Z1, X1, Z1, curve_p.as_mut_ptr()); /* t1 = 3*(x1^2 - z1^4) */
|
||||
vli_modMult_fast(X1, X1, Z1);
|
||||
vli_modAdd(Z1, X1, X1, curve_p.as_mut_ptr());
|
||||
vli_modAdd(X1, X1, Z1, curve_p.as_mut_ptr());
|
||||
if vli_testBit(X1, 0 as libc::c_int as uint) != 0 {
|
||||
let mut l_carry: uint64_t = vli_add(X1, X1, curve_p.as_mut_ptr());
|
||||
vli_rshift1(X1);
|
||||
let ref mut fresh2 = *X1.offset((48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as isize);
|
||||
*fresh2 |= l_carry << 63 as libc::c_int
|
||||
} else {
|
||||
vli_rshift1(X1);
|
||||
}
|
||||
/* t1 = 3/2*(x1^2 - z1^4) = B */
|
||||
vli_modSquare_fast(Z1, X1); /* t3 = B^2 */
|
||||
vli_modSub(Z1, Z1, t5.as_mut_ptr(), curve_p.as_mut_ptr()); /* t3 = B^2 - A */
|
||||
vli_modSub(Z1, Z1, t5.as_mut_ptr(), curve_p.as_mut_ptr()); /* t3 = B^2 - 2A = x3 */
|
||||
vli_modSub(t5.as_mut_ptr(), t5.as_mut_ptr(), Z1, curve_p.as_mut_ptr()); /* t5 = A - x3 */
|
||||
vli_modMult_fast(X1, X1, t5.as_mut_ptr()); /* t1 = B * (A - x3) */
|
||||
vli_modSub(t4.as_mut_ptr(), X1, t4.as_mut_ptr(), curve_p.as_mut_ptr()); /* t4 = B * (A - x3) - y1^4 = y3 */
|
||||
vli_set(X1, Z1);
|
||||
vli_set(Z1, Y1);
|
||||
vli_set(Y1, t4.as_mut_ptr());
|
||||
}
|
||||
/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
|
||||
#[inline(always)]
|
||||
unsafe fn apply_z(mut X1: *mut uint64_t, mut Y1: *mut uint64_t, mut Z: *mut uint64_t) {
|
||||
let mut t1: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* z^2 */
|
||||
vli_modSquare_fast(t1.as_mut_ptr(), Z); /* x1 * z^2 */
|
||||
vli_modMult_fast(X1, X1, t1.as_mut_ptr()); /* z^3 */
|
||||
vli_modMult_fast(t1.as_mut_ptr(), t1.as_mut_ptr(), Z);
|
||||
vli_modMult_fast(Y1, Y1, t1.as_mut_ptr());
|
||||
/* y1 * z^3 */
|
||||
}
|
||||
/* P = (x1, y1) => 2P, (x2, y2) => P' */
|
||||
#[inline(always)]
|
||||
unsafe fn XYcZ_initial_double(mut X1: *mut uint64_t, mut Y1: *mut uint64_t, mut X2: *mut uint64_t, mut Y2: *mut uint64_t, mut p_initialZ: *mut uint64_t) {
|
||||
let mut z: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
vli_set(X2, X1);
|
||||
vli_set(Y2, Y1);
|
||||
vli_clear(z.as_mut_ptr());
|
||||
z[0 as libc::c_int as usize] = 1 as libc::c_int as uint64_t;
|
||||
if !p_initialZ.is_null() {
|
||||
vli_set(z.as_mut_ptr(), p_initialZ);
|
||||
}
|
||||
apply_z(X1, Y1, z.as_mut_ptr());
|
||||
EccPoint_double_jacobian(X1, Y1, z.as_mut_ptr());
|
||||
apply_z(X2, Y2, z.as_mut_ptr());
|
||||
}
|
||||
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
|
||||
Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
|
||||
or P => P', Q => P + Q
|
||||
*/
|
||||
#[inline(always)]
|
||||
unsafe fn XYcZ_add(mut X1: *mut uint64_t, mut Y1: *mut uint64_t, mut X2: *mut uint64_t, mut Y2: *mut uint64_t) {
|
||||
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
|
||||
let mut t5: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t5 = x2 - x1 */
|
||||
vli_modSub(t5.as_mut_ptr(), X2, X1, curve_p.as_mut_ptr()); /* t5 = (x2 - x1)^2 = A */
|
||||
vli_modSquare_fast(t5.as_mut_ptr(), t5.as_mut_ptr()); /* t1 = x1*A = B */
|
||||
vli_modMult_fast(X1, X1, t5.as_mut_ptr()); /* t3 = x2*A = C */
|
||||
vli_modMult_fast(X2, X2, t5.as_mut_ptr()); /* t4 = y2 - y1 */
|
||||
vli_modSub(Y2, Y2, Y1, curve_p.as_mut_ptr()); /* t5 = (y2 - y1)^2 = D */
|
||||
vli_modSquare_fast(t5.as_mut_ptr(), Y2); /* t5 = D - B */
|
||||
vli_modSub(t5.as_mut_ptr(), t5.as_mut_ptr(), X1, curve_p.as_mut_ptr()); /* t5 = D - B - C = x3 */
|
||||
vli_modSub(t5.as_mut_ptr(), t5.as_mut_ptr(), X2, curve_p.as_mut_ptr()); /* t3 = C - B */
|
||||
vli_modSub(X2, X2, X1, curve_p.as_mut_ptr()); /* t2 = y1*(C - B) */
|
||||
vli_modMult_fast(Y1, Y1, X2); /* t3 = B - x3 */
|
||||
vli_modSub(X2, X1, t5.as_mut_ptr(), curve_p.as_mut_ptr()); /* t4 = (y2 - y1)*(B - x3) */
|
||||
vli_modMult_fast(Y2, Y2, X2); /* t4 = y3 */
|
||||
vli_modSub(Y2, Y2, Y1, curve_p.as_mut_ptr());
|
||||
vli_set(X2, t5.as_mut_ptr());
|
||||
}
|
||||
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
|
||||
Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
|
||||
or P => P - Q, Q => P + Q
|
||||
*/
|
||||
#[inline(always)]
|
||||
unsafe fn XYcZ_addC(mut X1: *mut uint64_t, mut Y1: *mut uint64_t, mut X2: *mut uint64_t, mut Y2: *mut uint64_t) {
|
||||
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
|
||||
let mut t5: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t5 = x2 - x1 */
|
||||
let mut t6: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t5 = (x2 - x1)^2 = A */
|
||||
let mut t7: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t1 = x1*A = B */
|
||||
vli_modSub(t5.as_mut_ptr(), X2, X1, curve_p.as_mut_ptr()); /* t3 = x2*A = C */
|
||||
vli_modSquare_fast(t5.as_mut_ptr(), t5.as_mut_ptr()); /* t4 = y2 + y1 */
|
||||
vli_modMult_fast(X1, X1, t5.as_mut_ptr()); /* t4 = y2 - y1 */
|
||||
vli_modMult_fast(X2, X2, t5.as_mut_ptr()); /* t6 = C - B */
|
||||
vli_modAdd(t5.as_mut_ptr(), Y2, Y1, curve_p.as_mut_ptr()); /* t2 = y1 * (C - B) */
|
||||
vli_modSub(Y2, Y2, Y1, curve_p.as_mut_ptr()); /* t6 = B + C */
|
||||
vli_modSub(t6.as_mut_ptr(), X2, X1, curve_p.as_mut_ptr()); /* t3 = (y2 - y1)^2 */
|
||||
vli_modMult_fast(Y1, Y1, t6.as_mut_ptr()); /* t3 = x3 */
|
||||
vli_modAdd(t6.as_mut_ptr(), X1, X2, curve_p.as_mut_ptr()); /* t7 = B - x3 */
|
||||
vli_modSquare_fast(X2, Y2); /* t4 = (y2 - y1)*(B - x3) */
|
||||
vli_modSub(X2, X2, t6.as_mut_ptr(), curve_p.as_mut_ptr()); /* t4 = y3 */
|
||||
vli_modSub(t7.as_mut_ptr(), X1, X2, curve_p.as_mut_ptr()); /* t7 = (y2 + y1)^2 = F */
|
||||
vli_modMult_fast(Y2, Y2, t7.as_mut_ptr()); /* t7 = x3' */
|
||||
vli_modSub(Y2, Y2, Y1, curve_p.as_mut_ptr()); /* t6 = x3' - B */
|
||||
vli_modSquare_fast(t7.as_mut_ptr(), t5.as_mut_ptr()); /* t6 = (y2 + y1)*(x3' - B) */
|
||||
vli_modSub(t7.as_mut_ptr(), t7.as_mut_ptr(), t6.as_mut_ptr(), curve_p.as_mut_ptr()); /* t2 = y3' */
|
||||
vli_modSub(t6.as_mut_ptr(), t7.as_mut_ptr(), X1, curve_p.as_mut_ptr());
|
||||
vli_modMult_fast(t6.as_mut_ptr(), t6.as_mut_ptr(), t5.as_mut_ptr());
|
||||
vli_modSub(Y1, t6.as_mut_ptr(), Y1, curve_p.as_mut_ptr());
|
||||
vli_set(X1, t7.as_mut_ptr());
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn EccPoint_mult(mut p_result: *mut EccPoint, mut p_point: *mut EccPoint, mut p_scalar: *mut uint64_t, mut p_initialZ: *mut uint64_t) {
|
||||
/* R0 and R1 */
|
||||
let mut Rx: [[uint64_t; 6]; 2] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut Ry: [[uint64_t; 6]; 2] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut z: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut i: libc::c_int = 0;
|
||||
let mut nb: libc::c_int = 0;
|
||||
vli_set(Rx[1 as libc::c_int as usize].as_mut_ptr(), (*p_point).x.as_mut_ptr());
|
||||
vli_set(Ry[1 as libc::c_int as usize].as_mut_ptr(), (*p_point).y.as_mut_ptr());
|
||||
XYcZ_initial_double(
|
||||
Rx[1 as libc::c_int as usize].as_mut_ptr(),
|
||||
Ry[1 as libc::c_int as usize].as_mut_ptr(),
|
||||
Rx[0 as libc::c_int as usize].as_mut_ptr(),
|
||||
Ry[0 as libc::c_int as usize].as_mut_ptr(),
|
||||
p_initialZ,
|
||||
);
|
||||
i = vli_numBits(p_scalar).wrapping_sub(2 as libc::c_int as libc::c_uint) as libc::c_int;
|
||||
while i > 0 as libc::c_int {
|
||||
nb = (vli_testBit(p_scalar, i as uint) == 0) as libc::c_int;
|
||||
XYcZ_addC(Rx[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Ry[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Rx[nb as usize].as_mut_ptr(), Ry[nb as usize].as_mut_ptr());
|
||||
XYcZ_add(Rx[nb as usize].as_mut_ptr(), Ry[nb as usize].as_mut_ptr(), Rx[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Ry[(1 as libc::c_int - nb) as usize].as_mut_ptr());
|
||||
i -= 1
|
||||
}
|
||||
nb = (vli_testBit(p_scalar, 0 as libc::c_int as uint) == 0) as libc::c_int;
|
||||
XYcZ_addC(Rx[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Ry[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Rx[nb as usize].as_mut_ptr(), Ry[nb as usize].as_mut_ptr());
|
||||
/* Find final 1/Z value. */
|
||||
vli_modSub(z.as_mut_ptr(), Rx[1 as libc::c_int as usize].as_mut_ptr(), Rx[0 as libc::c_int as usize].as_mut_ptr(), curve_p.as_mut_ptr()); /* X1 - X0 */
|
||||
vli_modMult_fast(z.as_mut_ptr(), z.as_mut_ptr(), Ry[(1 as libc::c_int - nb) as usize].as_mut_ptr()); /* Yb * (X1 - X0) */
|
||||
vli_modMult_fast(z.as_mut_ptr(), z.as_mut_ptr(), (*p_point).x.as_mut_ptr()); /* xP * Yb * (X1 - X0) */
|
||||
vli_modInv(z.as_mut_ptr(), z.as_mut_ptr(), curve_p.as_mut_ptr()); /* 1 / (xP * Yb * (X1 - X0)) */
|
||||
vli_modMult_fast(z.as_mut_ptr(), z.as_mut_ptr(), (*p_point).y.as_mut_ptr()); /* yP / (xP * Yb * (X1 - X0)) */
|
||||
vli_modMult_fast(z.as_mut_ptr(), z.as_mut_ptr(), Rx[(1 as libc::c_int - nb) as usize].as_mut_ptr()); /* Xb * yP / (xP * Yb * (X1 - X0)) */
|
||||
/* End 1/Z calculation */
|
||||
XYcZ_add(Rx[nb as usize].as_mut_ptr(), Ry[nb as usize].as_mut_ptr(), Rx[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Ry[(1 as libc::c_int - nb) as usize].as_mut_ptr());
|
||||
apply_z(Rx[0 as libc::c_int as usize].as_mut_ptr(), Ry[0 as libc::c_int as usize].as_mut_ptr(), z.as_mut_ptr());
|
||||
vli_set((*p_result).x.as_mut_ptr(), Rx[0 as libc::c_int as usize].as_mut_ptr());
|
||||
vli_set((*p_result).y.as_mut_ptr(), Ry[0 as libc::c_int as usize].as_mut_ptr());
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn ecc_bytes2native(mut p_native: *mut uint64_t, mut p_bytes: *const uint8_t) {
|
||||
let mut i: libc::c_uint = 0;
|
||||
i = 0 as libc::c_int as libc::c_uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut p_digit: *const uint8_t = p_bytes.offset((8 as libc::c_int as libc::c_uint).wrapping_mul(((48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as libc::c_uint).wrapping_sub(i)) as isize);
|
||||
*p_native.offset(i as isize) = (*p_digit.offset(0 as libc::c_int as isize) as uint64_t) << 56 as libc::c_int
|
||||
| (*p_digit.offset(1 as libc::c_int as isize) as uint64_t) << 48 as libc::c_int
|
||||
| (*p_digit.offset(2 as libc::c_int as isize) as uint64_t) << 40 as libc::c_int
|
||||
| (*p_digit.offset(3 as libc::c_int as isize) as uint64_t) << 32 as libc::c_int
|
||||
| (*p_digit.offset(4 as libc::c_int as isize) as uint64_t) << 24 as libc::c_int
|
||||
| (*p_digit.offset(5 as libc::c_int as isize) as uint64_t) << 16 as libc::c_int
|
||||
| (*p_digit.offset(6 as libc::c_int as isize) as uint64_t) << 8 as libc::c_int
|
||||
| *p_digit.offset(7 as libc::c_int as isize) as uint64_t;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn ecc_native2bytes(mut p_bytes: *mut uint8_t, mut p_native: *const uint64_t) {
|
||||
let mut i: libc::c_uint = 0;
|
||||
i = 0 as libc::c_int as libc::c_uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut p_digit: *mut uint8_t = p_bytes.offset((8 as libc::c_int as libc::c_uint).wrapping_mul(((48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as libc::c_uint).wrapping_sub(i)) as isize);
|
||||
*p_digit.offset(0 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 56 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(1 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 48 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(2 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 40 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(3 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 32 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(4 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 24 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(5 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 16 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(6 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 8 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(7 as libc::c_int as isize) = *p_native.offset(i as isize) as uint8_t;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
/* Compute a = sqrt(a) (mod curve_p). */
|
||||
#[inline(always)]
|
||||
unsafe fn mod_sqrt(mut a: *mut uint64_t) {
|
||||
let mut i: libc::c_uint = 0;
|
||||
let mut p1: [uint64_t; 6] = [1 as libc::c_int as uint64_t, 0, 0, 0, 0, 0];
|
||||
let mut l_result: [uint64_t; 6] = [1 as libc::c_int as uint64_t, 0, 0, 0, 0, 0];
|
||||
/* Since curve_p == 3 (mod 4) for all supported curves, we can
|
||||
compute sqrt(a) = a^((curve_p + 1) / 4) (mod curve_p). */
|
||||
vli_add(p1.as_mut_ptr(), curve_p.as_mut_ptr(), p1.as_mut_ptr()); /* p1 = curve_p + 1 */
|
||||
i = vli_numBits(p1.as_mut_ptr()).wrapping_sub(1 as libc::c_int as libc::c_uint); /* -a = 3 */
|
||||
while i > 1 as libc::c_int as libc::c_uint {
|
||||
vli_modSquare_fast(l_result.as_mut_ptr(), l_result.as_mut_ptr()); /* y = x^2 */
|
||||
if vli_testBit(p1.as_mut_ptr(), i) != 0 {
|
||||
vli_modMult_fast(l_result.as_mut_ptr(), l_result.as_mut_ptr(), a);
|
||||
/* y = x^2 - 3 */
|
||||
} /* y = x^3 - 3x */
|
||||
i = i.wrapping_sub(1)
|
||||
} /* y = x^3 - 3x + b */
|
||||
vli_set(a, l_result.as_mut_ptr());
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn ecc_point_decompress(mut p_point: *mut EccPoint, mut p_compressed: *const uint8_t) {
|
||||
let mut _3: [uint64_t; 6] = [3 as libc::c_int as uint64_t, 0, 0, 0, 0, 0];
|
||||
ecc_bytes2native((*p_point).x.as_mut_ptr(), p_compressed.offset(1 as libc::c_int as isize));
|
||||
vli_modSquare_fast((*p_point).y.as_mut_ptr(), (*p_point).x.as_mut_ptr());
|
||||
vli_modSub((*p_point).y.as_mut_ptr(), (*p_point).y.as_mut_ptr(), _3.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
vli_modMult_fast((*p_point).y.as_mut_ptr(), (*p_point).y.as_mut_ptr(), (*p_point).x.as_mut_ptr());
|
||||
vli_modAdd((*p_point).y.as_mut_ptr(), (*p_point).y.as_mut_ptr(), curve_b.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
mod_sqrt((*p_point).y.as_mut_ptr());
|
||||
if (*p_point).y[0 as libc::c_int as usize] & 0x1 as libc::c_int as libc::c_ulong != (*p_compressed.offset(0 as libc::c_int as isize) as libc::c_int & 0x1 as libc::c_int) as libc::c_ulong {
|
||||
vli_sub((*p_point).y.as_mut_ptr(), curve_p.as_mut_ptr(), (*p_point).y.as_mut_ptr());
|
||||
};
|
||||
}
|
||||
pub unsafe fn ecc_make_key(mut p_publicKey: *mut uint8_t, mut p_privateKey: *mut uint8_t) -> libc::c_int {
|
||||
let mut l_private: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_public: EccPoint = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_tries: libc::c_uint = 0 as libc::c_int as libc::c_uint;
|
||||
loop {
|
||||
if getRandomNumber(l_private.as_mut_ptr()) == 0 || {
|
||||
let fresh3 = l_tries;
|
||||
l_tries = l_tries.wrapping_add(1);
|
||||
(fresh3) >= 1024 as libc::c_int as libc::c_uint
|
||||
} {
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
if !(vli_isZero(l_private.as_mut_ptr()) != 0) {
|
||||
/* Make sure the private key is in the range [1, n-1].
|
||||
For the supported curves, n is always large enough that we only need to subtract once at most. */
|
||||
if vli_cmp(curve_n.as_mut_ptr(), l_private.as_mut_ptr()) != 1 as libc::c_int {
|
||||
vli_sub(l_private.as_mut_ptr(), l_private.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
}
|
||||
EccPoint_mult(&mut l_public, &mut curve_G, l_private.as_mut_ptr(), 0 as *mut uint64_t);
|
||||
}
|
||||
if !(EccPoint_isZero(&mut l_public) != 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
ecc_native2bytes(p_privateKey, l_private.as_mut_ptr() as *const uint64_t);
|
||||
ecc_native2bytes(p_publicKey.offset(1 as libc::c_int as isize), l_public.x.as_mut_ptr() as *const uint64_t);
|
||||
*p_publicKey.offset(0 as libc::c_int as isize) = (2 as libc::c_int as libc::c_ulong).wrapping_add(l_public.y[0 as libc::c_int as usize] & 0x1 as libc::c_int as libc::c_ulong) as uint8_t;
|
||||
return 1 as libc::c_int;
|
||||
}
|
||||
pub unsafe fn ecdh_shared_secret(mut p_publicKey: *const uint8_t, mut p_privateKey: *const uint8_t, mut p_secret: *mut uint8_t) -> libc::c_int {
|
||||
let mut l_public: EccPoint = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_private: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_random: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
if getRandomNumber(l_random.as_mut_ptr()) == 0 {
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
ecc_point_decompress(&mut l_public, p_publicKey);
|
||||
ecc_bytes2native(l_private.as_mut_ptr(), p_privateKey);
|
||||
let mut l_product: EccPoint = EccPoint { x: [0; 6], y: [0; 6] };
|
||||
EccPoint_mult(&mut l_product, &mut l_public, l_private.as_mut_ptr(), l_random.as_mut_ptr());
|
||||
ecc_native2bytes(p_secret, l_product.x.as_mut_ptr() as *const uint64_t);
|
||||
return (EccPoint_isZero(&mut l_product) == 0) as libc::c_int;
|
||||
}
|
||||
/* -------- ECDSA code -------- */
|
||||
/* Computes p_result = (p_left * p_right) % p_mod. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modMult(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t, mut p_mod: *mut uint64_t) {
|
||||
let mut l_product: [uint64_t; 12] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_modMultiple: [uint64_t; 12] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_digitShift: uint = 0;
|
||||
let mut l_bitShift: uint = 0;
|
||||
let mut l_productBits: uint = 0;
|
||||
let mut l_modBits: uint = vli_numBits(p_mod);
|
||||
vli_mult(l_product.as_mut_ptr(), p_left, p_right);
|
||||
l_productBits = vli_numBits(l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
if l_productBits != 0 {
|
||||
l_productBits = (l_productBits as libc::c_uint).wrapping_add((48 as libc::c_int / 8 as libc::c_int * 64 as libc::c_int) as libc::c_uint) as uint as uint
|
||||
} else {
|
||||
l_productBits = vli_numBits(l_product.as_mut_ptr())
|
||||
}
|
||||
if l_productBits < l_modBits {
|
||||
/* l_product < p_mod. */
|
||||
vli_set(p_result, l_product.as_mut_ptr());
|
||||
return;
|
||||
}
|
||||
/* Shift p_mod by (l_leftBits - l_modBits). This multiplies p_mod by the largest
|
||||
power of two possible while still resulting in a number less than p_left. */
|
||||
vli_clear(l_modMultiple.as_mut_ptr());
|
||||
vli_clear(l_modMultiple.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
l_digitShift = l_productBits.wrapping_sub(l_modBits).wrapping_div(64 as libc::c_int as libc::c_uint);
|
||||
l_bitShift = l_productBits.wrapping_sub(l_modBits).wrapping_rem(64 as libc::c_int as libc::c_uint);
|
||||
if l_bitShift != 0 {
|
||||
l_modMultiple[l_digitShift.wrapping_add((48 as libc::c_int / 8 as libc::c_int) as libc::c_uint) as usize] = vli_lshift(l_modMultiple.as_mut_ptr().offset(l_digitShift as isize), p_mod, l_bitShift)
|
||||
} else {
|
||||
vli_set(l_modMultiple.as_mut_ptr().offset(l_digitShift as isize), p_mod);
|
||||
}
|
||||
/* Subtract all multiples of p_mod to get the remainder. */
|
||||
vli_clear(p_result); /* Use p_result as a temp var to store 1 (for subtraction) */
|
||||
*p_result.offset(0 as libc::c_int as isize) = 1 as libc::c_int as uint64_t;
|
||||
while l_productBits > (48 as libc::c_int / 8 as libc::c_int * 64 as libc::c_int) as libc::c_uint || vli_cmp(l_modMultiple.as_mut_ptr(), p_mod) >= 0 as libc::c_int {
|
||||
let mut l_cmp: libc::c_int = vli_cmp(l_modMultiple.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize), l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
if l_cmp < 0 as libc::c_int || l_cmp == 0 as libc::c_int && vli_cmp(l_modMultiple.as_mut_ptr(), l_product.as_mut_ptr()) <= 0 as libc::c_int {
|
||||
if vli_sub(l_product.as_mut_ptr(), l_product.as_mut_ptr(), l_modMultiple.as_mut_ptr()) != 0 {
|
||||
/* borrow */
|
||||
vli_sub(l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize), l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize), p_result);
|
||||
}
|
||||
vli_sub(
|
||||
l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize),
|
||||
l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize),
|
||||
l_modMultiple.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize),
|
||||
);
|
||||
}
|
||||
let mut l_carry: uint64_t = (l_modMultiple[(48 as libc::c_int / 8 as libc::c_int) as usize] & 0x1 as libc::c_int as libc::c_ulong) << 63 as libc::c_int;
|
||||
vli_rshift1(l_modMultiple.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
vli_rshift1(l_modMultiple.as_mut_ptr());
|
||||
l_modMultiple[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] |= l_carry;
|
||||
l_productBits = l_productBits.wrapping_sub(1)
|
||||
}
|
||||
vli_set(p_result, l_product.as_mut_ptr());
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn umax(mut a: uint, mut b: uint) -> uint {
|
||||
a.max(b)
|
||||
}
|
||||
pub unsafe fn ecdsa_sign(mut p_privateKey: *const uint8_t, mut p_hash: *const uint8_t, mut p_signature: *mut uint8_t) -> libc::c_int {
|
||||
let mut k: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_tmp: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_s: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut p: EccPoint = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_tries: libc::c_uint = 0 as libc::c_int as libc::c_uint;
|
||||
loop {
|
||||
if getRandomNumber(k.as_mut_ptr()) == 0 || {
|
||||
let fresh4 = l_tries;
|
||||
l_tries = l_tries.wrapping_add(1);
|
||||
(fresh4) >= 1024 as libc::c_int as libc::c_uint
|
||||
} {
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
if !(vli_isZero(k.as_mut_ptr()) != 0) {
|
||||
if vli_cmp(curve_n.as_mut_ptr(), k.as_mut_ptr()) != 1 as libc::c_int {
|
||||
vli_sub(k.as_mut_ptr(), k.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
}
|
||||
/* tmp = k * G */
|
||||
EccPoint_mult(&mut p, &mut curve_G, k.as_mut_ptr(), 0 as *mut uint64_t);
|
||||
/* r = x1 (mod n) */
|
||||
if vli_cmp(curve_n.as_mut_ptr(), p.x.as_mut_ptr()) != 1 as libc::c_int {
|
||||
vli_sub(p.x.as_mut_ptr(), p.x.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
/* s = r*d */
|
||||
}
|
||||
} /* s = e + r*d */
|
||||
if !(vli_isZero(p.x.as_mut_ptr()) != 0) {
|
||||
break; /* k = 1 / k */
|
||||
}
|
||||
} /* s = (e + r*d) / k */
|
||||
ecc_native2bytes(p_signature, p.x.as_mut_ptr() as *const uint64_t);
|
||||
ecc_bytes2native(l_tmp.as_mut_ptr(), p_privateKey);
|
||||
vli_modMult(l_s.as_mut_ptr(), p.x.as_mut_ptr(), l_tmp.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
ecc_bytes2native(l_tmp.as_mut_ptr(), p_hash);
|
||||
vli_modAdd(l_s.as_mut_ptr(), l_tmp.as_mut_ptr(), l_s.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
vli_modInv(k.as_mut_ptr(), k.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
vli_modMult(l_s.as_mut_ptr(), l_s.as_mut_ptr(), k.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
ecc_native2bytes(p_signature.offset(48 as libc::c_int as isize), l_s.as_mut_ptr() as *const uint64_t);
|
||||
return 1 as libc::c_int;
|
||||
}
|
||||
pub unsafe fn ecdsa_verify(mut p_publicKey: *const uint8_t, mut p_hash: *const uint8_t, mut p_signature: *const uint8_t) -> libc::c_int {
|
||||
let mut u1: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut u2: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut z: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_public: EccPoint = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_sum: EccPoint = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut rx: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut ry: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut tx: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut ty: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut tz: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_r: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_s: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
ecc_point_decompress(&mut l_public, p_publicKey);
|
||||
ecc_bytes2native(l_r.as_mut_ptr(), p_signature);
|
||||
ecc_bytes2native(l_s.as_mut_ptr(), p_signature.offset(48 as libc::c_int as isize));
|
||||
if vli_isZero(l_r.as_mut_ptr()) != 0 || vli_isZero(l_s.as_mut_ptr()) != 0 {
|
||||
/* r, s must not be 0. */
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
if vli_cmp(curve_n.as_mut_ptr(), l_r.as_mut_ptr()) != 1 as libc::c_int || vli_cmp(curve_n.as_mut_ptr(), l_s.as_mut_ptr()) != 1 as libc::c_int {
|
||||
/* r, s must be < n. */
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
/* Calculate u1 and u2. */
|
||||
vli_modInv(z.as_mut_ptr(), l_s.as_mut_ptr(), curve_n.as_mut_ptr()); /* Z = s^-1 */
|
||||
ecc_bytes2native(u1.as_mut_ptr(), p_hash); /* u1 = e/s */
|
||||
vli_modMult(u1.as_mut_ptr(), u1.as_mut_ptr(), z.as_mut_ptr(), curve_n.as_mut_ptr()); /* u2 = r/s */
|
||||
vli_modMult(u2.as_mut_ptr(), l_r.as_mut_ptr(), z.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
/* Calculate l_sum = G + Q. */
|
||||
vli_set(l_sum.x.as_mut_ptr(), l_public.x.as_mut_ptr()); /* Z = x2 - x1 */
|
||||
vli_set(l_sum.y.as_mut_ptr(), l_public.y.as_mut_ptr()); /* Z = 1/Z */
|
||||
vli_set(tx.as_mut_ptr(), curve_G.x.as_mut_ptr());
|
||||
vli_set(ty.as_mut_ptr(), curve_G.y.as_mut_ptr());
|
||||
vli_modSub(z.as_mut_ptr(), l_sum.x.as_mut_ptr(), tx.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
XYcZ_add(tx.as_mut_ptr(), ty.as_mut_ptr(), l_sum.x.as_mut_ptr(), l_sum.y.as_mut_ptr());
|
||||
vli_modInv(z.as_mut_ptr(), z.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
apply_z(l_sum.x.as_mut_ptr(), l_sum.y.as_mut_ptr(), z.as_mut_ptr());
|
||||
/* Use Shamir's trick to calculate u1*G + u2*Q */
|
||||
let mut l_points: [*mut EccPoint; 4] = [0 as *mut EccPoint, &mut curve_G, &mut l_public, &mut l_sum]; /* Z = x2 - x1 */
|
||||
let mut l_numBits: uint = umax(vli_numBits(u1.as_mut_ptr()), vli_numBits(u2.as_mut_ptr())); /* Z = 1/Z */
|
||||
let mut l_point: *mut EccPoint =
|
||||
l_points[((vli_testBit(u1.as_mut_ptr(), l_numBits.wrapping_sub(1 as libc::c_int as libc::c_uint)) != 0) as libc::c_int | ((vli_testBit(u2.as_mut_ptr(), l_numBits.wrapping_sub(1 as libc::c_int as libc::c_uint)) != 0) as libc::c_int) << 1 as libc::c_int) as usize];
|
||||
vli_set(rx.as_mut_ptr(), (*l_point).x.as_mut_ptr());
|
||||
vli_set(ry.as_mut_ptr(), (*l_point).y.as_mut_ptr());
|
||||
vli_clear(z.as_mut_ptr());
|
||||
z[0 as libc::c_int as usize] = 1 as libc::c_int as uint64_t;
|
||||
let mut i: libc::c_int = 0;
|
||||
i = l_numBits.wrapping_sub(2 as libc::c_int as libc::c_uint) as libc::c_int;
|
||||
while i >= 0 as libc::c_int {
|
||||
EccPoint_double_jacobian(rx.as_mut_ptr(), ry.as_mut_ptr(), z.as_mut_ptr());
|
||||
let mut l_index: libc::c_int = (vli_testBit(u1.as_mut_ptr(), i as uint) != 0) as libc::c_int | ((vli_testBit(u2.as_mut_ptr(), i as uint) != 0) as libc::c_int) << 1 as libc::c_int;
|
||||
let mut l_point_0: *mut EccPoint = l_points[l_index as usize];
|
||||
if !l_point_0.is_null() {
|
||||
vli_set(tx.as_mut_ptr(), (*l_point_0).x.as_mut_ptr());
|
||||
vli_set(ty.as_mut_ptr(), (*l_point_0).y.as_mut_ptr());
|
||||
apply_z(tx.as_mut_ptr(), ty.as_mut_ptr(), z.as_mut_ptr());
|
||||
vli_modSub(tz.as_mut_ptr(), rx.as_mut_ptr(), tx.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
XYcZ_add(tx.as_mut_ptr(), ty.as_mut_ptr(), rx.as_mut_ptr(), ry.as_mut_ptr());
|
||||
vli_modMult_fast(z.as_mut_ptr(), z.as_mut_ptr(), tz.as_mut_ptr());
|
||||
}
|
||||
i -= 1
|
||||
}
|
||||
vli_modInv(z.as_mut_ptr(), z.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
apply_z(rx.as_mut_ptr(), ry.as_mut_ptr(), z.as_mut_ptr());
|
||||
/* v = x1 (mod n) */
|
||||
if vli_cmp(curve_n.as_mut_ptr(), rx.as_mut_ptr()) != 1 as libc::c_int {
|
||||
vli_sub(rx.as_mut_ptr(), rx.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
}
|
||||
/* Accept only if v == r. */
|
||||
return (vli_cmp(rx.as_mut_ptr(), l_r.as_mut_ptr()) == 0 as libc::c_int) as libc::c_int;
|
||||
}
|
||||
|
||||
#[derive(Clone, PartialEq, Eq)]
|
||||
pub struct P384PublicKey([u8; 49]);
|
||||
|
||||
|
@ -94,8 +1000,8 @@ mod internal {
|
|||
impl P384KeyPair {}
|
||||
}
|
||||
|
||||
/*
|
||||
// Version using OpenSSL's ECC
|
||||
#[cfg(not(target_feature = "builtin_nist_ecc"))]
|
||||
mod openssl_based {
|
||||
use std::convert::TryInto;
|
||||
use std::os::raw::{c_int, c_ulong, c_void};
|
||||
|
@ -298,10 +1204,12 @@ mod openssl_based {
|
|||
|
||||
unsafe impl Sync for P384KeyPair {}
|
||||
}
|
||||
*/
|
||||
|
||||
pub use internal::*;
|
||||
//pub use openssl_based::*;
|
||||
#[cfg(target_feature = "builtin_nist_ecc")]
|
||||
pub use builtin::*;
|
||||
|
||||
#[cfg(not(target_feature = "builtin_nist_ecc"))]
|
||||
pub use openssl_based::*;
|
||||
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
|
|
|
@ -1,903 +0,0 @@
|
|||
// This is EASY-ECC by Kenneth MacKay
|
||||
// https://github.com/esxgx/easy-ecc
|
||||
//
|
||||
// It inherits the BSD 2-Clause license, not ZeroTier's license.
|
||||
//
|
||||
// Translated to Rust using: https://c2rust.com
|
||||
|
||||
#![allow(dead_code, mutable_transmutes, non_camel_case_types, non_snake_case, non_upper_case_globals, unused_assignments, unused_mut)]
|
||||
|
||||
pub mod libc {
|
||||
pub type c_uchar = u8;
|
||||
pub type c_ulong = u64;
|
||||
pub type c_long = i64;
|
||||
pub type c_uint = u32;
|
||||
pub type c_int = i32;
|
||||
pub type c_ulonglong = u64;
|
||||
pub type c_longlong = i64;
|
||||
}
|
||||
|
||||
pub type uint8_t = libc::c_uchar;
|
||||
pub type uint64_t = libc::c_ulong;
|
||||
pub type uint = libc::c_uint;
|
||||
pub type uint128_t = u128;
|
||||
pub struct EccPoint {
|
||||
pub x: [u64; 6],
|
||||
pub y: [u64; 6],
|
||||
}
|
||||
static mut curve_p: [uint64_t; 6] = [
|
||||
0xffffffff as libc::c_uint as uint64_t,
|
||||
0xffffffff00000000 as libc::c_ulong,
|
||||
0xfffffffffffffffe as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
];
|
||||
static mut curve_b: [uint64_t; 6] = [
|
||||
0x2a85c8edd3ec2aef as libc::c_long as uint64_t,
|
||||
0xc656398d8a2ed19d as libc::c_ulong,
|
||||
0x314088f5013875a as libc::c_long as uint64_t,
|
||||
0x181d9c6efe814112 as libc::c_long as uint64_t,
|
||||
0x988e056be3f82d19 as libc::c_ulong,
|
||||
0xb3312fa7e23ee7e4 as libc::c_ulong,
|
||||
];
|
||||
static mut curve_G: EccPoint = {
|
||||
let mut init = EccPoint {
|
||||
x: [
|
||||
0x3a545e3872760ab7 as libc::c_long as uint64_t,
|
||||
0x5502f25dbf55296c as libc::c_long as uint64_t,
|
||||
0x59f741e082542a38 as libc::c_long as uint64_t,
|
||||
0x6e1d3b628ba79b98 as libc::c_long as uint64_t,
|
||||
0x8eb1c71ef320ad74 as libc::c_ulong,
|
||||
0xaa87ca22be8b0537 as libc::c_ulong,
|
||||
],
|
||||
y: [
|
||||
0x7a431d7c90ea0e5f as libc::c_long as uint64_t,
|
||||
0xa60b1ce1d7e819d as libc::c_long as uint64_t,
|
||||
0xe9da3113b5f0b8c0 as libc::c_ulong,
|
||||
0xf8f41dbd289a147c as libc::c_ulong,
|
||||
0x5d9e98bf9292dc29 as libc::c_long as uint64_t,
|
||||
0x3617de4a96262c6f as libc::c_long as uint64_t,
|
||||
],
|
||||
};
|
||||
init
|
||||
};
|
||||
static mut curve_n: [uint64_t; 6] = [
|
||||
0xecec196accc52973 as libc::c_ulong,
|
||||
0x581a0db248b0a77a as libc::c_long as uint64_t,
|
||||
0xc7634d81f4372ddf as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
0xffffffffffffffff as libc::c_ulong,
|
||||
];
|
||||
#[inline(always)]
|
||||
unsafe fn getRandomNumber(mut p_vli: *mut uint64_t) -> libc::c_int {
|
||||
crate::random::fill_bytes_secure(&mut *std::ptr::slice_from_raw_parts_mut(p_vli.cast(), 48));
|
||||
return 1 as libc::c_int;
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn vli_clear(mut p_vli: *mut uint64_t) {
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
*p_vli.offset(i as isize) = 0 as libc::c_int as uint64_t;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
/* Returns 1 if p_vli == 0, 0 otherwise. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_isZero(mut p_vli: *mut uint64_t) -> libc::c_int {
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
if *p_vli.offset(i as isize) != 0 {
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
return 1 as libc::c_int;
|
||||
}
|
||||
/* Returns nonzero if bit p_bit of p_vli is set. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_testBit(mut p_vli: *mut uint64_t, mut p_bit: uint) -> uint64_t {
|
||||
return *p_vli.offset(p_bit.wrapping_div(64 as libc::c_int as libc::c_uint) as isize) & (1 as libc::c_int as uint64_t) << p_bit.wrapping_rem(64 as libc::c_int as libc::c_uint);
|
||||
}
|
||||
/* Counts the number of 64-bit "digits" in p_vli. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_numDigits(mut p_vli: *mut uint64_t) -> uint {
|
||||
let mut i: libc::c_int = 0;
|
||||
/* Search from the end until we find a non-zero digit.
|
||||
We do it in reverse because we expect that most digits will be nonzero. */
|
||||
i = 48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int;
|
||||
while i >= 0 as libc::c_int && *p_vli.offset(i as isize) == 0 as libc::c_int as libc::c_ulong {
|
||||
i -= 1
|
||||
}
|
||||
return (i + 1 as libc::c_int) as uint;
|
||||
}
|
||||
/* Counts the number of bits required for p_vli. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_numBits(mut p_vli: *mut uint64_t) -> uint {
|
||||
let mut i: uint = 0;
|
||||
let mut l_digit: uint64_t = 0;
|
||||
let mut l_numDigits: uint = vli_numDigits(p_vli);
|
||||
if l_numDigits == 0 as libc::c_int as libc::c_uint {
|
||||
return 0 as libc::c_int as uint;
|
||||
}
|
||||
l_digit = *p_vli.offset(l_numDigits.wrapping_sub(1 as libc::c_int as libc::c_uint) as isize);
|
||||
i = 0 as libc::c_int as uint;
|
||||
while l_digit != 0 {
|
||||
l_digit >>= 1 as libc::c_int;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
return l_numDigits.wrapping_sub(1 as libc::c_int as libc::c_uint).wrapping_mul(64 as libc::c_int as libc::c_uint).wrapping_add(i);
|
||||
}
|
||||
/* Sets p_dest = p_src. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_set(mut p_dest: *mut uint64_t, mut p_src: *mut uint64_t) {
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
*p_dest.offset(i as isize) = *p_src.offset(i as isize);
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
/* Returns sign of p_left - p_right. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_cmp(mut p_left: *mut uint64_t, mut p_right: *mut uint64_t) -> libc::c_int {
|
||||
let mut i: libc::c_int = 0;
|
||||
i = 48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int;
|
||||
while i >= 0 as libc::c_int {
|
||||
if *p_left.offset(i as isize) > *p_right.offset(i as isize) {
|
||||
return 1 as libc::c_int;
|
||||
} else {
|
||||
if *p_left.offset(i as isize) < *p_right.offset(i as isize) {
|
||||
return -(1 as libc::c_int);
|
||||
}
|
||||
}
|
||||
i -= 1
|
||||
}
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
/* Computes p_result = p_in << c, returning carry. Can modify in place (if p_result == p_in). 0 < p_shift < 64. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_lshift(mut p_result: *mut uint64_t, mut p_in: *mut uint64_t, mut p_shift: uint) -> uint64_t {
|
||||
let mut l_carry: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut l_temp: uint64_t = *p_in.offset(i as isize);
|
||||
*p_result.offset(i as isize) = l_temp << p_shift | l_carry;
|
||||
l_carry = l_temp >> (64 as libc::c_int as libc::c_uint).wrapping_sub(p_shift);
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
return l_carry;
|
||||
}
|
||||
/* Computes p_vli = p_vli >> 1. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_rshift1(mut p_vli: *mut uint64_t) {
|
||||
let mut l_end: *mut uint64_t = p_vli;
|
||||
let mut l_carry: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
p_vli = p_vli.offset((48 as libc::c_int / 8 as libc::c_int) as isize);
|
||||
loop {
|
||||
let fresh0 = p_vli;
|
||||
p_vli = p_vli.offset(-1);
|
||||
if !(fresh0 > l_end) {
|
||||
break;
|
||||
}
|
||||
let mut l_temp: uint64_t = *p_vli;
|
||||
*p_vli = l_temp >> 1 as libc::c_int | l_carry;
|
||||
l_carry = l_temp << 63 as libc::c_int
|
||||
}
|
||||
}
|
||||
/* Computes p_result = p_left + p_right, returning carry. Can modify in place. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_add(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t) -> uint64_t {
|
||||
let mut l_carry: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut l_sum: uint64_t = (*p_left.offset(i as isize)).wrapping_add(*p_right.offset(i as isize)).wrapping_add(l_carry);
|
||||
if l_sum != *p_left.offset(i as isize) {
|
||||
l_carry = (l_sum < *p_left.offset(i as isize)) as libc::c_int as uint64_t
|
||||
}
|
||||
*p_result.offset(i as isize) = l_sum;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
return l_carry;
|
||||
}
|
||||
/* Computes p_result = p_left - p_right, returning borrow. Can modify in place. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_sub(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t) -> uint64_t {
|
||||
let mut l_borrow: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
let mut i: uint = 0;
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut l_diff: uint64_t = (*p_left.offset(i as isize)).wrapping_sub(*p_right.offset(i as isize)).wrapping_sub(l_borrow);
|
||||
if l_diff != *p_left.offset(i as isize) {
|
||||
l_borrow = (l_diff > *p_left.offset(i as isize)) as libc::c_int as uint64_t
|
||||
}
|
||||
*p_result.offset(i as isize) = l_diff;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
return l_borrow;
|
||||
}
|
||||
/* Computes p_result = p_left * p_right. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_mult(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t) {
|
||||
let mut r01: uint128_t = 0 as libc::c_int as uint128_t;
|
||||
let mut r2: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
let mut i: uint = 0;
|
||||
let mut k: uint = 0;
|
||||
/* Compute each digit of p_result in sequence, maintaining the carries. */
|
||||
k = 0 as libc::c_int as uint;
|
||||
while k < (48 as libc::c_int / 8 as libc::c_int * 2 as libc::c_int - 1 as libc::c_int) as libc::c_uint {
|
||||
let mut l_min: uint = if k < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
0 as libc::c_int as libc::c_uint
|
||||
} else {
|
||||
k.wrapping_add(1 as libc::c_int as libc::c_uint).wrapping_sub((48 as libc::c_int / 8 as libc::c_int) as libc::c_uint)
|
||||
};
|
||||
i = l_min;
|
||||
while i <= k && i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut l_product: uint128_t = (*p_left.offset(i as isize) as uint128_t).wrapping_mul(*p_right.offset(k.wrapping_sub(i) as isize) as u128);
|
||||
r01 = (r01 as u128).wrapping_add(l_product) as uint128_t as uint128_t;
|
||||
r2 = (r2 as libc::c_ulong).wrapping_add((r01 < l_product) as libc::c_int as libc::c_ulong) as uint64_t as uint64_t;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
*p_result.offset(k as isize) = r01 as uint64_t;
|
||||
r01 = r01 >> 64 as libc::c_int | (r2 as uint128_t) << 64 as libc::c_int;
|
||||
r2 = 0 as libc::c_int as uint64_t;
|
||||
k = k.wrapping_add(1)
|
||||
}
|
||||
*p_result.offset((48 as libc::c_int / 8 as libc::c_int * 2 as libc::c_int - 1 as libc::c_int) as isize) = r01 as uint64_t;
|
||||
}
|
||||
/* Computes p_result = p_left^2. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_square(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t) {
|
||||
let mut r01: uint128_t = 0 as libc::c_int as uint128_t;
|
||||
let mut r2: uint64_t = 0 as libc::c_int as uint64_t;
|
||||
let mut i: uint = 0;
|
||||
let mut k: uint = 0;
|
||||
k = 0 as libc::c_int as uint;
|
||||
while k < (48 as libc::c_int / 8 as libc::c_int * 2 as libc::c_int - 1 as libc::c_int) as libc::c_uint {
|
||||
let mut l_min: uint = if k < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
0 as libc::c_int as libc::c_uint
|
||||
} else {
|
||||
k.wrapping_add(1 as libc::c_int as libc::c_uint).wrapping_sub((48 as libc::c_int / 8 as libc::c_int) as libc::c_uint)
|
||||
};
|
||||
i = l_min;
|
||||
while i <= k && i <= k.wrapping_sub(i) {
|
||||
let mut l_product: uint128_t = (*p_left.offset(i as isize) as uint128_t).wrapping_mul(*p_left.offset(k.wrapping_sub(i) as isize) as u128);
|
||||
if i < k.wrapping_sub(i) {
|
||||
r2 = (r2 as u128).wrapping_add(l_product >> 127 as libc::c_int) as uint64_t as uint64_t;
|
||||
l_product = (l_product as u128).wrapping_mul(2 as libc::c_int as u128) as uint128_t as uint128_t
|
||||
}
|
||||
r01 = (r01 as u128).wrapping_add(l_product) as uint128_t as uint128_t;
|
||||
r2 = (r2 as libc::c_ulong).wrapping_add((r01 < l_product) as libc::c_int as libc::c_ulong) as uint64_t as uint64_t;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
*p_result.offset(k as isize) = r01 as uint64_t;
|
||||
r01 = r01 >> 64 as libc::c_int | (r2 as uint128_t) << 64 as libc::c_int;
|
||||
r2 = 0 as libc::c_int as uint64_t;
|
||||
k = k.wrapping_add(1)
|
||||
}
|
||||
*p_result.offset((48 as libc::c_int / 8 as libc::c_int * 2 as libc::c_int - 1 as libc::c_int) as isize) = r01 as uint64_t;
|
||||
}
|
||||
/* #if SUPPORTS_INT128 */
|
||||
/* SUPPORTS_INT128 */
|
||||
/* Computes p_result = (p_left + p_right) % p_mod.
|
||||
Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modAdd(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t, mut p_mod: *mut uint64_t) {
|
||||
let mut l_carry: uint64_t = vli_add(p_result, p_left, p_right);
|
||||
if l_carry != 0 || vli_cmp(p_result, p_mod) >= 0 as libc::c_int {
|
||||
/* p_result > p_mod (p_result = p_mod + remainder), so subtract p_mod to get remainder. */
|
||||
vli_sub(p_result, p_result, p_mod);
|
||||
};
|
||||
}
|
||||
/* Computes p_result = (p_left - p_right) % p_mod.
|
||||
Assumes that p_left < p_mod and p_right < p_mod, p_result != p_mod. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modSub(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t, mut p_mod: *mut uint64_t) {
|
||||
let mut l_borrow: uint64_t = vli_sub(p_result, p_left, p_right);
|
||||
if l_borrow != 0 {
|
||||
/* In this case, p_result == -diff == (max int) - diff.
|
||||
Since -x % d == d - x, we can get the correct result from p_result + p_mod (with overflow). */
|
||||
vli_add(p_result, p_result, p_mod);
|
||||
};
|
||||
}
|
||||
//#elif ECC_CURVE == secp384r1
|
||||
#[inline(always)]
|
||||
unsafe fn omega_mult(mut p_result: *mut uint64_t, mut p_right: *mut uint64_t) {
|
||||
let mut l_tmp: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_carry: uint64_t = 0;
|
||||
let mut l_diff: uint64_t = 0;
|
||||
/* Multiply by (2^128 + 2^96 - 2^32 + 1). */
|
||||
vli_set(p_result, p_right); /* 1 */
|
||||
l_carry = vli_lshift(l_tmp.as_mut_ptr(), p_right, 32 as libc::c_int as uint); /* 2^96 + 1 */
|
||||
*p_result.offset((1 as libc::c_int + 48 as libc::c_int / 8 as libc::c_int) as isize) = l_carry.wrapping_add(vli_add(p_result.offset(1 as libc::c_int as isize), p_result.offset(1 as libc::c_int as isize), l_tmp.as_mut_ptr())); /* 2^128 + 2^96 + 1 */
|
||||
*p_result.offset((2 as libc::c_int + 48 as libc::c_int / 8 as libc::c_int) as isize) = vli_add(p_result.offset(2 as libc::c_int as isize), p_result.offset(2 as libc::c_int as isize), p_right); /* 2^128 + 2^96 - 2^32 + 1 */
|
||||
l_carry = (l_carry as libc::c_ulong).wrapping_add(vli_sub(p_result, p_result, l_tmp.as_mut_ptr())) as uint64_t as uint64_t;
|
||||
l_diff = (*p_result.offset((48 as libc::c_int / 8 as libc::c_int) as isize)).wrapping_sub(l_carry);
|
||||
if l_diff > *p_result.offset((48 as libc::c_int / 8 as libc::c_int) as isize) {
|
||||
/* Propagate borrow if necessary. */
|
||||
let mut i: uint = 0;
|
||||
i = (1 as libc::c_int + 48 as libc::c_int / 8 as libc::c_int) as uint;
|
||||
loop {
|
||||
let ref mut fresh1 = *p_result.offset(i as isize);
|
||||
*fresh1 = (*fresh1).wrapping_sub(1);
|
||||
if *p_result.offset(i as isize) != -(1 as libc::c_int) as uint64_t {
|
||||
break;
|
||||
}
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
*p_result.offset((48 as libc::c_int / 8 as libc::c_int) as isize) = l_diff;
|
||||
}
|
||||
/* Computes p_result = p_product % curve_p
|
||||
see PDF "Comparing Elliptic Curve Cryptography and RSA on 8-bit CPUs"
|
||||
section "Curve-Specific Optimizations" */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_mmod_fast(mut p_result: *mut uint64_t, mut p_product: *mut uint64_t) {
|
||||
let mut l_tmp: [uint64_t; 12] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
while vli_isZero(p_product.offset((48 as libc::c_int / 8 as libc::c_int) as isize)) == 0 {
|
||||
/* While c1 != 0 */
|
||||
let mut l_carry: uint64_t = 0 as libc::c_int as uint64_t; /* tmp = w * c1 */
|
||||
let mut i: uint = 0; /* p = c0 */
|
||||
vli_clear(l_tmp.as_mut_ptr());
|
||||
vli_clear(l_tmp.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
omega_mult(l_tmp.as_mut_ptr(), p_product.offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
vli_clear(p_product.offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
/* (c1, c0) = c0 + w * c1 */
|
||||
i = 0 as libc::c_int as uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int + 3 as libc::c_int) as libc::c_uint {
|
||||
let mut l_sum: uint64_t = (*p_product.offset(i as isize)).wrapping_add(l_tmp[i as usize]).wrapping_add(l_carry);
|
||||
if l_sum != *p_product.offset(i as isize) {
|
||||
l_carry = (l_sum < *p_product.offset(i as isize)) as libc::c_int as uint64_t
|
||||
}
|
||||
*p_product.offset(i as isize) = l_sum;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
while vli_cmp(p_product, curve_p.as_mut_ptr()) > 0 as libc::c_int {
|
||||
vli_sub(p_product, p_product, curve_p.as_mut_ptr());
|
||||
}
|
||||
vli_set(p_result, p_product);
|
||||
}
|
||||
//#endif
|
||||
/* Computes p_result = (p_left * p_right) % curve_p. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modMult_fast(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t) {
|
||||
let mut l_product: [uint64_t; 12] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
vli_mult(l_product.as_mut_ptr(), p_left, p_right);
|
||||
vli_mmod_fast(p_result, l_product.as_mut_ptr());
|
||||
}
|
||||
/* Computes p_result = p_left^2 % curve_p. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modSquare_fast(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t) {
|
||||
let mut l_product: [uint64_t; 12] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
vli_square(l_product.as_mut_ptr(), p_left);
|
||||
vli_mmod_fast(p_result, l_product.as_mut_ptr());
|
||||
}
|
||||
/* Computes p_result = (1 / p_input) % p_mod. All VLIs are the same size.
|
||||
See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
|
||||
https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modInv(mut p_result: *mut uint64_t, mut p_input: *mut uint64_t, mut p_mod: *mut uint64_t) {
|
||||
let mut a: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut b: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut u: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut v: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_carry: uint64_t = 0;
|
||||
let mut l_cmpResult: libc::c_int = 0;
|
||||
if vli_isZero(p_input) != 0 {
|
||||
vli_clear(p_result);
|
||||
return;
|
||||
}
|
||||
vli_set(a.as_mut_ptr(), p_input);
|
||||
vli_set(b.as_mut_ptr(), p_mod);
|
||||
vli_clear(u.as_mut_ptr());
|
||||
u[0 as libc::c_int as usize] = 1 as libc::c_int as uint64_t;
|
||||
vli_clear(v.as_mut_ptr());
|
||||
loop {
|
||||
l_cmpResult = vli_cmp(a.as_mut_ptr(), b.as_mut_ptr());
|
||||
if !(l_cmpResult != 0 as libc::c_int) {
|
||||
break;
|
||||
}
|
||||
l_carry = 0 as libc::c_int as uint64_t;
|
||||
if a[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong == 0 {
|
||||
vli_rshift1(a.as_mut_ptr());
|
||||
if u[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong != 0 {
|
||||
l_carry = vli_add(u.as_mut_ptr(), u.as_mut_ptr(), p_mod)
|
||||
}
|
||||
vli_rshift1(u.as_mut_ptr());
|
||||
if l_carry != 0 {
|
||||
u[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] = (u[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] as libc::c_ulonglong | 0x8000000000000000 as libc::c_ulonglong) as uint64_t
|
||||
}
|
||||
} else if b[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong == 0 {
|
||||
vli_rshift1(b.as_mut_ptr());
|
||||
if v[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong != 0 {
|
||||
l_carry = vli_add(v.as_mut_ptr(), v.as_mut_ptr(), p_mod)
|
||||
}
|
||||
vli_rshift1(v.as_mut_ptr());
|
||||
if l_carry != 0 {
|
||||
v[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] = (v[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] as libc::c_ulonglong | 0x8000000000000000 as libc::c_ulonglong) as uint64_t
|
||||
}
|
||||
} else if l_cmpResult > 0 as libc::c_int {
|
||||
vli_sub(a.as_mut_ptr(), a.as_mut_ptr(), b.as_mut_ptr());
|
||||
vli_rshift1(a.as_mut_ptr());
|
||||
if vli_cmp(u.as_mut_ptr(), v.as_mut_ptr()) < 0 as libc::c_int {
|
||||
vli_add(u.as_mut_ptr(), u.as_mut_ptr(), p_mod);
|
||||
}
|
||||
vli_sub(u.as_mut_ptr(), u.as_mut_ptr(), v.as_mut_ptr());
|
||||
if u[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong != 0 {
|
||||
l_carry = vli_add(u.as_mut_ptr(), u.as_mut_ptr(), p_mod)
|
||||
}
|
||||
vli_rshift1(u.as_mut_ptr());
|
||||
if l_carry != 0 {
|
||||
u[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] = (u[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] as libc::c_ulonglong | 0x8000000000000000 as libc::c_ulonglong) as uint64_t
|
||||
}
|
||||
} else {
|
||||
vli_sub(b.as_mut_ptr(), b.as_mut_ptr(), a.as_mut_ptr());
|
||||
vli_rshift1(b.as_mut_ptr());
|
||||
if vli_cmp(v.as_mut_ptr(), u.as_mut_ptr()) < 0 as libc::c_int {
|
||||
vli_add(v.as_mut_ptr(), v.as_mut_ptr(), p_mod);
|
||||
}
|
||||
vli_sub(v.as_mut_ptr(), v.as_mut_ptr(), u.as_mut_ptr());
|
||||
if v[0 as libc::c_int as usize] & 1 as libc::c_int as libc::c_ulong != 0 {
|
||||
l_carry = vli_add(v.as_mut_ptr(), v.as_mut_ptr(), p_mod)
|
||||
}
|
||||
vli_rshift1(v.as_mut_ptr());
|
||||
if l_carry != 0 {
|
||||
v[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] = (v[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] as libc::c_ulonglong | 0x8000000000000000 as libc::c_ulonglong) as uint64_t
|
||||
}
|
||||
}
|
||||
}
|
||||
vli_set(p_result, u.as_mut_ptr());
|
||||
}
|
||||
/* ------ Point operations ------ */
|
||||
/* Returns 1 if p_point is the point at infinity, 0 otherwise. */
|
||||
#[inline(always)]
|
||||
unsafe fn EccPoint_isZero(mut p_point: *mut EccPoint) -> libc::c_int {
|
||||
return (vli_isZero((*p_point).x.as_mut_ptr()) != 0 && vli_isZero((*p_point).y.as_mut_ptr()) != 0) as libc::c_int;
|
||||
}
|
||||
/* Point multiplication algorithm using Montgomery's ladder with co-Z coordinates.
|
||||
From http://eprint.iacr.org/2011/338.pdf
|
||||
*/
|
||||
/* Double in place */
|
||||
#[inline(always)]
|
||||
unsafe fn EccPoint_double_jacobian(mut X1: *mut uint64_t, mut Y1: *mut uint64_t, mut Z1: *mut uint64_t) {
|
||||
/* t1 = X, t2 = Y, t3 = Z */
|
||||
let mut t4: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t4 = y1^2 */
|
||||
let mut t5: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t5 = x1*y1^2 = A */
|
||||
if vli_isZero(Z1) != 0 {
|
||||
return;
|
||||
} /* t4 = y1^4 */
|
||||
vli_modSquare_fast(t4.as_mut_ptr(), Y1); /* t2 = y1*z1 = z3 */
|
||||
vli_modMult_fast(t5.as_mut_ptr(), X1, t4.as_mut_ptr()); /* t3 = z1^2 */
|
||||
vli_modSquare_fast(t4.as_mut_ptr(), t4.as_mut_ptr()); /* t1 = x1 + z1^2 */
|
||||
vli_modMult_fast(Y1, Y1, Z1); /* t3 = 2*z1^2 */
|
||||
vli_modSquare_fast(Z1, Z1); /* t3 = x1 - z1^2 */
|
||||
vli_modAdd(X1, X1, Z1, curve_p.as_mut_ptr()); /* t1 = x1^2 - z1^4 */
|
||||
vli_modAdd(Z1, Z1, Z1, curve_p.as_mut_ptr()); /* t3 = 2*(x1^2 - z1^4) */
|
||||
vli_modSub(Z1, X1, Z1, curve_p.as_mut_ptr()); /* t1 = 3*(x1^2 - z1^4) */
|
||||
vli_modMult_fast(X1, X1, Z1);
|
||||
vli_modAdd(Z1, X1, X1, curve_p.as_mut_ptr());
|
||||
vli_modAdd(X1, X1, Z1, curve_p.as_mut_ptr());
|
||||
if vli_testBit(X1, 0 as libc::c_int as uint) != 0 {
|
||||
let mut l_carry: uint64_t = vli_add(X1, X1, curve_p.as_mut_ptr());
|
||||
vli_rshift1(X1);
|
||||
let ref mut fresh2 = *X1.offset((48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as isize);
|
||||
*fresh2 |= l_carry << 63 as libc::c_int
|
||||
} else {
|
||||
vli_rshift1(X1);
|
||||
}
|
||||
/* t1 = 3/2*(x1^2 - z1^4) = B */
|
||||
vli_modSquare_fast(Z1, X1); /* t3 = B^2 */
|
||||
vli_modSub(Z1, Z1, t5.as_mut_ptr(), curve_p.as_mut_ptr()); /* t3 = B^2 - A */
|
||||
vli_modSub(Z1, Z1, t5.as_mut_ptr(), curve_p.as_mut_ptr()); /* t3 = B^2 - 2A = x3 */
|
||||
vli_modSub(t5.as_mut_ptr(), t5.as_mut_ptr(), Z1, curve_p.as_mut_ptr()); /* t5 = A - x3 */
|
||||
vli_modMult_fast(X1, X1, t5.as_mut_ptr()); /* t1 = B * (A - x3) */
|
||||
vli_modSub(t4.as_mut_ptr(), X1, t4.as_mut_ptr(), curve_p.as_mut_ptr()); /* t4 = B * (A - x3) - y1^4 = y3 */
|
||||
vli_set(X1, Z1);
|
||||
vli_set(Z1, Y1);
|
||||
vli_set(Y1, t4.as_mut_ptr());
|
||||
}
|
||||
/* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
|
||||
#[inline(always)]
|
||||
unsafe fn apply_z(mut X1: *mut uint64_t, mut Y1: *mut uint64_t, mut Z: *mut uint64_t) {
|
||||
let mut t1: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* z^2 */
|
||||
vli_modSquare_fast(t1.as_mut_ptr(), Z); /* x1 * z^2 */
|
||||
vli_modMult_fast(X1, X1, t1.as_mut_ptr()); /* z^3 */
|
||||
vli_modMult_fast(t1.as_mut_ptr(), t1.as_mut_ptr(), Z);
|
||||
vli_modMult_fast(Y1, Y1, t1.as_mut_ptr());
|
||||
/* y1 * z^3 */
|
||||
}
|
||||
/* P = (x1, y1) => 2P, (x2, y2) => P' */
|
||||
#[inline(always)]
|
||||
unsafe fn XYcZ_initial_double(mut X1: *mut uint64_t, mut Y1: *mut uint64_t, mut X2: *mut uint64_t, mut Y2: *mut uint64_t, mut p_initialZ: *mut uint64_t) {
|
||||
let mut z: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
vli_set(X2, X1);
|
||||
vli_set(Y2, Y1);
|
||||
vli_clear(z.as_mut_ptr());
|
||||
z[0 as libc::c_int as usize] = 1 as libc::c_int as uint64_t;
|
||||
if !p_initialZ.is_null() {
|
||||
vli_set(z.as_mut_ptr(), p_initialZ);
|
||||
}
|
||||
apply_z(X1, Y1, z.as_mut_ptr());
|
||||
EccPoint_double_jacobian(X1, Y1, z.as_mut_ptr());
|
||||
apply_z(X2, Y2, z.as_mut_ptr());
|
||||
}
|
||||
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
|
||||
Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
|
||||
or P => P', Q => P + Q
|
||||
*/
|
||||
#[inline(always)]
|
||||
unsafe fn XYcZ_add(mut X1: *mut uint64_t, mut Y1: *mut uint64_t, mut X2: *mut uint64_t, mut Y2: *mut uint64_t) {
|
||||
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
|
||||
let mut t5: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t5 = x2 - x1 */
|
||||
vli_modSub(t5.as_mut_ptr(), X2, X1, curve_p.as_mut_ptr()); /* t5 = (x2 - x1)^2 = A */
|
||||
vli_modSquare_fast(t5.as_mut_ptr(), t5.as_mut_ptr()); /* t1 = x1*A = B */
|
||||
vli_modMult_fast(X1, X1, t5.as_mut_ptr()); /* t3 = x2*A = C */
|
||||
vli_modMult_fast(X2, X2, t5.as_mut_ptr()); /* t4 = y2 - y1 */
|
||||
vli_modSub(Y2, Y2, Y1, curve_p.as_mut_ptr()); /* t5 = (y2 - y1)^2 = D */
|
||||
vli_modSquare_fast(t5.as_mut_ptr(), Y2); /* t5 = D - B */
|
||||
vli_modSub(t5.as_mut_ptr(), t5.as_mut_ptr(), X1, curve_p.as_mut_ptr()); /* t5 = D - B - C = x3 */
|
||||
vli_modSub(t5.as_mut_ptr(), t5.as_mut_ptr(), X2, curve_p.as_mut_ptr()); /* t3 = C - B */
|
||||
vli_modSub(X2, X2, X1, curve_p.as_mut_ptr()); /* t2 = y1*(C - B) */
|
||||
vli_modMult_fast(Y1, Y1, X2); /* t3 = B - x3 */
|
||||
vli_modSub(X2, X1, t5.as_mut_ptr(), curve_p.as_mut_ptr()); /* t4 = (y2 - y1)*(B - x3) */
|
||||
vli_modMult_fast(Y2, Y2, X2); /* t4 = y3 */
|
||||
vli_modSub(Y2, Y2, Y1, curve_p.as_mut_ptr());
|
||||
vli_set(X2, t5.as_mut_ptr());
|
||||
}
|
||||
/* Input P = (x1, y1, Z), Q = (x2, y2, Z)
|
||||
Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
|
||||
or P => P - Q, Q => P + Q
|
||||
*/
|
||||
#[inline(always)]
|
||||
unsafe fn XYcZ_addC(mut X1: *mut uint64_t, mut Y1: *mut uint64_t, mut X2: *mut uint64_t, mut Y2: *mut uint64_t) {
|
||||
/* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
|
||||
let mut t5: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t5 = x2 - x1 */
|
||||
let mut t6: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t5 = (x2 - x1)^2 = A */
|
||||
let mut t7: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init(); /* t1 = x1*A = B */
|
||||
vli_modSub(t5.as_mut_ptr(), X2, X1, curve_p.as_mut_ptr()); /* t3 = x2*A = C */
|
||||
vli_modSquare_fast(t5.as_mut_ptr(), t5.as_mut_ptr()); /* t4 = y2 + y1 */
|
||||
vli_modMult_fast(X1, X1, t5.as_mut_ptr()); /* t4 = y2 - y1 */
|
||||
vli_modMult_fast(X2, X2, t5.as_mut_ptr()); /* t6 = C - B */
|
||||
vli_modAdd(t5.as_mut_ptr(), Y2, Y1, curve_p.as_mut_ptr()); /* t2 = y1 * (C - B) */
|
||||
vli_modSub(Y2, Y2, Y1, curve_p.as_mut_ptr()); /* t6 = B + C */
|
||||
vli_modSub(t6.as_mut_ptr(), X2, X1, curve_p.as_mut_ptr()); /* t3 = (y2 - y1)^2 */
|
||||
vli_modMult_fast(Y1, Y1, t6.as_mut_ptr()); /* t3 = x3 */
|
||||
vli_modAdd(t6.as_mut_ptr(), X1, X2, curve_p.as_mut_ptr()); /* t7 = B - x3 */
|
||||
vli_modSquare_fast(X2, Y2); /* t4 = (y2 - y1)*(B - x3) */
|
||||
vli_modSub(X2, X2, t6.as_mut_ptr(), curve_p.as_mut_ptr()); /* t4 = y3 */
|
||||
vli_modSub(t7.as_mut_ptr(), X1, X2, curve_p.as_mut_ptr()); /* t7 = (y2 + y1)^2 = F */
|
||||
vli_modMult_fast(Y2, Y2, t7.as_mut_ptr()); /* t7 = x3' */
|
||||
vli_modSub(Y2, Y2, Y1, curve_p.as_mut_ptr()); /* t6 = x3' - B */
|
||||
vli_modSquare_fast(t7.as_mut_ptr(), t5.as_mut_ptr()); /* t6 = (y2 + y1)*(x3' - B) */
|
||||
vli_modSub(t7.as_mut_ptr(), t7.as_mut_ptr(), t6.as_mut_ptr(), curve_p.as_mut_ptr()); /* t2 = y3' */
|
||||
vli_modSub(t6.as_mut_ptr(), t7.as_mut_ptr(), X1, curve_p.as_mut_ptr());
|
||||
vli_modMult_fast(t6.as_mut_ptr(), t6.as_mut_ptr(), t5.as_mut_ptr());
|
||||
vli_modSub(Y1, t6.as_mut_ptr(), Y1, curve_p.as_mut_ptr());
|
||||
vli_set(X1, t7.as_mut_ptr());
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn EccPoint_mult(mut p_result: *mut EccPoint, mut p_point: *mut EccPoint, mut p_scalar: *mut uint64_t, mut p_initialZ: *mut uint64_t) {
|
||||
/* R0 and R1 */
|
||||
let mut Rx: [[uint64_t; 6]; 2] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut Ry: [[uint64_t; 6]; 2] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut z: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut i: libc::c_int = 0;
|
||||
let mut nb: libc::c_int = 0;
|
||||
vli_set(Rx[1 as libc::c_int as usize].as_mut_ptr(), (*p_point).x.as_mut_ptr());
|
||||
vli_set(Ry[1 as libc::c_int as usize].as_mut_ptr(), (*p_point).y.as_mut_ptr());
|
||||
XYcZ_initial_double(
|
||||
Rx[1 as libc::c_int as usize].as_mut_ptr(),
|
||||
Ry[1 as libc::c_int as usize].as_mut_ptr(),
|
||||
Rx[0 as libc::c_int as usize].as_mut_ptr(),
|
||||
Ry[0 as libc::c_int as usize].as_mut_ptr(),
|
||||
p_initialZ,
|
||||
);
|
||||
i = vli_numBits(p_scalar).wrapping_sub(2 as libc::c_int as libc::c_uint) as libc::c_int;
|
||||
while i > 0 as libc::c_int {
|
||||
nb = (vli_testBit(p_scalar, i as uint) == 0) as libc::c_int;
|
||||
XYcZ_addC(Rx[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Ry[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Rx[nb as usize].as_mut_ptr(), Ry[nb as usize].as_mut_ptr());
|
||||
XYcZ_add(Rx[nb as usize].as_mut_ptr(), Ry[nb as usize].as_mut_ptr(), Rx[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Ry[(1 as libc::c_int - nb) as usize].as_mut_ptr());
|
||||
i -= 1
|
||||
}
|
||||
nb = (vli_testBit(p_scalar, 0 as libc::c_int as uint) == 0) as libc::c_int;
|
||||
XYcZ_addC(Rx[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Ry[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Rx[nb as usize].as_mut_ptr(), Ry[nb as usize].as_mut_ptr());
|
||||
/* Find final 1/Z value. */
|
||||
vli_modSub(z.as_mut_ptr(), Rx[1 as libc::c_int as usize].as_mut_ptr(), Rx[0 as libc::c_int as usize].as_mut_ptr(), curve_p.as_mut_ptr()); /* X1 - X0 */
|
||||
vli_modMult_fast(z.as_mut_ptr(), z.as_mut_ptr(), Ry[(1 as libc::c_int - nb) as usize].as_mut_ptr()); /* Yb * (X1 - X0) */
|
||||
vli_modMult_fast(z.as_mut_ptr(), z.as_mut_ptr(), (*p_point).x.as_mut_ptr()); /* xP * Yb * (X1 - X0) */
|
||||
vli_modInv(z.as_mut_ptr(), z.as_mut_ptr(), curve_p.as_mut_ptr()); /* 1 / (xP * Yb * (X1 - X0)) */
|
||||
vli_modMult_fast(z.as_mut_ptr(), z.as_mut_ptr(), (*p_point).y.as_mut_ptr()); /* yP / (xP * Yb * (X1 - X0)) */
|
||||
vli_modMult_fast(z.as_mut_ptr(), z.as_mut_ptr(), Rx[(1 as libc::c_int - nb) as usize].as_mut_ptr()); /* Xb * yP / (xP * Yb * (X1 - X0)) */
|
||||
/* End 1/Z calculation */
|
||||
XYcZ_add(Rx[nb as usize].as_mut_ptr(), Ry[nb as usize].as_mut_ptr(), Rx[(1 as libc::c_int - nb) as usize].as_mut_ptr(), Ry[(1 as libc::c_int - nb) as usize].as_mut_ptr());
|
||||
apply_z(Rx[0 as libc::c_int as usize].as_mut_ptr(), Ry[0 as libc::c_int as usize].as_mut_ptr(), z.as_mut_ptr());
|
||||
vli_set((*p_result).x.as_mut_ptr(), Rx[0 as libc::c_int as usize].as_mut_ptr());
|
||||
vli_set((*p_result).y.as_mut_ptr(), Ry[0 as libc::c_int as usize].as_mut_ptr());
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn ecc_bytes2native(mut p_native: *mut uint64_t, mut p_bytes: *const uint8_t) {
|
||||
let mut i: libc::c_uint = 0;
|
||||
i = 0 as libc::c_int as libc::c_uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut p_digit: *const uint8_t = p_bytes.offset((8 as libc::c_int as libc::c_uint).wrapping_mul(((48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as libc::c_uint).wrapping_sub(i)) as isize);
|
||||
*p_native.offset(i as isize) = (*p_digit.offset(0 as libc::c_int as isize) as uint64_t) << 56 as libc::c_int
|
||||
| (*p_digit.offset(1 as libc::c_int as isize) as uint64_t) << 48 as libc::c_int
|
||||
| (*p_digit.offset(2 as libc::c_int as isize) as uint64_t) << 40 as libc::c_int
|
||||
| (*p_digit.offset(3 as libc::c_int as isize) as uint64_t) << 32 as libc::c_int
|
||||
| (*p_digit.offset(4 as libc::c_int as isize) as uint64_t) << 24 as libc::c_int
|
||||
| (*p_digit.offset(5 as libc::c_int as isize) as uint64_t) << 16 as libc::c_int
|
||||
| (*p_digit.offset(6 as libc::c_int as isize) as uint64_t) << 8 as libc::c_int
|
||||
| *p_digit.offset(7 as libc::c_int as isize) as uint64_t;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn ecc_native2bytes(mut p_bytes: *mut uint8_t, mut p_native: *const uint64_t) {
|
||||
let mut i: libc::c_uint = 0;
|
||||
i = 0 as libc::c_int as libc::c_uint;
|
||||
while i < (48 as libc::c_int / 8 as libc::c_int) as libc::c_uint {
|
||||
let mut p_digit: *mut uint8_t = p_bytes.offset((8 as libc::c_int as libc::c_uint).wrapping_mul(((48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as libc::c_uint).wrapping_sub(i)) as isize);
|
||||
*p_digit.offset(0 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 56 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(1 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 48 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(2 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 40 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(3 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 32 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(4 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 24 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(5 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 16 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(6 as libc::c_int as isize) = (*p_native.offset(i as isize) >> 8 as libc::c_int) as uint8_t;
|
||||
*p_digit.offset(7 as libc::c_int as isize) = *p_native.offset(i as isize) as uint8_t;
|
||||
i = i.wrapping_add(1)
|
||||
}
|
||||
}
|
||||
/* Compute a = sqrt(a) (mod curve_p). */
|
||||
#[inline(always)]
|
||||
unsafe fn mod_sqrt(mut a: *mut uint64_t) {
|
||||
let mut i: libc::c_uint = 0;
|
||||
let mut p1: [uint64_t; 6] = [1 as libc::c_int as uint64_t, 0, 0, 0, 0, 0];
|
||||
let mut l_result: [uint64_t; 6] = [1 as libc::c_int as uint64_t, 0, 0, 0, 0, 0];
|
||||
/* Since curve_p == 3 (mod 4) for all supported curves, we can
|
||||
compute sqrt(a) = a^((curve_p + 1) / 4) (mod curve_p). */
|
||||
vli_add(p1.as_mut_ptr(), curve_p.as_mut_ptr(), p1.as_mut_ptr()); /* p1 = curve_p + 1 */
|
||||
i = vli_numBits(p1.as_mut_ptr()).wrapping_sub(1 as libc::c_int as libc::c_uint); /* -a = 3 */
|
||||
while i > 1 as libc::c_int as libc::c_uint {
|
||||
vli_modSquare_fast(l_result.as_mut_ptr(), l_result.as_mut_ptr()); /* y = x^2 */
|
||||
if vli_testBit(p1.as_mut_ptr(), i) != 0 {
|
||||
vli_modMult_fast(l_result.as_mut_ptr(), l_result.as_mut_ptr(), a); /* y = x^2 - 3 */
|
||||
} /* y = x^3 - 3x */
|
||||
i = i.wrapping_sub(1)
|
||||
} /* y = x^3 - 3x + b */
|
||||
vli_set(a, l_result.as_mut_ptr());
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn ecc_point_decompress(mut p_point: *mut EccPoint, mut p_compressed: *const uint8_t) {
|
||||
let mut _3: [uint64_t; 6] = [3 as libc::c_int as uint64_t, 0, 0, 0, 0, 0];
|
||||
ecc_bytes2native((*p_point).x.as_mut_ptr(), p_compressed.offset(1 as libc::c_int as isize));
|
||||
vli_modSquare_fast((*p_point).y.as_mut_ptr(), (*p_point).x.as_mut_ptr());
|
||||
vli_modSub((*p_point).y.as_mut_ptr(), (*p_point).y.as_mut_ptr(), _3.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
vli_modMult_fast((*p_point).y.as_mut_ptr(), (*p_point).y.as_mut_ptr(), (*p_point).x.as_mut_ptr());
|
||||
vli_modAdd((*p_point).y.as_mut_ptr(), (*p_point).y.as_mut_ptr(), curve_b.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
mod_sqrt((*p_point).y.as_mut_ptr());
|
||||
if (*p_point).y[0 as libc::c_int as usize] & 0x1 as libc::c_int as libc::c_ulong != (*p_compressed.offset(0 as libc::c_int as isize) as libc::c_int & 0x1 as libc::c_int) as libc::c_ulong {
|
||||
vli_sub((*p_point).y.as_mut_ptr(), curve_p.as_mut_ptr(), (*p_point).y.as_mut_ptr());
|
||||
};
|
||||
}
|
||||
pub unsafe fn ecc_make_key(mut p_publicKey: *mut uint8_t, mut p_privateKey: *mut uint8_t) -> libc::c_int {
|
||||
let mut l_private: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_public: EccPoint = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_tries: libc::c_uint = 0 as libc::c_int as libc::c_uint;
|
||||
loop {
|
||||
if getRandomNumber(l_private.as_mut_ptr()) == 0 || {
|
||||
let fresh3 = l_tries;
|
||||
l_tries = l_tries.wrapping_add(1);
|
||||
(fresh3) >= 1024 as libc::c_int as libc::c_uint
|
||||
} {
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
if !(vli_isZero(l_private.as_mut_ptr()) != 0) {
|
||||
/* Make sure the private key is in the range [1, n-1].
|
||||
For the supported curves, n is always large enough that we only need to subtract once at most. */
|
||||
if vli_cmp(curve_n.as_mut_ptr(), l_private.as_mut_ptr()) != 1 as libc::c_int {
|
||||
vli_sub(l_private.as_mut_ptr(), l_private.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
}
|
||||
EccPoint_mult(&mut l_public, &mut curve_G, l_private.as_mut_ptr(), 0 as *mut uint64_t);
|
||||
}
|
||||
if !(EccPoint_isZero(&mut l_public) != 0) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
ecc_native2bytes(p_privateKey, l_private.as_mut_ptr() as *const uint64_t);
|
||||
ecc_native2bytes(p_publicKey.offset(1 as libc::c_int as isize), l_public.x.as_mut_ptr() as *const uint64_t);
|
||||
*p_publicKey.offset(0 as libc::c_int as isize) = (2 as libc::c_int as libc::c_ulong).wrapping_add(l_public.y[0 as libc::c_int as usize] & 0x1 as libc::c_int as libc::c_ulong) as uint8_t;
|
||||
return 1 as libc::c_int;
|
||||
}
|
||||
pub unsafe fn ecdh_shared_secret(mut p_publicKey: *const uint8_t, mut p_privateKey: *const uint8_t, mut p_secret: *mut uint8_t) -> libc::c_int {
|
||||
let mut l_public: EccPoint = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_private: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_random: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
if getRandomNumber(l_random.as_mut_ptr()) == 0 {
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
ecc_point_decompress(&mut l_public, p_publicKey);
|
||||
ecc_bytes2native(l_private.as_mut_ptr(), p_privateKey);
|
||||
let mut l_product: EccPoint = EccPoint { x: [0; 6], y: [0; 6] };
|
||||
EccPoint_mult(&mut l_product, &mut l_public, l_private.as_mut_ptr(), l_random.as_mut_ptr());
|
||||
ecc_native2bytes(p_secret, l_product.x.as_mut_ptr() as *const uint64_t);
|
||||
return (EccPoint_isZero(&mut l_product) == 0) as libc::c_int;
|
||||
}
|
||||
/* -------- ECDSA code -------- */
|
||||
/* Computes p_result = (p_left * p_right) % p_mod. */
|
||||
#[inline(always)]
|
||||
unsafe fn vli_modMult(mut p_result: *mut uint64_t, mut p_left: *mut uint64_t, mut p_right: *mut uint64_t, mut p_mod: *mut uint64_t) {
|
||||
let mut l_product: [uint64_t; 12] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_modMultiple: [uint64_t; 12] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_digitShift: uint = 0;
|
||||
let mut l_bitShift: uint = 0;
|
||||
let mut l_productBits: uint = 0;
|
||||
let mut l_modBits: uint = vli_numBits(p_mod);
|
||||
vli_mult(l_product.as_mut_ptr(), p_left, p_right);
|
||||
l_productBits = vli_numBits(l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
if l_productBits != 0 {
|
||||
l_productBits = (l_productBits as libc::c_uint).wrapping_add((48 as libc::c_int / 8 as libc::c_int * 64 as libc::c_int) as libc::c_uint) as uint as uint
|
||||
} else {
|
||||
l_productBits = vli_numBits(l_product.as_mut_ptr())
|
||||
}
|
||||
if l_productBits < l_modBits {
|
||||
/* l_product < p_mod. */
|
||||
vli_set(p_result, l_product.as_mut_ptr());
|
||||
return;
|
||||
}
|
||||
/* Shift p_mod by (l_leftBits - l_modBits). This multiplies p_mod by the largest
|
||||
power of two possible while still resulting in a number less than p_left. */
|
||||
vli_clear(l_modMultiple.as_mut_ptr());
|
||||
vli_clear(l_modMultiple.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
l_digitShift = l_productBits.wrapping_sub(l_modBits).wrapping_div(64 as libc::c_int as libc::c_uint);
|
||||
l_bitShift = l_productBits.wrapping_sub(l_modBits).wrapping_rem(64 as libc::c_int as libc::c_uint);
|
||||
if l_bitShift != 0 {
|
||||
l_modMultiple[l_digitShift.wrapping_add((48 as libc::c_int / 8 as libc::c_int) as libc::c_uint) as usize] = vli_lshift(l_modMultiple.as_mut_ptr().offset(l_digitShift as isize), p_mod, l_bitShift)
|
||||
} else {
|
||||
vli_set(l_modMultiple.as_mut_ptr().offset(l_digitShift as isize), p_mod);
|
||||
}
|
||||
/* Subtract all multiples of p_mod to get the remainder. */
|
||||
vli_clear(p_result); /* Use p_result as a temp var to store 1 (for subtraction) */
|
||||
*p_result.offset(0 as libc::c_int as isize) = 1 as libc::c_int as uint64_t;
|
||||
while l_productBits > (48 as libc::c_int / 8 as libc::c_int * 64 as libc::c_int) as libc::c_uint || vli_cmp(l_modMultiple.as_mut_ptr(), p_mod) >= 0 as libc::c_int {
|
||||
let mut l_cmp: libc::c_int = vli_cmp(l_modMultiple.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize), l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
if l_cmp < 0 as libc::c_int || l_cmp == 0 as libc::c_int && vli_cmp(l_modMultiple.as_mut_ptr(), l_product.as_mut_ptr()) <= 0 as libc::c_int {
|
||||
if vli_sub(l_product.as_mut_ptr(), l_product.as_mut_ptr(), l_modMultiple.as_mut_ptr()) != 0 {
|
||||
/* borrow */
|
||||
vli_sub(l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize), l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize), p_result);
|
||||
}
|
||||
vli_sub(
|
||||
l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize),
|
||||
l_product.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize),
|
||||
l_modMultiple.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize),
|
||||
);
|
||||
}
|
||||
let mut l_carry: uint64_t = (l_modMultiple[(48 as libc::c_int / 8 as libc::c_int) as usize] & 0x1 as libc::c_int as libc::c_ulong) << 63 as libc::c_int;
|
||||
vli_rshift1(l_modMultiple.as_mut_ptr().offset((48 as libc::c_int / 8 as libc::c_int) as isize));
|
||||
vli_rshift1(l_modMultiple.as_mut_ptr());
|
||||
l_modMultiple[(48 as libc::c_int / 8 as libc::c_int - 1 as libc::c_int) as usize] |= l_carry;
|
||||
l_productBits = l_productBits.wrapping_sub(1)
|
||||
}
|
||||
vli_set(p_result, l_product.as_mut_ptr());
|
||||
}
|
||||
#[inline(always)]
|
||||
unsafe fn umax(mut a: uint, mut b: uint) -> uint {
|
||||
a.max(b)
|
||||
}
|
||||
pub unsafe fn ecdsa_sign(mut p_privateKey: *const uint8_t, mut p_hash: *const uint8_t, mut p_signature: *mut uint8_t) -> libc::c_int {
|
||||
let mut k: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_tmp: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_s: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut p: EccPoint = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_tries: libc::c_uint = 0 as libc::c_int as libc::c_uint;
|
||||
loop {
|
||||
if getRandomNumber(k.as_mut_ptr()) == 0 || {
|
||||
let fresh4 = l_tries;
|
||||
l_tries = l_tries.wrapping_add(1);
|
||||
(fresh4) >= 1024 as libc::c_int as libc::c_uint
|
||||
} {
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
if !(vli_isZero(k.as_mut_ptr()) != 0) {
|
||||
if vli_cmp(curve_n.as_mut_ptr(), k.as_mut_ptr()) != 1 as libc::c_int {
|
||||
vli_sub(k.as_mut_ptr(), k.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
}
|
||||
/* tmp = k * G */
|
||||
EccPoint_mult(&mut p, &mut curve_G, k.as_mut_ptr(), 0 as *mut uint64_t);
|
||||
/* r = x1 (mod n) */
|
||||
if vli_cmp(curve_n.as_mut_ptr(), p.x.as_mut_ptr()) != 1 as libc::c_int {
|
||||
vli_sub(p.x.as_mut_ptr(), p.x.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
/* s = r*d */
|
||||
}
|
||||
} /* s = e + r*d */
|
||||
if !(vli_isZero(p.x.as_mut_ptr()) != 0) {
|
||||
break; /* k = 1 / k */
|
||||
}
|
||||
} /* s = (e + r*d) / k */
|
||||
ecc_native2bytes(p_signature, p.x.as_mut_ptr() as *const uint64_t);
|
||||
ecc_bytes2native(l_tmp.as_mut_ptr(), p_privateKey);
|
||||
vli_modMult(l_s.as_mut_ptr(), p.x.as_mut_ptr(), l_tmp.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
ecc_bytes2native(l_tmp.as_mut_ptr(), p_hash);
|
||||
vli_modAdd(l_s.as_mut_ptr(), l_tmp.as_mut_ptr(), l_s.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
vli_modInv(k.as_mut_ptr(), k.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
vli_modMult(l_s.as_mut_ptr(), l_s.as_mut_ptr(), k.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
ecc_native2bytes(p_signature.offset(48 as libc::c_int as isize), l_s.as_mut_ptr() as *const uint64_t);
|
||||
return 1 as libc::c_int;
|
||||
}
|
||||
pub unsafe fn ecdsa_verify(mut p_publicKey: *const uint8_t, mut p_hash: *const uint8_t, mut p_signature: *const uint8_t) -> libc::c_int {
|
||||
let mut u1: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut u2: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut z: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_public: EccPoint = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_sum: EccPoint = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut rx: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut ry: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut tx: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut ty: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut tz: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_r: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
let mut l_s: [uint64_t; 6] = std::mem::MaybeUninit::uninit().assume_init();
|
||||
ecc_point_decompress(&mut l_public, p_publicKey);
|
||||
ecc_bytes2native(l_r.as_mut_ptr(), p_signature);
|
||||
ecc_bytes2native(l_s.as_mut_ptr(), p_signature.offset(48 as libc::c_int as isize));
|
||||
if vli_isZero(l_r.as_mut_ptr()) != 0 || vli_isZero(l_s.as_mut_ptr()) != 0 {
|
||||
/* r, s must not be 0. */
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
if vli_cmp(curve_n.as_mut_ptr(), l_r.as_mut_ptr()) != 1 as libc::c_int || vli_cmp(curve_n.as_mut_ptr(), l_s.as_mut_ptr()) != 1 as libc::c_int {
|
||||
/* r, s must be < n. */
|
||||
return 0 as libc::c_int;
|
||||
}
|
||||
/* Calculate u1 and u2. */
|
||||
vli_modInv(z.as_mut_ptr(), l_s.as_mut_ptr(), curve_n.as_mut_ptr()); /* Z = s^-1 */
|
||||
ecc_bytes2native(u1.as_mut_ptr(), p_hash); /* u1 = e/s */
|
||||
vli_modMult(u1.as_mut_ptr(), u1.as_mut_ptr(), z.as_mut_ptr(), curve_n.as_mut_ptr()); /* u2 = r/s */
|
||||
vli_modMult(u2.as_mut_ptr(), l_r.as_mut_ptr(), z.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
/* Calculate l_sum = G + Q. */
|
||||
vli_set(l_sum.x.as_mut_ptr(), l_public.x.as_mut_ptr()); /* Z = x2 - x1 */
|
||||
vli_set(l_sum.y.as_mut_ptr(), l_public.y.as_mut_ptr()); /* Z = 1/Z */
|
||||
vli_set(tx.as_mut_ptr(), curve_G.x.as_mut_ptr());
|
||||
vli_set(ty.as_mut_ptr(), curve_G.y.as_mut_ptr());
|
||||
vli_modSub(z.as_mut_ptr(), l_sum.x.as_mut_ptr(), tx.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
XYcZ_add(tx.as_mut_ptr(), ty.as_mut_ptr(), l_sum.x.as_mut_ptr(), l_sum.y.as_mut_ptr());
|
||||
vli_modInv(z.as_mut_ptr(), z.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
apply_z(l_sum.x.as_mut_ptr(), l_sum.y.as_mut_ptr(), z.as_mut_ptr());
|
||||
/* Use Shamir's trick to calculate u1*G + u2*Q */
|
||||
let mut l_points: [*mut EccPoint; 4] = [0 as *mut EccPoint, &mut curve_G, &mut l_public, &mut l_sum]; /* Z = x2 - x1 */
|
||||
let mut l_numBits: uint = umax(vli_numBits(u1.as_mut_ptr()), vli_numBits(u2.as_mut_ptr())); /* Z = 1/Z */
|
||||
let mut l_point: *mut EccPoint = l_points[((vli_testBit(u1.as_mut_ptr(), l_numBits.wrapping_sub(1 as libc::c_int as libc::c_uint)) != 0) as libc::c_int | ((vli_testBit(u2.as_mut_ptr(), l_numBits.wrapping_sub(1 as libc::c_int as libc::c_uint)) != 0) as libc::c_int) << 1 as libc::c_int) as usize];
|
||||
vli_set(rx.as_mut_ptr(), (*l_point).x.as_mut_ptr());
|
||||
vli_set(ry.as_mut_ptr(), (*l_point).y.as_mut_ptr());
|
||||
vli_clear(z.as_mut_ptr());
|
||||
z[0 as libc::c_int as usize] = 1 as libc::c_int as uint64_t;
|
||||
let mut i: libc::c_int = 0;
|
||||
i = l_numBits.wrapping_sub(2 as libc::c_int as libc::c_uint) as libc::c_int;
|
||||
while i >= 0 as libc::c_int {
|
||||
EccPoint_double_jacobian(rx.as_mut_ptr(), ry.as_mut_ptr(), z.as_mut_ptr());
|
||||
let mut l_index: libc::c_int = (vli_testBit(u1.as_mut_ptr(), i as uint) != 0) as libc::c_int | ((vli_testBit(u2.as_mut_ptr(), i as uint) != 0) as libc::c_int) << 1 as libc::c_int;
|
||||
let mut l_point_0: *mut EccPoint = l_points[l_index as usize];
|
||||
if !l_point_0.is_null() {
|
||||
vli_set(tx.as_mut_ptr(), (*l_point_0).x.as_mut_ptr());
|
||||
vli_set(ty.as_mut_ptr(), (*l_point_0).y.as_mut_ptr());
|
||||
apply_z(tx.as_mut_ptr(), ty.as_mut_ptr(), z.as_mut_ptr());
|
||||
vli_modSub(tz.as_mut_ptr(), rx.as_mut_ptr(), tx.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
XYcZ_add(tx.as_mut_ptr(), ty.as_mut_ptr(), rx.as_mut_ptr(), ry.as_mut_ptr());
|
||||
vli_modMult_fast(z.as_mut_ptr(), z.as_mut_ptr(), tz.as_mut_ptr());
|
||||
}
|
||||
i -= 1
|
||||
}
|
||||
vli_modInv(z.as_mut_ptr(), z.as_mut_ptr(), curve_p.as_mut_ptr());
|
||||
apply_z(rx.as_mut_ptr(), ry.as_mut_ptr(), z.as_mut_ptr());
|
||||
/* v = x1 (mod n) */
|
||||
if vli_cmp(curve_n.as_mut_ptr(), rx.as_mut_ptr()) != 1 as libc::c_int {
|
||||
vli_sub(rx.as_mut_ptr(), rx.as_mut_ptr(), curve_n.as_mut_ptr());
|
||||
}
|
||||
/* Accept only if v == r. */
|
||||
return (vli_cmp(rx.as_mut_ptr(), l_r.as_mut_ptr()) == 0 as libc::c_int) as libc::c_int;
|
||||
}
|
|
@ -1,6 +1,8 @@
|
|||
// (c) 2020-2022 ZeroTier, Inc. -- currently propritery pending actual release and licensing. See LICENSE.md.
|
||||
|
||||
use std::io::Write;
|
||||
use std::num::NonZeroU64;
|
||||
use std::ops::Deref;
|
||||
use std::sync::atomic::{AtomicU64, Ordering};
|
||||
|
||||
use crate::aes::{Aes, AesGcm};
|
||||
|
@ -8,56 +10,11 @@ use crate::hash::{hmac_sha384, hmac_sha512, SHA384, SHA512};
|
|||
use crate::p384::{P384KeyPair, P384PublicKey, P384_PUBLIC_KEY_SIZE};
|
||||
use crate::random;
|
||||
use crate::secret::Secret;
|
||||
use crate::varint;
|
||||
|
||||
use parking_lot::{Mutex, RwLock, RwLockUpgradableReadGuard};
|
||||
|
||||
/*
|
||||
|
||||
ZeroTier V2 Noise(-like?) Session Protocol
|
||||
|
||||
This protocol implements the Noise_IK key exchange pattern using NIST P-384 ECDH, AES-GCM,
|
||||
and SHA512. So yes, Virginia, it's a FIPS-compliant Noise implementation. NIST P-384 is
|
||||
not listed in official Noise documentation though, so consider it "Noise-like" if you
|
||||
prefer.
|
||||
|
||||
See also: http://noiseprotocol.org/noise.html
|
||||
|
||||
Secondary hybrid exchange using Kyber512, the recently approved post-quantum KEX algorithm,
|
||||
is also supported but is optional. When it is enabled the additional shared secret is
|
||||
mixed into the final Noise_IK secret with HMAC/HKDF. This provides an exchange at least as
|
||||
strong as the stronger of the two algorithms (ECDH and Kyber) since hashing anything with
|
||||
a secret yields a secret.
|
||||
|
||||
Kyber theoretically provides data forward secrecy into the post-quantum era if and when it
|
||||
arrives. It might also reassure those paranoid about NIST elliptic curves a little, though
|
||||
we tend to accept the arguments of Koblitz and Menezes against the curves being backdoored.
|
||||
These arguments are explained at the end of this post:
|
||||
|
||||
https://blog.cryptographyengineering.com/2015/10/22/a-riddle-wrapped-in-curve/
|
||||
|
||||
Kyber is used as long as both sides set the "jedi" parameter to true. It should be used
|
||||
by default but can be disabled on tiny and slow devices or systems that talk to vast
|
||||
numbers of endpoints and don't want the extra overhead.
|
||||
|
||||
Lastly, this protocol includes obfusation using a hash of the recipient's public identity
|
||||
as a key. AES is used to encrypt the first block of each packet (or the first few blocks
|
||||
for key exchange packets), making packets appear as pure noise to anyone who does not know
|
||||
the identity of the recipient.
|
||||
|
||||
Obfuscation renders ZeroTier traffic uncategorizable to those who do not know the identity
|
||||
of a packet's recipient, helping to defend against bulk de-anonymization. It also makes it
|
||||
easy for recipient nodes to silently discard packets from senders that do not know them,
|
||||
maintaining invisibility from naive network scanners.
|
||||
|
||||
Obfuscation doesn't play any meaningful role in data privacy or authentication. It can be
|
||||
ignored when analyzing the "real" security of the protocol.
|
||||
|
||||
*/
|
||||
|
||||
/// Minimum packet size / minimum size for work buffers.
|
||||
pub const MIN_BUFFER_SIZE: usize = 1400;
|
||||
|
||||
/// Minimum possible packet size.
|
||||
/// Minimum possible packet size. Packets smaller than this are rejected.
|
||||
pub const MIN_PACKET_SIZE: usize = HEADER_SIZE + 1 + AES_GCM_TAG_SIZE;
|
||||
|
||||
/// Start attempting to rekey after a key has been used to send packets this many times.
|
||||
|
@ -75,19 +32,22 @@ const REKEY_AFTER_TIME_MS: i64 = 1000 * 60 * 60; // 1 hour
|
|||
/// Maximum random jitter to add to rekey-after time.
|
||||
const REKEY_AFTER_TIME_MS_MAX_JITTER: u32 = 1000 * 60 * 5;
|
||||
|
||||
/// Don't send or process inbound offers more often than this.
|
||||
const OFFER_RATE_LIMIT_MS: i64 = 1000;
|
||||
/// Rate limit for sending new offers to attempt to re-key.
|
||||
const OFFER_RATE_LIMIT_MS: i64 = 2000;
|
||||
|
||||
/// Version 1: NIST P-384 forward secrecy and authentication with optional Kyber1024 forward secrecy (but not authentication)
|
||||
const SESSION_PROTOCOL_VERSION: u8 = 1;
|
||||
|
||||
const PACKET_TYPE_DATA: u8 = 0;
|
||||
const PACKET_TYPE_NOP: u8 = 1;
|
||||
const PACKET_TYPE_KEY_OFFER: u8 = 2; // "alice"
|
||||
const PACKET_TYPE_KEY_COUNTER_OFFER: u8 = 3; // "bob"
|
||||
|
||||
/// Secondary (hybrid) ephemeral key disabled.
|
||||
const E1_TYPE_NONE: u8 = 0;
|
||||
const GET_PACKET_TYPE_BIT_MASK: u8 = 0x1f;
|
||||
const GET_PROTOCOL_VERSION_SHIFT_RIGHT: u32 = 5;
|
||||
|
||||
/// Secondary (hybrid) ephemeral key is Kyber512
|
||||
const E1_TYPE_KYBER512: u8 = 1;
|
||||
const E1_TYPE_NONE: u8 = 0;
|
||||
const E1_TYPE_KYBER1024: u8 = 1;
|
||||
|
||||
const HEADER_SIZE: usize = 11;
|
||||
const AES_GCM_TAG_SIZE: usize = 16;
|
||||
|
@ -99,9 +59,9 @@ const SESSION_ID_SIZE: usize = 6;
|
|||
/// It doesn't matter very much what this is, but it's good for it to be unique.
|
||||
const KEY_DERIVATION_CHAIN_STARTING_SALT: [u8; 64] = [
|
||||
// macOS command line to generate:
|
||||
// echo -n 'Noise_IKpsk2_NISTP384+hybrid_AESGCM_SHA512' | shasum -a 512 | cut -d ' ' -f 1 | xxd -r -p | xxd -i
|
||||
0xc7, 0x66, 0xf3, 0x71, 0xc8, 0xbc, 0xc3, 0x19, 0xc6, 0xf0, 0x2a, 0x6e, 0x5c, 0x4b, 0x3c, 0xc0, 0x83, 0x29, 0x09, 0x09, 0x14, 0x4a, 0xf0, 0xde, 0xea, 0x3d, 0xbd, 0x00, 0x4c, 0x9e, 0x01, 0xa0, 0x6e, 0xb6, 0x9b, 0x56, 0x47, 0x97, 0x86, 0x1d, 0x4e, 0x94, 0xc5, 0xdd, 0xde, 0x4a, 0x1c, 0xc3, 0x4e,
|
||||
0xcc, 0x8b, 0x09, 0x3b, 0xb3, 0xc3, 0xb0, 0x03, 0xd7, 0xdf, 0x22, 0x49, 0x3f, 0xa5, 0x01,
|
||||
// echo -n 'ZSSP_Noise_IKpsk2_NISTP384_?KYBER1024_AESGCM_SHA512' | shasum -a 512 | cut -d ' ' -f 1 | xxd -r -p | xxd -i
|
||||
0x35, 0x6a, 0x75, 0xc0, 0xbf, 0xbe, 0xc3, 0x59, 0x70, 0x94, 0x50, 0x69, 0x4c, 0xa2, 0x08, 0x40, 0xc7, 0xdf, 0x67, 0xa8, 0x68, 0x52, 0x6e, 0xd5, 0xdd, 0x77, 0xec, 0x59, 0x6f, 0x8e, 0xa1, 0x99,
|
||||
0xb4, 0x32, 0x85, 0xaf, 0x7f, 0x0d, 0xa9, 0x6c, 0x01, 0xfb, 0x72, 0x46, 0xc0, 0x09, 0x58, 0xb8, 0xe0, 0xa8, 0xcf, 0xb1, 0x58, 0x04, 0x6e, 0x32, 0xba, 0xa8, 0xb8, 0xf9, 0x0a, 0xa4, 0xbf, 0x36,
|
||||
];
|
||||
|
||||
const KBKDF_KEY_USAGE_LABEL_HMAC: u8 = b'M';
|
||||
|
@ -132,12 +92,26 @@ pub enum Error {
|
|||
|
||||
/// Packet ignored by rate limiter.
|
||||
RateLimited,
|
||||
|
||||
/// Other end sent a protocol version we don't support.
|
||||
UnknownProtocolVersion(u8),
|
||||
|
||||
/// An internal error occurred.
|
||||
OtherError(Box<dyn std::error::Error>),
|
||||
}
|
||||
|
||||
impl From<std::io::Error> for Error {
|
||||
#[cold]
|
||||
#[inline(never)]
|
||||
fn from(e: std::io::Error) -> Self {
|
||||
Self::OtherError(Box::new(e))
|
||||
}
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Error {
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
match self {
|
||||
Self::UnknownLocalSessionId(_) => f.write_str("UnknownLocalSessionId"),
|
||||
Self::UnknownLocalSessionId(id) => f.write_str(format!("UnknownLocalSessionId({})", id.0.get()).as_str()),
|
||||
Self::InvalidPacket => f.write_str("InvalidPacket"),
|
||||
Self::InvalidParameter => f.write_str("InvalidParameter"),
|
||||
Self::FailedAuthentication => f.write_str("FailedAuthentication"),
|
||||
|
@ -145,6 +119,8 @@ impl std::fmt::Display for Error {
|
|||
Self::MaxKeyLifetimeExceeded => f.write_str("MaxKeyLifetimeExceeded"),
|
||||
Self::SessionNotEstablished => f.write_str("SessionNotEstablished"),
|
||||
Self::RateLimited => f.write_str("RateLimited"),
|
||||
Self::UnknownProtocolVersion(v) => f.write_str(format!("UnknownProtocolVersion({})", v).as_str()),
|
||||
Self::OtherError(e) => f.write_str(format!("OtherError({})", e.to_string()).as_str()),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -152,7 +128,6 @@ impl std::fmt::Display for Error {
|
|||
impl std::error::Error for Error {}
|
||||
|
||||
impl std::fmt::Debug for Error {
|
||||
#[inline(always)]
|
||||
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
||||
std::fmt::Display::fmt(self, f)
|
||||
}
|
||||
|
@ -168,7 +143,7 @@ impl Obfuscator {
|
|||
}
|
||||
}
|
||||
|
||||
pub enum ReceiveResult<'a, O> {
|
||||
pub enum ReceiveResult<'a, H: SessionHost> {
|
||||
/// Packet is valid and contained a data payload.
|
||||
OkData(&'a [u8], u32),
|
||||
|
||||
|
@ -176,7 +151,7 @@ pub enum ReceiveResult<'a, O> {
|
|||
OkSendReply(&'a [u8]),
|
||||
|
||||
/// Packet is valid and a new session was created, also includes a reply to be sent back.
|
||||
OkNewSession(Session<O>, &'a [u8]),
|
||||
OkNewSession(Session<H>, &'a [u8]),
|
||||
|
||||
/// Packet is valid, no action needs to be taken.
|
||||
Ok,
|
||||
|
@ -212,8 +187,8 @@ impl SessionId {
|
|||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn copy_to(&self, b: &mut [u8]) {
|
||||
b[..6].copy_from_slice(&self.0.get().to_le_bytes()[..6])
|
||||
pub fn to_bytes(&self) -> [u8; SESSION_ID_SIZE] {
|
||||
self.0.get().to_le_bytes()[0..6].try_into().unwrap()
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -237,10 +212,37 @@ impl From<SessionId> for u64 {
|
|||
}
|
||||
}
|
||||
|
||||
/// ZeroTier Noise encrypted channel session.
|
||||
pub struct Session<O> {
|
||||
/// Local session ID
|
||||
pub trait SessionHost: Sized {
|
||||
type Buffer: AsRef<[u8]> + AsMut<[u8]> + Write;
|
||||
type AssociatedObject: Sized;
|
||||
type SessionRef: Deref<Target = Session<Self>>;
|
||||
|
||||
/// Get a reference to this host's static public key blob.
|
||||
fn get_local_s_public(&self) -> &[u8];
|
||||
|
||||
/// Get a reference to this hosts' static public key's NIST P-384 secret key pair
|
||||
fn get_local_s_keypair_p384(&self) -> &P384KeyPair;
|
||||
|
||||
/// Get an empty writable buffer, or None if none are available and the operation in progress should fail.
|
||||
fn get_buffer(&self) -> Option<Self::Buffer>;
|
||||
|
||||
/// Extract a NIST P-384 ECC public key from a static public key blob.
|
||||
fn extract_p384_static(static_public: &[u8]) -> Option<P384PublicKey>;
|
||||
|
||||
/// Look up a local session by local ID.
|
||||
fn session_lookup(&self, local_session_id: SessionId) -> Option<Self::SessionRef>;
|
||||
|
||||
/// Check whether a new session should be accepted.
|
||||
///
|
||||
/// On success a tuple of local session ID, static secret, and associated object is returned. The
|
||||
/// static secret is whatever results from agreement between the local and remote static public
|
||||
/// keys.
|
||||
fn accept_new_session(&self, remote_static_public: &[u8], remote_metadata: &[u8]) -> Option<(SessionId, Secret<64>, Self::AssociatedObject)>;
|
||||
}
|
||||
|
||||
pub struct Session<H: SessionHost> {
|
||||
pub id: SessionId,
|
||||
pub associated_object: H::AssociatedObject,
|
||||
|
||||
send_counter: Counter,
|
||||
remote_s_public_hash: [u8; 48],
|
||||
|
@ -249,9 +251,6 @@ pub struct Session<O> {
|
|||
outgoing_obfuscator: Obfuscator,
|
||||
state: RwLock<MutableState>,
|
||||
remote_s_public_p384: [u8; P384_PUBLIC_KEY_SIZE],
|
||||
|
||||
/// Arbitrary object associated with this session
|
||||
pub associated_object: O,
|
||||
}
|
||||
|
||||
struct MutableState {
|
||||
|
@ -260,28 +259,40 @@ struct MutableState {
|
|||
offer: Option<EphemeralOffer>,
|
||||
}
|
||||
|
||||
impl<O> Session<O> {
|
||||
/// Create a new session and return this plus an outgoing packet to send to the other end.
|
||||
pub fn new<'a, const MAX_PACKET_SIZE: usize, const STATIC_PUBLIC_SIZE: usize>(
|
||||
buffer: &'a mut [u8; MAX_PACKET_SIZE],
|
||||
impl<H: SessionHost> Session<H> {
|
||||
pub fn new<SendFunction: FnMut(&[u8])>(
|
||||
host: &H,
|
||||
send: SendFunction,
|
||||
local_session_id: SessionId,
|
||||
local_s_public: &[u8; STATIC_PUBLIC_SIZE],
|
||||
local_s_keypair_p384: &P384KeyPair,
|
||||
remote_s_public: &[u8; STATIC_PUBLIC_SIZE],
|
||||
remote_s_public_p384: &P384PublicKey,
|
||||
remote_s_public: &[u8],
|
||||
offer_metadata: &[u8],
|
||||
psk: &Secret<64>,
|
||||
associated_object: O,
|
||||
associated_object: H::AssociatedObject,
|
||||
mtu: usize,
|
||||
current_time: i64,
|
||||
jedi: bool,
|
||||
) -> Result<(Self, &'a [u8]), Error> {
|
||||
debug_assert!(MAX_PACKET_SIZE >= MIN_BUFFER_SIZE);
|
||||
let counter = Counter::new();
|
||||
if let Some(ss) = local_s_keypair_p384.agree(remote_s_public_p384) {
|
||||
let outgoing_obfuscator = Obfuscator::new(remote_s_public);
|
||||
if let Some((offer, psize)) = EphemeralOffer::create_alice_offer(buffer, counter.next(), local_session_id, None, local_s_public, remote_s_public_p384, &ss, &outgoing_obfuscator, current_time, jedi) {
|
||||
return Ok((
|
||||
Session::<O> {
|
||||
) -> Result<Self, Error> {
|
||||
if let Some(remote_s_public_p384) = H::extract_p384_static(remote_s_public) {
|
||||
if let Some(ss) = host.get_local_s_keypair_p384().agree(&remote_s_public_p384) {
|
||||
let outgoing_obfuscator = Obfuscator::new(remote_s_public);
|
||||
let counter = Counter::new();
|
||||
if let Ok(offer) = EphemeralOffer::create_alice_offer(
|
||||
send,
|
||||
counter.next(),
|
||||
local_session_id,
|
||||
None,
|
||||
host.get_local_s_public(),
|
||||
offer_metadata,
|
||||
&remote_s_public_p384,
|
||||
&ss,
|
||||
&outgoing_obfuscator,
|
||||
mtu,
|
||||
current_time,
|
||||
jedi,
|
||||
) {
|
||||
return Ok(Self {
|
||||
id: local_session_id,
|
||||
associated_object,
|
||||
send_counter: counter,
|
||||
remote_s_public_hash: SHA384::hash(remote_s_public),
|
||||
psk: psk.clone(),
|
||||
|
@ -293,41 +304,70 @@ impl<O> Session<O> {
|
|||
offer: Some(offer),
|
||||
}),
|
||||
remote_s_public_p384: remote_s_public_p384.as_bytes().clone(),
|
||||
associated_object,
|
||||
},
|
||||
&buffer[..psize],
|
||||
));
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
return Err(Error::InvalidParameter);
|
||||
}
|
||||
|
||||
/// Check whether this session should initiate a re-key, returning a packet to send if true.
|
||||
///
|
||||
/// This must be checked often enough to ensure that the hard key usage limit is not reached, which in the
|
||||
/// usual UDP use case means once every ~3TiB of traffic.
|
||||
pub fn rekey_check<'a, const MAX_PACKET_SIZE: usize, const STATIC_PUBLIC_SIZE: usize>(&self, buffer: &'a mut [u8; MAX_PACKET_SIZE], local_s_public: &[u8; STATIC_PUBLIC_SIZE], current_time: i64, force: bool, jedi: bool) -> Option<&'a [u8]> {
|
||||
pub fn rekey_check<SendFunction: FnMut(&[u8])>(&self, host: &H, send: SendFunction, offer_metadata: &[u8], mtu: usize, current_time: i64, force: bool, jedi: bool) {
|
||||
let state = self.state.upgradable_read();
|
||||
if let Some(key) = state.keys[0].as_ref() {
|
||||
if force || (key.lifetime.should_rekey(self.send_counter.current(), current_time) && state.offer.as_ref().map_or(true, |o| (current_time - o.creation_time) > OFFER_RATE_LIMIT_MS)) {
|
||||
if let Some(remote_s_public_p384) = P384PublicKey::from_bytes(&self.remote_s_public_p384) {
|
||||
if let Some((offer, psize)) = EphemeralOffer::create_alice_offer(buffer, self.send_counter.next(), self.id, state.remote_session_id, local_s_public, &remote_s_public_p384, &self.ss, &self.outgoing_obfuscator, current_time, jedi) {
|
||||
let mut state = RwLockUpgradableReadGuard::upgrade(state);
|
||||
let _ = state.offer.replace(offer);
|
||||
return Some(&buffer[..psize]);
|
||||
if let Ok(offer) = EphemeralOffer::create_alice_offer(
|
||||
send,
|
||||
self.send_counter.next(),
|
||||
self.id,
|
||||
state.remote_session_id,
|
||||
host.get_local_s_public(),
|
||||
offer_metadata,
|
||||
&remote_s_public_p384,
|
||||
&self.ss,
|
||||
&self.outgoing_obfuscator,
|
||||
mtu,
|
||||
current_time,
|
||||
jedi,
|
||||
) {
|
||||
let _ = RwLockUpgradableReadGuard::upgrade(state).offer.replace(offer);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return None;
|
||||
}
|
||||
|
||||
/// Send a data packet to the other side, returning packet to send.
|
||||
pub fn send<'a, const MAX_PACKET_SIZE: usize>(&self, buffer: &'a mut [u8; MAX_PACKET_SIZE], data: &[u8]) -> Result<&'a [u8], Error> {
|
||||
/*
|
||||
debug_assert!(packet_type == PACKET_TYPE_DATA || packet_type == PACKET_TYPE_NOP);
|
||||
buffer[0] = packet_type;
|
||||
buffer[1..7].copy_from_slice(&remote_session_id.to_le_bytes()[..SESSION_ID_SIZE]);
|
||||
buffer[7..11].copy_from_slice(&counter.to_bytes());
|
||||
|
||||
let payload_end = HEADER_SIZE + data.len();
|
||||
let tag_end = payload_end + AES_GCM_TAG_SIZE;
|
||||
if tag_end < MAX_PACKET_SIZE {
|
||||
let mut c = key.get_send_cipher(counter)?;
|
||||
buffer[11..16].fill(0);
|
||||
c.init(&buffer[..16]);
|
||||
c.crypt(data, &mut buffer[HEADER_SIZE..payload_end]);
|
||||
buffer[payload_end..tag_end].copy_from_slice(&c.finish());
|
||||
key.return_send_cipher(c);
|
||||
|
||||
outgoing_obfuscator.0.encrypt_block_in_place(&mut buffer[..16]);
|
||||
|
||||
Ok(tag_end)
|
||||
} else {
|
||||
unlikely_branch();
|
||||
Err(Error::InvalidParameter)
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
pub fn send(&self, data: &[u8]) -> Result<H::Buffer, Error> {
|
||||
let state = self.state.read();
|
||||
if let Some(key) = state.keys[0].as_ref() {
|
||||
if let Some(remote_session_id) = state.remote_session_id {
|
||||
let data_len = assemble_and_armor_DATA(buffer, data, PACKET_TYPE_DATA, u64::from(remote_session_id), self.send_counter.next(), &key, &self.outgoing_obfuscator)?;
|
||||
//let data_len = assemble_and_armor_DATA(buffer, data, PACKET_TYPE_DATA, u64::from(remote_session_id), self.send_counter.next(), &key, &self.outgoing_obfuscator)?;
|
||||
Ok(&buffer[..data_len])
|
||||
} else {
|
||||
unlikely_branch();
|
||||
|
@ -338,7 +378,9 @@ impl<O> Session<O> {
|
|||
Err(Error::SessionNotEstablished)
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
/*
|
||||
/// Receive a packet from the network and take the appropriate action.
|
||||
///
|
||||
/// Check ReceiveResult to see if it includes data or a reply packet.
|
||||
|
@ -361,16 +403,19 @@ impl<O> Session<O> {
|
|||
current_time: i64,
|
||||
jedi: bool,
|
||||
) -> Result<ReceiveResult<'a, O>, Error> {
|
||||
debug_assert!(MAX_PACKET_SIZE >= MIN_BUFFER_SIZE);
|
||||
debug_assert!(MAX_PACKET_SIZE >= (64 + STATIC_PUBLIC_SIZE + P384_PUBLIC_KEY_SIZE + pqc_kyber::KYBER_PUBLICKEYBYTES));
|
||||
|
||||
if incoming_packet.len() > MAX_PACKET_SIZE || incoming_packet.len() <= MIN_PACKET_SIZE {
|
||||
unlikely_branch();
|
||||
return Err(Error::InvalidPacket);
|
||||
}
|
||||
|
||||
incoming_obfuscator.0.decrypt_block(&incoming_packet[..16], &mut buffer[..16]);
|
||||
let packet_type = buffer[0];
|
||||
let local_session_id = SessionId::new_from_bytes(&buffer[1..7]);
|
||||
let mut packet_type = buffer[0];
|
||||
let continued = (packet_type & PACKET_FLAG_CONTINUED) != 0;
|
||||
packet_type &= PACKET_TYPE_MASK;
|
||||
|
||||
let local_session_id = SessionId::new_from_bytes(&buffer[1..7]);
|
||||
let session = local_session_id.and_then(|sid| session_lookup(sid));
|
||||
|
||||
debug_assert_eq!(PACKET_TYPE_DATA, 0);
|
||||
|
@ -423,9 +468,13 @@ impl<O> Session<O> {
|
|||
}
|
||||
|
||||
if incoming_packet.len() > (HEADER_SIZE + P384_PUBLIC_KEY_SIZE + AES_GCM_TAG_SIZE + HMAC_SIZE) {
|
||||
incoming_obfuscator.0.decrypt_block(&incoming_packet[16..32], &mut buffer[16..32]);
|
||||
incoming_obfuscator.0.decrypt_block(&incoming_packet[32..48], &mut buffer[32..48]);
|
||||
incoming_obfuscator.0.decrypt_block(&incoming_packet[48..64], &mut buffer[48..64]);
|
||||
for i in (16..64).step_by(16) {
|
||||
let j = i + 16;
|
||||
incoming_obfuscator.0.decrypt_block(&incoming_packet[i..j], &mut buffer[i..j]);
|
||||
for k in i..j {
|
||||
buffer[k] ^= incoming_packet[k - 16];
|
||||
}
|
||||
}
|
||||
buffer[64..incoming_packet.len()].copy_from_slice(&incoming_packet[64..]);
|
||||
} else {
|
||||
return Err(Error::InvalidPacket);
|
||||
|
@ -491,6 +540,7 @@ impl<O> Session<O> {
|
|||
if let Some((local_session_id, psk, associated_object)) = new_session_auth(&alice_s_public) {
|
||||
Some(Session::<O> {
|
||||
id: local_session_id,
|
||||
associated_object,
|
||||
send_counter: Counter::new(),
|
||||
remote_s_public_hash: SHA384::hash(&alice_s_public),
|
||||
psk,
|
||||
|
@ -502,7 +552,6 @@ impl<O> Session<O> {
|
|||
offer: None,
|
||||
}),
|
||||
remote_s_public_p384: alice_s_public_p384.as_bytes().clone(),
|
||||
associated_object,
|
||||
})
|
||||
} else {
|
||||
return Err(Error::NewSessionRejected);
|
||||
|
@ -557,9 +606,13 @@ impl<O> Session<O> {
|
|||
// Bob now has final key state for this exchange. Yay! Now reply to Alice so she can construct it.
|
||||
|
||||
session.outgoing_obfuscator.0.encrypt_block_in_place(&mut buffer[0..16]);
|
||||
session.outgoing_obfuscator.0.encrypt_block_in_place(&mut buffer[16..32]);
|
||||
session.outgoing_obfuscator.0.encrypt_block_in_place(&mut buffer[32..48]);
|
||||
session.outgoing_obfuscator.0.encrypt_block_in_place(&mut buffer[48..64]);
|
||||
for i in (16..64).step_by(16) {
|
||||
let j = i + 16;
|
||||
for k in i..j {
|
||||
buffer[k] ^= buffer[k - 16];
|
||||
}
|
||||
session.outgoing_obfuscator.0.encrypt_block_in_place(&mut buffer[i..j]);
|
||||
}
|
||||
|
||||
return new_session.map_or_else(|| Ok(ReceiveResult::OkSendReply(&buffer[..reply_size])), |ns| Ok(ReceiveResult::OkNewSession(ns, &buffer[..reply_size])));
|
||||
}
|
||||
|
@ -642,6 +695,7 @@ impl<O> Session<O> {
|
|||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
#[repr(transparent)]
|
||||
|
@ -666,8 +720,8 @@ impl Counter {
|
|||
/// A value of the outgoing packet counter.
|
||||
///
|
||||
/// The counter is internally 64-bit so we can more easily track usage limits without
|
||||
/// confusing modular difference stuff. The counter as seen externally and placed in
|
||||
/// packets is the least significant 32 bits.
|
||||
/// confusing logic to handle 32-bit wrapping. The least significant 32 bits are the
|
||||
/// actual counter put in the packet.
|
||||
#[repr(transparent)]
|
||||
#[derive(Copy, Clone)]
|
||||
struct CounterValue(u64);
|
||||
|
@ -677,6 +731,11 @@ impl CounterValue {
|
|||
pub fn to_bytes(&self) -> [u8; 4] {
|
||||
(self.0 as u32).to_le_bytes()
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
pub fn lsb(&self) -> u8 {
|
||||
self.0 as u8
|
||||
}
|
||||
}
|
||||
|
||||
struct KeyLifetime {
|
||||
|
@ -714,60 +773,186 @@ struct EphemeralOffer {
|
|||
}
|
||||
|
||||
impl EphemeralOffer {
|
||||
fn create_alice_offer<const MAX_PACKET_SIZE: usize, const STATIC_PUBLIC_SIZE: usize>(
|
||||
buffer: &mut [u8; MAX_PACKET_SIZE],
|
||||
fn create_alice_offer<SendFunction: FnMut(&[u8])>(
|
||||
mut send: SendFunction,
|
||||
counter: CounterValue,
|
||||
alice_session_id: SessionId,
|
||||
bob_session_id: Option<SessionId>,
|
||||
alice_s_public: &[u8; STATIC_PUBLIC_SIZE],
|
||||
alice_s_public: &[u8],
|
||||
alice_metadata: &[u8],
|
||||
bob_s_public_p384: &P384PublicKey,
|
||||
ss: &Secret<48>,
|
||||
outgoing_obfuscator: &Obfuscator, // bobfuscator?
|
||||
outgoing_obfuscator: &Obfuscator,
|
||||
mtu: usize,
|
||||
current_time: i64,
|
||||
jedi: bool,
|
||||
) -> Option<(EphemeralOffer, usize)> {
|
||||
debug_assert!(MAX_PACKET_SIZE >= MIN_BUFFER_SIZE);
|
||||
|
||||
) -> Result<EphemeralOffer, Error> {
|
||||
let alice_e0_keypair = P384KeyPair::generate();
|
||||
let e0s = alice_e0_keypair.agree(bob_s_public_p384)?;
|
||||
let e0s = alice_e0_keypair.agree(bob_s_public_p384);
|
||||
if e0s.is_none() {
|
||||
return Err(Error::InvalidPacket);
|
||||
}
|
||||
|
||||
let alice_e1_keypair = if jedi {
|
||||
Some(pqc_kyber::keypair(&mut random::SecureRandom::get()))
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
let key = Secret(hmac_sha512(&hmac_sha512(&KEY_DERIVATION_CHAIN_STARTING_SALT, alice_e0_keypair.public_key_bytes()), e0s.as_bytes()));
|
||||
let bob_session_id_bytes = bob_session_id.map_or(0_u64, |i| i.into()).to_le_bytes();
|
||||
|
||||
let mut packet_size = assemble_KEY_OFFER(buffer, counter, bob_session_id, alice_e0_keypair.public_key(), alice_session_id, alice_s_public, alice_e1_keypair.as_ref().map(|s| &s.public));
|
||||
const PACKET_BUF_SIZE: usize = 3072;
|
||||
let mut packet_buf = [0_u8; PACKET_BUF_SIZE];
|
||||
|
||||
debug_assert!(packet_size <= MAX_PACKET_SIZE);
|
||||
let mut c = AesGcm::new(kbkdf512(key.as_bytes(), KBKDF_KEY_USAGE_LABEL_AES_GCM_ALICE_TO_BOB).first_n::<32>(), true);
|
||||
c.init(&get_aes_gcm_nonce(buffer));
|
||||
c.crypt_in_place(&mut buffer[(HEADER_SIZE + P384_PUBLIC_KEY_SIZE)..packet_size]);
|
||||
let c = c.finish();
|
||||
buffer[packet_size..packet_size + AES_GCM_TAG_SIZE].copy_from_slice(&c);
|
||||
packet_size += AES_GCM_TAG_SIZE;
|
||||
let mut packet_len = {
|
||||
let mut p = &mut packet_buf[..];
|
||||
|
||||
p.write_all(&[PACKET_TYPE_KEY_OFFER])?;
|
||||
p.write_all(&bob_session_id_bytes[..SESSION_ID_SIZE])?;
|
||||
p.write_all(&counter.to_bytes())?;
|
||||
|
||||
p.write_all(alice_e0_keypair.public_key_bytes())?;
|
||||
|
||||
p.write_all(&alice_session_id.0.get().to_le_bytes()[..SESSION_ID_SIZE])?;
|
||||
varint::write(&mut p, alice_s_public.len() as u64)?;
|
||||
p.write_all(alice_s_public)?;
|
||||
varint::write(&mut p, alice_metadata.len() as u64)?;
|
||||
p.write_all(alice_metadata)?;
|
||||
if let Some(e1kp) = alice_e1_keypair {
|
||||
p.write_all(&[E1_TYPE_KYBER1024])?;
|
||||
p.write_all(&e1kp.public)?;
|
||||
} else {
|
||||
p.write_all(&[E1_TYPE_NONE])?;
|
||||
}
|
||||
|
||||
PACKET_BUF_SIZE - p.len()
|
||||
};
|
||||
|
||||
if packet_len > mtu {
|
||||
packet_buf[0] |= PACKET_FLAG_CONTINUED;
|
||||
}
|
||||
|
||||
let key = Secret(hmac_sha512(
|
||||
&hmac_sha512(&KEY_DERIVATION_CHAIN_STARTING_SALT, alice_e0_keypair.public_key_bytes()),
|
||||
e0s.unwrap().as_bytes(),
|
||||
));
|
||||
|
||||
let gcm_tag = {
|
||||
let mut c = AesGcm::new(kbkdf512(key.as_bytes(), KBKDF_KEY_USAGE_LABEL_AES_GCM_ALICE_TO_BOB).first_n::<32>(), true);
|
||||
c.init(&get_aes_gcm_nonce(&packet_buf));
|
||||
c.crypt_in_place(&mut packet_buf[(HEADER_SIZE + P384_PUBLIC_KEY_SIZE)..packet_len]);
|
||||
c.finish()
|
||||
};
|
||||
packet_buf[packet_len..(packet_len + AES_GCM_TAG_SIZE)].copy_from_slice(&gcm_tag);
|
||||
packet_len += AES_GCM_TAG_SIZE;
|
||||
|
||||
let key = Secret(hmac_sha512(key.as_bytes(), ss.as_bytes()));
|
||||
|
||||
let hmac = hmac_sha384(kbkdf512(key.as_bytes(), KBKDF_KEY_USAGE_LABEL_HMAC).first_n::<48>(), &buffer[..packet_size]);
|
||||
buffer[packet_size..packet_size + HMAC_SIZE].copy_from_slice(&hmac);
|
||||
packet_size += HMAC_SIZE;
|
||||
let hmac = hmac_sha384(kbkdf512(key.as_bytes(), KBKDF_KEY_USAGE_LABEL_HMAC).first_n::<48>(), &packet_buf[..packet_len]);
|
||||
packet_buf[packet_len..(packet_len + HMAC_SIZE)].copy_from_slice(&hmac);
|
||||
packet_len += HMAC_SIZE;
|
||||
|
||||
outgoing_obfuscator.0.encrypt_block_in_place(&mut buffer[0..16]);
|
||||
outgoing_obfuscator.0.encrypt_block_in_place(&mut buffer[16..32]);
|
||||
outgoing_obfuscator.0.encrypt_block_in_place(&mut buffer[32..48]);
|
||||
outgoing_obfuscator.0.encrypt_block_in_place(&mut buffer[48..64]);
|
||||
cbc_obfuscate_first_64(outgoing_obfuscator, &mut packet_buf);
|
||||
if packet_len > mtu {
|
||||
send_fragmented(send, &mut packet_buf[..packet_len], counter, mtu, &bob_session_id_bytes[..SESSION_ID_SIZE], outgoing_obfuscator)?;
|
||||
} else {
|
||||
send(&packet_buf[..packet_len]);
|
||||
}
|
||||
|
||||
Some((
|
||||
EphemeralOffer {
|
||||
creation_time: current_time,
|
||||
key,
|
||||
alice_e0_keypair,
|
||||
alice_e1_keypair,
|
||||
},
|
||||
packet_size,
|
||||
))
|
||||
Ok(EphemeralOffer {
|
||||
creation_time: current_time,
|
||||
key,
|
||||
alice_e0_keypair,
|
||||
alice_e1_keypair,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Send a packet that must be fragmented.
|
||||
///
|
||||
/// The packet MUST have its CONTINUED flag set in its header. This isn't used
|
||||
/// for unfragmented packets. Those are just sent directly.
|
||||
///
|
||||
/// The packet should be obfuscated as normal. This handles obfuscation of
|
||||
/// fragments after the head. The contents of 'packet' are partly overwritten.
|
||||
fn send_fragmented<SendFunction: FnMut(&[u8])>(
|
||||
mut send: SendFunction,
|
||||
packet: &mut [u8],
|
||||
counter: CounterValue,
|
||||
mtu: usize,
|
||||
remote_session_id_bytes: &[u8],
|
||||
outgoing_obfuscator: &Obfuscator,
|
||||
) -> std::io::Result<()> {
|
||||
let packet_len = packet.len();
|
||||
debug_assert!(packet_len >= MIN_PACKET_SIZE);
|
||||
debug_assert!(mtu > MIN_PACKET_SIZE);
|
||||
|
||||
let frag_len_max = ((packet_len as f64) / ((packet_len as f64) / ((mtu - HEADER_SIZE) as f64)).ceil()).ceil() as usize;
|
||||
debug_assert!(frag_len_max > 0);
|
||||
let mut frag_len = packet_len.min(frag_len_max);
|
||||
debug_assert!(frag_len > 0);
|
||||
|
||||
send(&packet[..frag_len]);
|
||||
|
||||
let frag0_tail = [packet[frag_len - 2], packet[frag_len - 1]];
|
||||
|
||||
let mut next_frag_start = frag_len;
|
||||
let mut frag_no = 1_u8;
|
||||
while next_frag_start < packet_len {
|
||||
debug_assert!(next_frag_start > HEADER_SIZE);
|
||||
frag_len = (packet_len - next_frag_start).min(frag_len_max);
|
||||
debug_assert!(frag_len > MIN_PACKET_SIZE);
|
||||
let frag_end = next_frag_start + frag_len;
|
||||
debug_assert!(frag_end <= packet_len);
|
||||
|
||||
next_frag_start -= HEADER_SIZE;
|
||||
let mut frag_hdr = &mut packet[next_frag_start..];
|
||||
frag_hdr.write_all(&[if frag_end == packet_len {
|
||||
PACKET_TYPE_CONTINUATION
|
||||
} else {
|
||||
PACKET_TYPE_CONTINUATION | PACKET_FLAG_CONTINUED
|
||||
}])?;
|
||||
frag_hdr.write_all(&remote_session_id_bytes)?;
|
||||
frag_hdr.write_all(&[counter.lsb(), frag_no])?;
|
||||
frag_no += 1;
|
||||
frag_hdr.write_all(&frag0_tail)?;
|
||||
|
||||
outgoing_obfuscator.0.encrypt_block_in_place(&mut packet[next_frag_start..(next_frag_start + 16)]);
|
||||
send(&packet[next_frag_start..frag_end]);
|
||||
|
||||
next_frag_start = frag_end;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
/// Obfuscate the first 64 bytes of a packet (used for key exchanges).
|
||||
fn cbc_obfuscate_first_64(ob: &Obfuscator, data: &mut [u8]) {
|
||||
ob.0.encrypt_block_in_place(&mut data[0..16]);
|
||||
let mut i = 16;
|
||||
while i < 64 {
|
||||
let j = i + 16;
|
||||
for k in i..j {
|
||||
data[k] ^= data[k - 16];
|
||||
}
|
||||
ob.0.encrypt_block_in_place(&mut data[i..j]);
|
||||
i = j;
|
||||
}
|
||||
}
|
||||
|
||||
/// Deobfuscate the last 48 bytes of a packet (used for key exchanges).
|
||||
///
|
||||
/// This is used when decoding key exchange packets. The first 16 bytes are always
|
||||
/// deobfuscated, so this assumes that's already been done and finishes.
|
||||
fn cbc_debofuscate_16_to_64(ob: &Obfuscator, input: &[u8], output: &mut [u8]) {
|
||||
let mut i = 16;
|
||||
while i < 64 {
|
||||
let j = i + 16;
|
||||
ob.0.decrypt_block(&input[i..j], &mut output[i..j]);
|
||||
for k in i..j {
|
||||
output[k] ^= input[k - 16];
|
||||
}
|
||||
i = j;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -812,7 +997,6 @@ impl SessionKey {
|
|||
if !self.lifetime.expired(counter) {
|
||||
Ok(self.send_cipher_pool.lock().pop().unwrap_or_else(|| Box::new(AesGcm::new(self.send_key.as_bytes(), true))))
|
||||
} else {
|
||||
unlikely_branch();
|
||||
Err(Error::MaxKeyLifetimeExceeded)
|
||||
}
|
||||
}
|
||||
|
@ -833,84 +1017,7 @@ impl SessionKey {
|
|||
}
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn assemble_and_armor_DATA<const MAX_PACKET_SIZE: usize>(buffer: &mut [u8; MAX_PACKET_SIZE], data: &[u8], packet_type: u8, remote_session_id: u64, counter: CounterValue, key: &SessionKey, outgoing_obfuscator: &Obfuscator) -> Result<usize, Error> {
|
||||
debug_assert!(packet_type == PACKET_TYPE_DATA || packet_type == PACKET_TYPE_NOP);
|
||||
buffer[0] = packet_type;
|
||||
buffer[1..7].copy_from_slice(&remote_session_id.to_le_bytes()[..SESSION_ID_SIZE]);
|
||||
buffer[7..11].copy_from_slice(&counter.to_bytes());
|
||||
|
||||
let payload_end = HEADER_SIZE + data.len();
|
||||
let tag_end = payload_end + AES_GCM_TAG_SIZE;
|
||||
if tag_end < MAX_PACKET_SIZE {
|
||||
let mut c = key.get_send_cipher(counter)?;
|
||||
buffer[11..16].fill(0);
|
||||
c.init(&buffer[..16]);
|
||||
c.crypt(data, &mut buffer[HEADER_SIZE..payload_end]);
|
||||
buffer[payload_end..tag_end].copy_from_slice(&c.finish());
|
||||
key.return_send_cipher(c);
|
||||
|
||||
outgoing_obfuscator.0.encrypt_block_in_place(&mut buffer[..16]);
|
||||
|
||||
Ok(tag_end)
|
||||
} else {
|
||||
unlikely_branch();
|
||||
Err(Error::InvalidParameter)
|
||||
}
|
||||
}
|
||||
|
||||
fn append_random_padding(b: &mut [u8]) -> &mut [u8] {
|
||||
if b.len() > AES_GCM_TAG_SIZE + HMAC_SIZE {
|
||||
let random_padding_len = (random::next_u32_secure() as usize) % (b.len() - (AES_GCM_TAG_SIZE + HMAC_SIZE));
|
||||
b[..random_padding_len].fill(0);
|
||||
&mut b[random_padding_len..]
|
||||
} else {
|
||||
b
|
||||
}
|
||||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn assemble_KEY_OFFER<const MAX_PACKET_SIZE: usize, const STATIC_PUBLIC_SIZE: usize>(
|
||||
buffer: &mut [u8; MAX_PACKET_SIZE],
|
||||
counter: CounterValue,
|
||||
bob_session_id: Option<SessionId>,
|
||||
alice_e0_public: &P384PublicKey,
|
||||
alice_session_id: SessionId,
|
||||
alice_s_public: &[u8; STATIC_PUBLIC_SIZE],
|
||||
alice_e1_public: Option<&[u8; pqc_kyber::KYBER_PUBLICKEYBYTES]>,
|
||||
) -> usize {
|
||||
buffer[0] = PACKET_TYPE_KEY_OFFER;
|
||||
buffer[1..7].copy_from_slice(&bob_session_id.map_or(0_u64, |i| i.into()).to_le_bytes()[..SESSION_ID_SIZE]);
|
||||
buffer[7..11].copy_from_slice(&counter.to_bytes());
|
||||
let mut b = &mut buffer[HEADER_SIZE..];
|
||||
|
||||
b[..P384_PUBLIC_KEY_SIZE].copy_from_slice(alice_e0_public.as_bytes());
|
||||
b = &mut b[P384_PUBLIC_KEY_SIZE..];
|
||||
|
||||
alice_session_id.copy_to(b);
|
||||
b = &mut b[SESSION_ID_SIZE..];
|
||||
|
||||
b[..STATIC_PUBLIC_SIZE].copy_from_slice(alice_s_public);
|
||||
b = &mut b[STATIC_PUBLIC_SIZE..];
|
||||
|
||||
if let Some(k) = alice_e1_public {
|
||||
b[0] = E1_TYPE_KYBER512;
|
||||
b[1..1 + pqc_kyber::KYBER_PUBLICKEYBYTES].copy_from_slice(k);
|
||||
b = &mut b[1 + pqc_kyber::KYBER_PUBLICKEYBYTES..];
|
||||
} else {
|
||||
b[0] = E1_TYPE_NONE;
|
||||
b = &mut b[1..];
|
||||
}
|
||||
|
||||
b[0] = 0;
|
||||
b[1] = 0; // reserved for future use
|
||||
b = &mut b[2..];
|
||||
|
||||
b = append_random_padding(b);
|
||||
|
||||
MAX_PACKET_SIZE - b.len()
|
||||
}
|
||||
|
||||
/*
|
||||
#[allow(non_snake_case)]
|
||||
fn parse_KEY_OFFER_after_header<const STATIC_PUBLIC_SIZE: usize>(mut b: &[u8]) -> Result<(SessionId, [u8; STATIC_PUBLIC_SIZE], Option<[u8; pqc_kyber::KYBER_PUBLICKEYBYTES]>), Error> {
|
||||
if b.len() >= SESSION_ID_SIZE {
|
||||
|
@ -922,7 +1029,7 @@ fn parse_KEY_OFFER_after_header<const STATIC_PUBLIC_SIZE: usize>(mut b: &[u8]) -
|
|||
if b.len() >= 1 {
|
||||
let e1_type = b[0];
|
||||
b = &b[1..];
|
||||
let alice_e1_public = if e1_type == E1_TYPE_KYBER512 {
|
||||
let alice_e1_public = if e1_type == E1_TYPE_KYBER1024 {
|
||||
if b.len() >= pqc_kyber::KYBER_PUBLICKEYBYTES {
|
||||
let k: [u8; pqc_kyber::KYBER_PUBLICKEYBYTES] = b[..pqc_kyber::KYBER_PUBLICKEYBYTES].try_into().unwrap();
|
||||
b = &b[pqc_kyber::KYBER_PUBLICKEYBYTES..];
|
||||
|
@ -943,7 +1050,14 @@ fn parse_KEY_OFFER_after_header<const STATIC_PUBLIC_SIZE: usize>(mut b: &[u8]) -
|
|||
}
|
||||
|
||||
#[allow(non_snake_case)]
|
||||
fn assemble_KEY_COUNTER_OFFER<const MAX_PACKET_SIZE: usize>(buffer: &mut [u8; MAX_PACKET_SIZE], counter: CounterValue, alice_session_id: SessionId, bob_e0_public: &P384PublicKey, bob_session_id: SessionId, bob_e1_public: Option<&[u8; pqc_kyber::KYBER_CIPHERTEXTBYTES]>) -> usize {
|
||||
fn assemble_KEY_COUNTER_OFFER<const MAX_PACKET_SIZE: usize>(
|
||||
buffer: &mut [u8; MAX_PACKET_SIZE],
|
||||
counter: CounterValue,
|
||||
alice_session_id: SessionId,
|
||||
bob_e0_public: &P384PublicKey,
|
||||
bob_session_id: SessionId,
|
||||
bob_e1_public: Option<&[u8; pqc_kyber::KYBER_CIPHERTEXTBYTES]>,
|
||||
) -> usize {
|
||||
buffer[0] = PACKET_TYPE_KEY_COUNTER_OFFER;
|
||||
alice_session_id.copy_to(&mut buffer[1..7]);
|
||||
buffer[7..11].copy_from_slice(&counter.to_bytes());
|
||||
|
@ -956,7 +1070,7 @@ fn assemble_KEY_COUNTER_OFFER<const MAX_PACKET_SIZE: usize>(buffer: &mut [u8; MA
|
|||
b = &mut b[SESSION_ID_SIZE..];
|
||||
|
||||
if let Some(k) = bob_e1_public {
|
||||
b[0] = E1_TYPE_KYBER512;
|
||||
b[0] = E1_TYPE_KYBER1024;
|
||||
b[1..1 + pqc_kyber::KYBER_CIPHERTEXTBYTES].copy_from_slice(k);
|
||||
b = &mut b[1 + pqc_kyber::KYBER_CIPHERTEXTBYTES..];
|
||||
} else {
|
||||
|
@ -968,8 +1082,6 @@ fn assemble_KEY_COUNTER_OFFER<const MAX_PACKET_SIZE: usize>(buffer: &mut [u8; MA
|
|||
b[1] = 0; // reserved for future use
|
||||
b = &mut b[2..];
|
||||
|
||||
b = append_random_padding(b);
|
||||
|
||||
MAX_PACKET_SIZE - b.len()
|
||||
}
|
||||
|
||||
|
@ -981,7 +1093,7 @@ fn parse_KEY_COUNTER_OFFER_after_header(mut b: &[u8]) -> Result<(SessionId, Opti
|
|||
if b.len() >= 1 {
|
||||
let e1_type = b[0];
|
||||
b = &b[1..];
|
||||
let bob_e1_public = if e1_type == E1_TYPE_KYBER512 {
|
||||
let bob_e1_public = if e1_type == E1_TYPE_KYBER1024 {
|
||||
if b.len() >= pqc_kyber::KYBER_CIPHERTEXTBYTES {
|
||||
let k: [u8; pqc_kyber::KYBER_CIPHERTEXTBYTES] = b[..pqc_kyber::KYBER_CIPHERTEXTBYTES].try_into().unwrap();
|
||||
b = &b[pqc_kyber::KYBER_CIPHERTEXTBYTES..];
|
||||
|
@ -1000,6 +1112,9 @@ fn parse_KEY_COUNTER_OFFER_after_header(mut b: &[u8]) -> Result<(SessionId, Opti
|
|||
return Err(Error::InvalidPacket);
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
/// HMAC-SHA512 key derivation function modeled on: https://csrc.nist.gov/publications/detail/sp/800-108/final (page 12)
|
||||
fn kbkdf512(key: &[u8], label: u8) -> Secret<64> {
|
||||
Secret(hmac_sha512(key, &[0, 0, 0, 0, b'Z', b'T', label, 0, 0, 0, 0, 0x02, 0x00]))
|
||||
}
|
||||
|
@ -1011,10 +1126,10 @@ fn get_aes_gcm_nonce(deobfuscated_packet: &[u8]) -> [u8; 16] {
|
|||
tmp
|
||||
}
|
||||
|
||||
#[cold]
|
||||
#[inline(never)]
|
||||
extern "C" fn unlikely_branch() {}
|
||||
#[cfg(test)]
|
||||
mod tests {}
|
||||
|
||||
/*
|
||||
#[cfg(test)]
|
||||
mod tests {
|
||||
use std::rc::Rc;
|
||||
|
@ -1178,3 +1293,4 @@ mod tests {
|
|||
}
|
||||
}
|
||||
}
|
||||
*/
|
|
@ -1,5 +1,5 @@
|
|||
#unstable_features = true
|
||||
max_width = 300
|
||||
max_width = 200
|
||||
#use_small_heuristics = "Max"
|
||||
edition = "2021"
|
||||
empty_item_single_line = true
|
||||
|
|
Loading…
Add table
Reference in a new issue