/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __FreeBSD__ #include #include #endif #include "../include/ZeroTierOne.h" #include "../node/Bond.hpp" #include "../node/Constants.hpp" #include "../node/Identity.hpp" #include "../node/InetAddress.hpp" #include "../node/MAC.hpp" #include "../node/Mutex.hpp" #include "../node/Node.hpp" #include "../node/PacketMultiplexer.hpp" #include "../node/Peer.hpp" #include "../node/Poly1305.hpp" #include "../node/SHA512.hpp" #include "../node/Salsa20.hpp" #include "../node/Utils.hpp" #include "../node/World.hpp" #include "../osdep/Binder.hpp" #include "../osdep/BlockingQueue.hpp" #include "../osdep/Http.hpp" #include "../osdep/ManagedRoute.hpp" #include "../osdep/OSUtils.hpp" #include "../osdep/Phy.hpp" #include "../osdep/PortMapper.hpp" #include "../version.h" #include "OneService.hpp" #include "SoftwareUpdater.hpp" #include #if ZT_SSO_ENABLED #include #endif #ifdef __WINDOWS__ #include #include #include #include #include // #include #define stat _stat #else #include #include #include #include #include #include #endif #ifdef __APPLE__ #include "../osdep/MacDNSHelper.hpp" #elif defined(__WINDOWS__) #include "../osdep/WinDNSHelper.hpp" #include "../osdep/WinFWHelper.hpp" #endif #ifdef ZT_USE_SYSTEM_HTTP_PARSER #include #else #include "../ext/http-parser/http_parser.h" #endif #include "../node/Metrics.hpp" #if ZT_VAULT_SUPPORT extern "C" { #include } #endif #include #include using json = nlohmann::json; #include "../controller/EmbeddedNetworkController.hpp" #include "../controller/PostgreSQL.hpp" #include "../controller/Redis.hpp" #include "../osdep/EthernetTap.hpp" #ifdef __WINDOWS__ #include "../osdep/WindowsEthernetTap.hpp" #endif #ifndef ZT_SOFTWARE_UPDATE_DEFAULT #define ZT_SOFTWARE_UPDATE_DEFAULT "disable" #endif // Sanity limits for HTTP #define ZT_MAX_HTTP_MESSAGE_SIZE (1024 * 1024 * 64) #define ZT_MAX_HTTP_CONNECTIONS 65536 // Interface metric for ZeroTier taps -- this ensures that if we are on WiFi and also // bridged via ZeroTier to the same LAN traffic will (if the OS is sane) prefer WiFi. #define ZT_IF_METRIC 5000 // How often to check for new multicast subscriptions on a tap device #define ZT_TAP_CHECK_MULTICAST_INTERVAL 5000 // TCP fallback relay (run by ZeroTier, Inc. -- this will eventually go away) #ifndef ZT_SDK #define ZT_TCP_FALLBACK_RELAY "204.80.128.1/443" #endif // Frequency at which we re-resolve the TCP fallback relay #define ZT_TCP_FALLBACK_RERESOLVE_DELAY 86400000 // Attempt to engage TCP fallback after this many ms of no reply to packets sent to global-scope IPs #define ZT_TCP_FALLBACK_AFTER 60000 // How often to check for local interface addresses #define ZT_LOCAL_INTERFACE_CHECK_INTERVAL 60000 // Maximum write buffer size for outgoing TCP connections (sanity limit) #define ZT_TCP_MAX_WRITEQ_SIZE 33554432 // TCP activity timeout #define ZT_TCP_ACTIVITY_TIMEOUT 60000 #if ZT_VAULT_SUPPORT size_t curlResponseWrite(void* ptr, size_t size, size_t nmemb, std::string* data) { data->append((char*)ptr, size * nmemb); return size * nmemb; } #endif namespace ZeroTier { std::string ssoResponseTemplate = R"""( Network SSO Login {{ networkId }}
{{ messageText }}
)"""; bool bearerTokenValid(const std::string authHeader, const std::string& checkToken) { std::vector tokens = OSUtils::split(authHeader.c_str(), " ", NULL, NULL); if (tokens.size() != 2) { return false; } std::string bearer = tokens[0]; std::string token = tokens[1]; std::transform(bearer.begin(), bearer.end(), bearer.begin(), [](unsigned char c) { return std::tolower(c); }); if (bearer != "bearer") { return false; } if (token != checkToken) { return false; } return true; } #if ZT_DEBUG == 1 std::string dump_headers(const httplib::Headers& headers) { std::string s; char buf[BUFSIZ]; for (auto it = headers.begin(); it != headers.end(); ++it) { const auto& x = *it; snprintf(buf, sizeof(buf), "%s: %s\n", x.first.c_str(), x.second.c_str()); s += buf; } return s; } std::string http_log(const httplib::Request& req, const httplib::Response& res) { std::string s; char buf[BUFSIZ]; s += "================================\n"; snprintf(buf, sizeof(buf), "%s %s %s", req.method.c_str(), req.version.c_str(), req.path.c_str()); s += buf; std::string query; for (auto it = req.params.begin(); it != req.params.end(); ++it) { const auto& x = *it; snprintf(buf, sizeof(buf), "%c%s=%s", (it == req.params.begin()) ? '?' : '&', x.first.c_str(), x.second.c_str()); query += buf; } snprintf(buf, sizeof(buf), "%s\n", query.c_str()); s += buf; s += dump_headers(req.headers); s += "--------------------------------\n"; snprintf(buf, sizeof(buf), "%d %s\n", res.status, res.version.c_str()); s += buf; s += dump_headers(res.headers); s += "\n"; if (! res.body.empty()) { s += res.body; } s += "\n"; return s; } #endif // Configured networks class NetworkState { public: NetworkState() : _webPort(9993) , _tap((EthernetTap*)0) #if ZT_SSO_ENABLED , _idc(nullptr) #endif { // Real defaults are in network 'up' code in network event handler _settings.allowManaged = true; _settings.allowGlobal = false; _settings.allowDefault = false; _settings.allowDNS = false; memset(&_config, 0, sizeof(ZT_VirtualNetworkConfig)); } ~NetworkState() { this->_managedRoutes.clear(); this->_tap.reset(); #if ZT_SSO_ENABLED if (_idc) { zeroidc::zeroidc_stop(_idc); zeroidc::zeroidc_delete(_idc); _idc = nullptr; } #endif } void setWebPort(unsigned int port) { _webPort = port; } void setTap(std::shared_ptr tap) { this->_tap = tap; } std::shared_ptr tap() const { return _tap; } OneService::NetworkSettings settings() const { return _settings; } void setSettings(const OneService::NetworkSettings& settings) { _settings = settings; } void setAllowManaged(bool allow) { _settings.allowManaged = allow; } bool allowManaged() const { return _settings.allowManaged; } void setAllowGlobal(bool allow) { _settings.allowGlobal = allow; } bool allowGlobal() const { return _settings.allowGlobal; } void setAllowDefault(bool allow) { _settings.allowDefault = allow; } bool allowDefault() const { return _settings.allowDefault; } void setAllowDNS(bool allow) { _settings.allowDNS = allow; } bool allowDNS() const { return _settings.allowDNS; } std::vector allowManagedWhitelist() const { return _settings.allowManagedWhitelist; } void addToAllowManagedWhiteList(const InetAddress& addr) { _settings.allowManagedWhitelist.push_back(addr); } const ZT_VirtualNetworkConfig& config() { return _config; } void setConfig(const ZT_VirtualNetworkConfig* nwc) { memcpy(&_config, nwc, sizeof(ZT_VirtualNetworkConfig)); if (_config.ssoEnabled && _config.ssoVersion == 1) { #if ZT_SSO_ENABLED if (_idc == nullptr) { assert(_config.issuerURL != nullptr); assert(_config.ssoClientID != nullptr); assert(_config.centralAuthURL != nullptr); assert(_config.ssoProvider != nullptr); _idc = zeroidc::zeroidc_new(_config.issuerURL, _config.ssoClientID, _config.centralAuthURL, _config.ssoProvider, _webPort); if (_idc == nullptr) { fprintf(stderr, "idc is null\n"); return; } } zeroidc::zeroidc_set_nonce_and_csrf(_idc, _config.ssoState, _config.ssoNonce); char* url = zeroidc::zeroidc_get_auth_url(_idc); memcpy(_config.authenticationURL, url, strlen(url)); _config.authenticationURL[strlen(url)] = 0; zeroidc::free_cstr(url); if (zeroidc::zeroidc_is_running(_idc) && nwc->status == ZT_NETWORK_STATUS_AUTHENTICATION_REQUIRED) { zeroidc::zeroidc_kick_refresh_thread(_idc); } #endif } } std::vector& managedIps() { return _managedIps; } void setManagedIps(const std::vector& managedIps) { _managedIps = managedIps; } std::map >& managedRoutes() { return _managedRoutes; } char* doTokenExchange(const char* code) { char* ret = nullptr; #if ZT_SSO_ENABLED if (_idc == nullptr) { fprintf(stderr, "ainfo or idc null\n"); return ret; } ret = zeroidc::zeroidc_token_exchange(_idc, code); zeroidc::zeroidc_set_nonce_and_csrf(_idc, _config.ssoState, _config.ssoNonce); char* url = zeroidc::zeroidc_get_auth_url(_idc); memcpy(_config.authenticationURL, url, strlen(url)); _config.authenticationURL[strlen(url)] = 0; zeroidc::free_cstr(url); #endif return ret; } uint64_t getExpiryTime() { #if ZT_SSO_ENABLED if (_idc == nullptr) { fprintf(stderr, "idc is null\n"); return 0; } return zeroidc::zeroidc_get_exp_time(_idc); #else return 0; #endif } private: unsigned int _webPort; std::shared_ptr _tap; ZT_VirtualNetworkConfig _config; // memcpy() of raw config from core std::vector _managedIps; std::map > _managedRoutes; OneService::NetworkSettings _settings; #if ZT_SSO_ENABLED zeroidc::ZeroIDC* _idc; #endif }; namespace { static const InetAddress NULL_INET_ADDR; // Fake TLS hello for TCP tunnel outgoing connections (TUNNELED mode) static const char ZT_TCP_TUNNEL_HELLO[9] = { 0x17, 0x03, 0x03, 0x00, 0x04, (char)ZEROTIER_ONE_VERSION_MAJOR, (char)ZEROTIER_ONE_VERSION_MINOR, (char)((ZEROTIER_ONE_VERSION_REVISION >> 8) & 0xff), (char)(ZEROTIER_ONE_VERSION_REVISION & 0xff) }; static std::string _trimString(const std::string& s) { unsigned long end = (unsigned long)s.length(); while (end) { char c = s[end - 1]; if ((c == ' ') || (c == '\r') || (c == '\n') || (! c) || (c == '\t')) --end; else break; } unsigned long start = 0; while (start < end) { char c = s[start]; if ((c == ' ') || (c == '\r') || (c == '\n') || (! c) || (c == '\t')) ++start; else break; } return s.substr(start, end - start); } static void _networkToJson(nlohmann::json& nj, NetworkState& ns) { char tmp[256]; const char *nstatus = "", *ntype = ""; switch (ns.config().status) { case ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION: nstatus = "REQUESTING_CONFIGURATION"; break; case ZT_NETWORK_STATUS_OK: nstatus = "OK"; break; case ZT_NETWORK_STATUS_ACCESS_DENIED: nstatus = "ACCESS_DENIED"; break; case ZT_NETWORK_STATUS_NOT_FOUND: nstatus = "NOT_FOUND"; break; case ZT_NETWORK_STATUS_PORT_ERROR: nstatus = "PORT_ERROR"; break; case ZT_NETWORK_STATUS_CLIENT_TOO_OLD: nstatus = "CLIENT_TOO_OLD"; break; case ZT_NETWORK_STATUS_AUTHENTICATION_REQUIRED: nstatus = "AUTHENTICATION_REQUIRED"; break; } switch (ns.config().type) { case ZT_NETWORK_TYPE_PRIVATE: ntype = "PRIVATE"; break; case ZT_NETWORK_TYPE_PUBLIC: ntype = "PUBLIC"; break; } OSUtils::ztsnprintf(tmp, sizeof(tmp), "%.16llx", ns.config().nwid); nj["id"] = tmp; nj["nwid"] = tmp; OSUtils::ztsnprintf( tmp, sizeof(tmp), "%.2x:%.2x:%.2x:%.2x:%.2x:%.2x", (unsigned int)((ns.config().mac >> 40) & 0xff), (unsigned int)((ns.config().mac >> 32) & 0xff), (unsigned int)((ns.config().mac >> 24) & 0xff), (unsigned int)((ns.config().mac >> 16) & 0xff), (unsigned int)((ns.config().mac >> 8) & 0xff), (unsigned int)(ns.config().mac & 0xff)); nj["mac"] = tmp; nj["name"] = ns.config().name; nj["status"] = nstatus; nj["type"] = ntype; nj["mtu"] = ns.config().mtu; nj["dhcp"] = (bool)(ns.config().dhcp != 0); nj["bridge"] = (bool)(ns.config().bridge != 0); nj["broadcastEnabled"] = (bool)(ns.config().broadcastEnabled != 0); nj["portError"] = ns.config().portError; nj["netconfRevision"] = ns.config().netconfRevision; nj["portDeviceName"] = ns.tap()->deviceName(); OneService::NetworkSettings localSettings = ns.settings(); nj["allowManaged"] = localSettings.allowManaged; nj["allowGlobal"] = localSettings.allowGlobal; nj["allowDefault"] = localSettings.allowDefault; nj["allowDNS"] = localSettings.allowDNS; nlohmann::json aa = nlohmann::json::array(); for (unsigned int i = 0; i < ns.config().assignedAddressCount; ++i) { aa.push_back(reinterpret_cast(&(ns.config().assignedAddresses[i]))->toString(tmp)); } nj["assignedAddresses"] = aa; nlohmann::json ra = nlohmann::json::array(); for (unsigned int i = 0; i < ns.config().routeCount; ++i) { nlohmann::json rj; rj["target"] = reinterpret_cast(&(ns.config().routes[i].target))->toString(tmp); if (ns.config().routes[i].via.ss_family == ns.config().routes[i].target.ss_family) rj["via"] = reinterpret_cast(&(ns.config().routes[i].via))->toIpString(tmp); else rj["via"] = nlohmann::json(); rj["flags"] = (int)ns.config().routes[i].flags; rj["metric"] = (int)ns.config().routes[i].metric; ra.push_back(rj); } nj["routes"] = ra; nlohmann::json mca = nlohmann::json::array(); for (unsigned int i = 0; i < ns.config().multicastSubscriptionCount; ++i) { nlohmann::json m; m["mac"] = MAC(ns.config().multicastSubscriptions[i].mac).toString(tmp); m["adi"] = ns.config().multicastSubscriptions[i].adi; mca.push_back(m); } nj["multicastSubscriptions"] = mca; nlohmann::json m; m["domain"] = ns.config().dns.domain; m["servers"] = nlohmann::json::array(); for (int j = 0; j < ZT_MAX_DNS_SERVERS; ++j) { InetAddress a(ns.config().dns.server_addr[j]); if (a.isV4() || a.isV6()) { char buf[256]; m["servers"].push_back(a.toIpString(buf)); } } nj["dns"] = m; if (ns.config().ssoEnabled) { const char* authURL = ns.config().authenticationURL; // fprintf(stderr, "Auth URL: %s\n", authURL); nj["authenticationURL"] = authURL; nj["authenticationExpiryTime"] = (ns.getExpiryTime() * 1000); nj["ssoEnabled"] = ns.config().ssoEnabled; } } static void _peerToJson(nlohmann::json& pj, const ZT_Peer* peer, SharedPtr& bond, bool isTunneled) { char tmp[256]; const char* prole = ""; switch (peer->role) { case ZT_PEER_ROLE_LEAF: prole = "LEAF"; break; case ZT_PEER_ROLE_MOON: prole = "MOON"; break; case ZT_PEER_ROLE_PLANET: prole = "PLANET"; break; } OSUtils::ztsnprintf(tmp, sizeof(tmp), "%.10llx", peer->address); pj["address"] = tmp; pj["versionMajor"] = peer->versionMajor; pj["versionMinor"] = peer->versionMinor; pj["versionRev"] = peer->versionRev; OSUtils::ztsnprintf(tmp, sizeof(tmp), "%d.%d.%d", peer->versionMajor, peer->versionMinor, peer->versionRev); pj["version"] = tmp; pj["latency"] = peer->latency; pj["role"] = prole; pj["isBonded"] = peer->isBonded; pj["tunneled"] = isTunneled; if (bond && peer->isBonded) { pj["bondingPolicyCode"] = peer->bondingPolicy; pj["bondingPolicyStr"] = Bond::getPolicyStrByCode(peer->bondingPolicy); pj["numAliveLinks"] = peer->numAliveLinks; pj["numTotalLinks"] = peer->numTotalLinks; pj["failoverInterval"] = bond->getFailoverInterval(); pj["downDelay"] = bond->getDownDelay(); pj["upDelay"] = bond->getUpDelay(); pj["packetsPerLink"] = bond->getPacketsPerLink(); } nlohmann::json pa = nlohmann::json::array(); for (unsigned int i = 0; i < peer->pathCount; ++i) { int64_t lastSend = peer->paths[i].lastSend; int64_t lastReceive = peer->paths[i].lastReceive; nlohmann::json j; j["address"] = reinterpret_cast(&(peer->paths[i].address))->toString(tmp); j["lastSend"] = (lastSend < 0) ? 0 : lastSend; j["lastReceive"] = (lastReceive < 0) ? 0 : lastReceive; j["trustedPathId"] = peer->paths[i].trustedPathId; j["active"] = (bool)(peer->paths[i].expired == 0); j["expired"] = (bool)(peer->paths[i].expired != 0); j["preferred"] = (bool)(peer->paths[i].preferred != 0); j["localSocket"] = peer->paths[i].localSocket; j["localPort"] = peer->paths[i].localPort; if (bond && peer->isBonded) { uint64_t now = OSUtils::now(); j["ifname"] = std::string(peer->paths[i].ifname); j["latencyMean"] = peer->paths[i].latencyMean; j["latencyVariance"] = peer->paths[i].latencyVariance; j["packetLossRatio"] = peer->paths[i].packetLossRatio; j["packetErrorRatio"] = peer->paths[i].packetErrorRatio; j["assignedFlowCount"] = peer->paths[i].assignedFlowCount; j["lastInAge"] = (now - lastReceive); j["lastOutAge"] = (now - lastSend); j["bonded"] = peer->paths[i].bonded; j["eligible"] = peer->paths[i].eligible; j["givenLinkSpeed"] = peer->paths[i].linkSpeed; j["relativeQuality"] = peer->paths[i].relativeQuality; } pa.push_back(j); } pj["paths"] = pa; } static void _moonToJson(nlohmann::json& mj, const World& world) { char tmp[4096]; OSUtils::ztsnprintf(tmp, sizeof(tmp), "%.16llx", world.id()); mj["id"] = tmp; mj["timestamp"] = world.timestamp(); mj["signature"] = Utils::hex(world.signature().data, ZT_ECC_SIGNATURE_LEN, tmp); mj["updatesMustBeSignedBy"] = Utils::hex(world.updatesMustBeSignedBy().data, ZT_ECC_PUBLIC_KEY_SET_LEN, tmp); nlohmann::json ra = nlohmann::json::array(); for (std::vector::const_iterator r(world.roots().begin()); r != world.roots().end(); ++r) { nlohmann::json rj; rj["identity"] = r->identity.toString(false, tmp); nlohmann::json eps = nlohmann::json::array(); for (std::vector::const_iterator a(r->stableEndpoints.begin()); a != r->stableEndpoints.end(); ++a) eps.push_back(a->toString(tmp)); rj["stableEndpoints"] = eps; ra.push_back(rj); } mj["roots"] = ra; mj["waiting"] = false; } class OneServiceImpl; static int SnodeVirtualNetworkConfigFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t nwid, void** nuptr, enum ZT_VirtualNetworkConfigOperation op, const ZT_VirtualNetworkConfig* nwconf); static void SnodeEventCallback(ZT_Node* node, void* uptr, void* tptr, enum ZT_Event event, const void* metaData); static void SnodeStatePutFunction(ZT_Node* node, void* uptr, void* tptr, enum ZT_StateObjectType type, const uint64_t id[2], const void* data, int len); static int SnodeStateGetFunction(ZT_Node* node, void* uptr, void* tptr, enum ZT_StateObjectType type, const uint64_t id[2], void* data, unsigned int maxlen); static int SnodeWirePacketSendFunction(ZT_Node* node, void* uptr, void* tptr, int64_t localSocket, const struct sockaddr_storage* addr, const void* data, unsigned int len, unsigned int ttl); static void SnodeVirtualNetworkFrameFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t nwid, void** nuptr, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len); static int SnodePathCheckFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t ztaddr, int64_t localSocket, const struct sockaddr_storage* remoteAddr); static int SnodePathLookupFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t ztaddr, int family, struct sockaddr_storage* result); static void StapFrameHandler(void* uptr, void* tptr, uint64_t nwid, const MAC& from, const MAC& to, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len); static int ShttpOnMessageBegin(http_parser* parser); static int ShttpOnUrl(http_parser* parser, const char* ptr, size_t length); #if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 2) static int ShttpOnStatus(http_parser* parser, const char* ptr, size_t length); #else static int ShttpOnStatus(http_parser* parser); #endif static int ShttpOnHeaderField(http_parser* parser, const char* ptr, size_t length); static int ShttpOnValue(http_parser* parser, const char* ptr, size_t length); static int ShttpOnHeadersComplete(http_parser* parser); static int ShttpOnBody(http_parser* parser, const char* ptr, size_t length); static int ShttpOnMessageComplete(http_parser* parser); #if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 1) static const struct http_parser_settings HTTP_PARSER_SETTINGS = { ShttpOnMessageBegin, ShttpOnUrl, ShttpOnStatus, ShttpOnHeaderField, ShttpOnValue, ShttpOnHeadersComplete, ShttpOnBody, ShttpOnMessageComplete }; #else static const struct http_parser_settings HTTP_PARSER_SETTINGS = { ShttpOnMessageBegin, ShttpOnUrl, ShttpOnHeaderField, ShttpOnValue, ShttpOnHeadersComplete, ShttpOnBody, ShttpOnMessageComplete }; #endif /** * A TCP connection and related state and buffers */ struct TcpConnection { enum { TCP_UNCATEGORIZED_INCOMING, // uncategorized incoming connection TCP_HTTP_INCOMING, TCP_HTTP_OUTGOING, TCP_TUNNEL_OUTGOING // TUNNELED mode proxy outbound connection } type; OneServiceImpl* parent; PhySocket* sock; InetAddress remoteAddr; uint64_t lastReceive; // Used for inbound HTTP connections http_parser parser; unsigned long messageSize; std::string currentHeaderField; std::string currentHeaderValue; std::string url; std::string status; std::map headers; std::string readq; std::string writeq; Mutex writeq_m; }; struct PacketRecord { uint64_t now; int64_t sock; struct sockaddr_storage from; unsigned int size; uint8_t data[ZT_MAX_MTU]; }; class OneServiceImpl : public OneService { public: // begin member variables -------------------------------------------------- const std::string _homePath; std::string _authToken; std::string _metricsToken; std::string _controllerDbPath; const std::string _networksPath; const std::string _moonsPath; EmbeddedNetworkController* _controller; Phy _phy; Node* _node; SoftwareUpdater* _updater; bool _updateAutoApply; httplib::Server _controlPlane; httplib::Server _controlPlaneV6; std::thread _serverThread; std::thread _serverThreadV6; bool _serverThreadRunning; bool _serverThreadRunningV6; BlockingQueue _rxPacketQueue; std::vector _rxPacketVector; std::vector _rxPacketThreads; Mutex _rxPacketVector_m, _rxPacketThreads_m; bool _multicoreEnabled; bool _cpuPinningEnabled; unsigned int _concurrency; bool _allowTcpFallbackRelay; bool _forceTcpRelay; bool _allowSecondaryPort; bool _enableWebServer; unsigned int _primaryPort; unsigned int _secondaryPort; unsigned int _tertiaryPort; volatile unsigned int _udpPortPickerCounter; // Local configuration and memo-ized information from it json _localConfig; Hashtable > _v4Hints; Hashtable > _v6Hints; Hashtable > _v4Blacklists; Hashtable > _v6Blacklists; std::vector _globalV4Blacklist; std::vector _globalV6Blacklist; std::vector _allowManagementFrom; std::vector _interfacePrefixBlacklist; Mutex _localConfig_m; std::vector explicitBind; /* * To attempt to handle NAT/gateway craziness we use three local UDP ports: * * [0] is the normal/default port, usually 9993 * [1] is a port derived from our ZeroTier address * [2] is a port computed from the normal/default for use with uPnP/NAT-PMP mappings * * [2] exists because on some gateways trying to do regular NAT-t interferes * destructively with uPnP port mapping behavior in very weird buggy ways. * It's only used if uPnP/NAT-PMP is enabled in this build. */ unsigned int _ports[3]; Binder _binder; // Time we last received a packet from a global address uint64_t _lastDirectReceiveFromGlobal; #ifdef ZT_TCP_FALLBACK_RELAY InetAddress _fallbackRelayAddress; uint64_t _lastSendToGlobalV4; #endif // Last potential sleep/wake event uint64_t _lastRestart; // Deadline for the next background task service function volatile int64_t _nextBackgroundTaskDeadline; std::map _nets; Mutex _nets_m; // Active TCP/IP connections std::vector _tcpConnections; Mutex _tcpConnections_m; TcpConnection* _tcpFallbackTunnel; // Termination status information ReasonForTermination _termReason; std::string _fatalErrorMessage; Mutex _termReason_m; // uPnP/NAT-PMP port mapper if enabled bool _portMappingEnabled; // local.conf settings #ifdef ZT_USE_MINIUPNPC PortMapper* _portMapper; #endif // HashiCorp Vault Settings #if ZT_VAULT_SUPPORT bool _vaultEnabled; std::string _vaultURL; std::string _vaultToken; std::string _vaultPath; // defaults to cubbyhole/zerotier/identity.secret for per-access key storage #endif // Set to false to force service to stop volatile bool _run; Mutex _run_m; RedisConfig* _rc; std::string _ssoRedirectURL; // end member variables ---------------------------------------------------- OneServiceImpl(const char* hp, unsigned int port) : _homePath((hp) ? hp : ".") , _controllerDbPath(_homePath + ZT_PATH_SEPARATOR_S "controller.d") , _networksPath(_homePath + ZT_PATH_SEPARATOR_S "networks.d") , _moonsPath(_homePath + ZT_PATH_SEPARATOR_S "moons.d") , _controller((EmbeddedNetworkController*)0) , _phy(this, false, true) , _node((Node*)0) , _updater((SoftwareUpdater*)0) , _updateAutoApply(false) , _controlPlane() , _controlPlaneV6() , _serverThread() , _serverThreadV6() , _serverThreadRunning(false) , _serverThreadRunningV6(false) , _forceTcpRelay(false) , _primaryPort(port) , _udpPortPickerCounter(0) , _lastDirectReceiveFromGlobal(0) #ifdef ZT_TCP_FALLBACK_RELAY , _fallbackRelayAddress(ZT_TCP_FALLBACK_RELAY) , _lastSendToGlobalV4(0) #endif , _lastRestart(0) , _nextBackgroundTaskDeadline(0) , _tcpFallbackTunnel((TcpConnection*)0) , _termReason(ONE_STILL_RUNNING) , _portMappingEnabled(true) #ifdef ZT_USE_MINIUPNPC , _portMapper((PortMapper*)0) #endif #ifdef ZT_VAULT_SUPPORT , _vaultEnabled(false) , _vaultURL() , _vaultToken() , _vaultPath("cubbyhole/zerotier") #endif , _run(true) , _rc(NULL) , _ssoRedirectURL() { _ports[0] = 0; _ports[1] = 0; _ports[2] = 0; prometheus::simpleapi::saver.set_registry(prometheus::simpleapi::registry_ptr); prometheus::simpleapi::saver.set_delay(std::chrono::seconds(5)); prometheus::simpleapi::saver.set_out_file(_homePath + ZT_PATH_SEPARATOR + "metrics.prom"); #if ZT_VAULT_SUPPORT curl_global_init(CURL_GLOBAL_DEFAULT); #endif } virtual ~OneServiceImpl() { #ifdef __WINDOWS__ WinFWHelper::removeICMPRules(); #endif _rxPacketQueue.stop(); _rxPacketThreads_m.lock(); for (auto t = _rxPacketThreads.begin(); t != _rxPacketThreads.end(); ++t) { t->join(); } _rxPacketThreads_m.unlock(); _binder.closeAll(_phy); #if ZT_VAULT_SUPPORT curl_global_cleanup(); #endif _controlPlane.stop(); if (_serverThreadRunning) { _serverThread.join(); } _controlPlaneV6.stop(); if (_serverThreadRunningV6) { _serverThreadV6.join(); } _rxPacketVector_m.lock(); while (! _rxPacketVector.empty()) { delete _rxPacketVector.back(); _rxPacketVector.pop_back(); } _rxPacketVector_m.unlock(); #ifdef ZT_USE_MINIUPNPC delete _portMapper; #endif delete _controller; delete _rc; } void setUpMultithreading() { #if defined(__APPLE__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__WINDOWS__) return; #endif _node->initMultithreading(_concurrency, _cpuPinningEnabled); bool pinning = _cpuPinningEnabled; } virtual ReasonForTermination run() { try { { const std::string authTokenPath(_homePath + ZT_PATH_SEPARATOR_S "authtoken.secret"); if (! OSUtils::readFile(authTokenPath.c_str(), _authToken)) { unsigned char foo[24]; Utils::getSecureRandom(foo, sizeof(foo)); _authToken = ""; for (unsigned int i = 0; i < sizeof(foo); ++i) _authToken.push_back("abcdefghijklmnopqrstuvwxyz0123456789"[(unsigned long)foo[i] % 36]); if (! OSUtils::writeFile(authTokenPath.c_str(), _authToken)) { Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = "authtoken.secret could not be written (try running with -U to prevent dropping of privileges)"; return _termReason; } else { OSUtils::lockDownFile(authTokenPath.c_str(), false); } } _authToken = _trimString(_authToken); } { const std::string metricsTokenPath(_homePath + ZT_PATH_SEPARATOR_S "metricstoken.secret"); if (! OSUtils::readFile(metricsTokenPath.c_str(), _metricsToken)) { unsigned char foo[24]; Utils::getSecureRandom(foo, sizeof(foo)); _metricsToken = ""; for (unsigned int i = 0; i < sizeof(foo); ++i) _metricsToken.push_back("abcdefghijklmnopqrstuvwxyz0123456789"[(unsigned long)foo[i] % 36]); if (! OSUtils::writeFile(metricsTokenPath.c_str(), _metricsToken)) { Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = "metricstoken.secret could not be written (try running with -U to prevent dropping of privileges)"; return _termReason; } else { OSUtils::lockDownFile(metricsTokenPath.c_str(), false); } } _metricsToken = _trimString(_metricsToken); } { struct ZT_Node_Callbacks cb; cb.version = 0; cb.stateGetFunction = SnodeStateGetFunction; cb.statePutFunction = SnodeStatePutFunction; cb.wirePacketSendFunction = SnodeWirePacketSendFunction; cb.virtualNetworkFrameFunction = SnodeVirtualNetworkFrameFunction; cb.virtualNetworkConfigFunction = SnodeVirtualNetworkConfigFunction; cb.eventCallback = SnodeEventCallback; cb.pathCheckFunction = SnodePathCheckFunction; cb.pathLookupFunction = SnodePathLookupFunction; _node = new Node(this, (void*)0, &cb, OSUtils::now()); } // local.conf readLocalSettings(); applyLocalConfig(); // Save original port number to show it if bind error const int _configuredPort = _primaryPort; // Make sure we can use the primary port, and hunt for one if configured to do so const int portTrials = (_primaryPort == 0) ? 256 : 1; // if port is 0, pick random for (int k = 0; k < portTrials; ++k) { if (_primaryPort == 0) { unsigned int randp = 0; Utils::getSecureRandom(&randp, sizeof(randp)); _primaryPort = 20000 + (randp % 45500); } if (_trialBind(_primaryPort)) { _ports[0] = _primaryPort; } else { _primaryPort = 0; } } if (_ports[0] == 0) { Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = std::string("cannot bind to local control interface port ") + std::to_string(_configuredPort); return _termReason; } // Save primary port to a file so CLIs and GUIs can learn it easily char portstr[64]; OSUtils::ztsnprintf(portstr, sizeof(portstr), "%u", _ports[0]); OSUtils::writeFile((_homePath + ZT_PATH_SEPARATOR_S "zerotier-one.port").c_str(), std::string(portstr)); // Attempt to bind to a secondary port. // This exists because there are buggy NATs out there that fail if more // than one device behind the same NAT tries to use the same internal // private address port number. Buggy NATs are a running theme. // // This used to pick the secondary port based on the node ID until we // discovered another problem: buggy routers and malicious traffic // "detection". A lot of routers have such things built in these days // and mis-detect ZeroTier traffic as malicious and block it resulting // in a node that appears to be in a coma. Secondary ports are now // randomized on startup. if (_allowSecondaryPort) { if (_secondaryPort) { _ports[1] = _secondaryPort; } else { _ports[1] = _getRandomPort(); } } #ifdef ZT_USE_MINIUPNPC if (_portMappingEnabled) { // If we're running uPnP/NAT-PMP, bind a *third* port for that. We can't // use the other two ports for that because some NATs do really funky // stuff with ports that are explicitly mapped that breaks things. if (_tertiaryPort) { _ports[2] = _tertiaryPort; } else { _ports[2] = _tertiaryPort = _getRandomPort(); } if (_ports[2]) { char uniqueName[64]; OSUtils::ztsnprintf(uniqueName, sizeof(uniqueName), "ZeroTier/%.10llx@%u", _node->address(), _ports[2]); _portMapper = new PortMapper(_ports[2], uniqueName); } } #endif // Delete legacy iddb.d if present (cleanup) OSUtils::rmDashRf((_homePath + ZT_PATH_SEPARATOR_S "iddb.d").c_str()); // Network controller is now enabled by default for desktop and server _controller = new EmbeddedNetworkController(_node, _homePath.c_str(), _controllerDbPath.c_str(), _ports[0], _rc); if (! _ssoRedirectURL.empty()) { _controller->setSSORedirectURL(_ssoRedirectURL); } _node->setNetconfMaster((void*)_controller); startHTTPControlPlane(); // Join existing networks in networks.d { std::vector networksDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "networks.d").c_str())); for (std::vector::iterator f(networksDotD.begin()); f != networksDotD.end(); ++f) { std::size_t dot = f->find_last_of('.'); if ((dot == 16) && (f->substr(16) == ".conf")) _node->join(Utils::hexStrToU64(f->substr(0, dot).c_str()), (void*)0, (void*)0); } } // Orbit existing moons in moons.d { std::vector moonsDotD(OSUtils::listDirectory((_homePath + ZT_PATH_SEPARATOR_S "moons.d").c_str())); for (std::vector::iterator f(moonsDotD.begin()); f != moonsDotD.end(); ++f) { std::size_t dot = f->find_last_of('.'); if ((dot == 16) && (f->substr(16) == ".moon")) _node->orbit((void*)0, Utils::hexStrToU64(f->substr(0, dot).c_str()), 0); } } // Main I/O loop _nextBackgroundTaskDeadline = 0; int64_t clockShouldBe = OSUtils::now(); _lastRestart = clockShouldBe; int64_t lastTapMulticastGroupCheck = 0; int64_t lastBindRefresh = 0; int64_t lastUpdateCheck = clockShouldBe; int64_t lastCleanedPeersDb = 0; int64_t lastLocalConfFileCheck = OSUtils::now(); int64_t lastOnline = lastLocalConfFileCheck; for (;;) { _run_m.lock(); if (! _run) { _run_m.unlock(); _termReason_m.lock(); _termReason = ONE_NORMAL_TERMINATION; _termReason_m.unlock(); break; } else { _run_m.unlock(); } const int64_t now = OSUtils::now(); // Attempt to detect sleep/wake events by detecting delay overruns bool restarted = false; if ((now > clockShouldBe) && ((now - clockShouldBe) > 10000)) { _lastRestart = now; restarted = true; } // Check for updates (if enabled) if ((_updater) && ((now - lastUpdateCheck) > 10000)) { lastUpdateCheck = now; if (_updater->check(now) && _updateAutoApply) _updater->apply(); } // Reload local.conf if anything changed recently if ((now - lastLocalConfFileCheck) >= ZT_LOCAL_CONF_FILE_CHECK_INTERVAL) { lastLocalConfFileCheck = now; struct stat result; if (stat((_homePath + ZT_PATH_SEPARATOR_S "local.conf").c_str(), &result) == 0) { int64_t mod_time = result.st_mtime * 1000; if ((now - mod_time) <= ZT_LOCAL_CONF_FILE_CHECK_INTERVAL) { readLocalSettings(); applyLocalConfig(); } } } // Refresh bindings in case device's interfaces have changed, and also sync routes to update any shadow routes (e.g. shadow default) if (((now - lastBindRefresh) >= (_node->bondController()->inUse() ? ZT_BINDER_REFRESH_PERIOD / 4 : ZT_BINDER_REFRESH_PERIOD)) || restarted) { // If secondary port is not configured to a constant value and we've been offline for a while, // bind a new secondary port. This is a workaround for a "coma" issue caused by buggy NATs that stop // working on one port after a while. if (_secondaryPort == 0) { if (_node->online()) { lastOnline = now; } else if (now - lastOnline > (ZT_PEER_PING_PERIOD * 2) || restarted) { lastOnline = now; // don't keep changing the port before we have a chance to connect _ports[1] = _getRandomPort(); #if ZT_DEBUG == 1 fprintf(stderr, "Randomized secondary port. Now it's %d\n", _ports[1]); #endif } } unsigned int p[3]; unsigned int pc = 0; for (int i = 0; i < 3; ++i) { if (_ports[i]) p[pc++] = _ports[i]; } if (! _forceTcpRelay) { // Only bother binding UDP ports if we aren't forcing TCP-relay mode _binder.refresh(_phy, p, pc, explicitBind, *this); } lastBindRefresh = now; // Sync information about physical network interfaces _node->clearLocalInterfaceAddresses(); #ifdef ZT_USE_MINIUPNPC if (_portMapper) { std::vector mappedAddresses(_portMapper->get()); for (std::vector::const_iterator ext(mappedAddresses.begin()); ext != mappedAddresses.end(); ++ext) _node->addLocalInterfaceAddress(reinterpret_cast(&(*ext))); } #endif std::vector boundAddrs(_binder.allBoundLocalInterfaceAddresses()); for (std::vector::const_iterator i(boundAddrs.begin()); i != boundAddrs.end(); ++i) { _node->addLocalInterfaceAddress(reinterpret_cast(&(*i))); } { Mutex::Lock _l(_nets_m); for (std::map::iterator n(_nets.begin()); n != _nets.end(); ++n) { if (n->second.tap()) syncManagedStuff(n->second, false, true, false); } } } // Run background task processor in core if it's time to do so int64_t dl = _nextBackgroundTaskDeadline; if (dl <= now) { _node->processBackgroundTasks((void*)0, now, &_nextBackgroundTaskDeadline); dl = _nextBackgroundTaskDeadline; } // Close TCP fallback tunnel if we have direct UDP if (! _forceTcpRelay && (_tcpFallbackTunnel) && ((now - _lastDirectReceiveFromGlobal) < (ZT_TCP_FALLBACK_AFTER / 2))) { _phy.close(_tcpFallbackTunnel->sock); } // Sync multicast group memberships if ((now - lastTapMulticastGroupCheck) >= ZT_TAP_CHECK_MULTICAST_INTERVAL) { lastTapMulticastGroupCheck = now; std::vector, std::vector > > > mgChanges; { Mutex::Lock _l(_nets_m); mgChanges.reserve(_nets.size() + 1); for (std::map::const_iterator n(_nets.begin()); n != _nets.end(); ++n) { if (n->second.tap()) { mgChanges.push_back(std::pair, std::vector > >(n->first, std::pair, std::vector >())); n->second.tap()->scanMulticastGroups(mgChanges.back().second.first, mgChanges.back().second.second); } } } for (std::vector, std::vector > > >::iterator c(mgChanges.begin()); c != mgChanges.end(); ++c) { for (std::vector::iterator m(c->second.first.begin()); m != c->second.first.end(); ++m) _node->multicastSubscribe((void*)0, c->first, m->mac().toInt(), m->adi()); for (std::vector::iterator m(c->second.second.begin()); m != c->second.second.end(); ++m) _node->multicastUnsubscribe(c->first, m->mac().toInt(), m->adi()); } } // Clean peers.d periodically if ((now - lastCleanedPeersDb) >= 3600000) { lastCleanedPeersDb = now; OSUtils::cleanDirectory((_homePath + ZT_PATH_SEPARATOR_S "peers.d").c_str(), now - 2592000000LL); // delete older than 30 days } const unsigned long delay = (dl > now) ? (unsigned long)(dl - now) : 500; clockShouldBe = now + (int64_t)delay; _phy.poll(delay); } } catch (std::exception& e) { Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = std::string("unexpected exception in main thread: ") + e.what(); } catch (int e) { Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; switch (e) { case ZT_EXCEPTION_OUT_OF_BOUNDS: { _fatalErrorMessage = "out of bounds exception"; break; } case ZT_EXCEPTION_OUT_OF_MEMORY: { _fatalErrorMessage = "out of memory"; break; } case ZT_EXCEPTION_PRIVATE_KEY_REQUIRED: { _fatalErrorMessage = "private key required"; break; } case ZT_EXCEPTION_INVALID_ARGUMENT: { _fatalErrorMessage = "invalid argument"; break; } case ZT_EXCEPTION_INVALID_IDENTITY: { _fatalErrorMessage = "invalid identity loaded from disk. Please remove identity.public and identity.secret from " + _homePath + " and try again"; break; } case ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE: { _fatalErrorMessage = "invalid serialized data: invalid type"; break; } case ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW: { _fatalErrorMessage = "invalid serialized data: overflow"; break; } case ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN: { _fatalErrorMessage = "invalid serialized data: invalid cryptographic token"; break; } case ZT_EXCEPTION_INVALID_SERIALIZED_DATA_BAD_ENCODING: { _fatalErrorMessage = "invalid serialized data: bad encoding"; break; } default: { _fatalErrorMessage = "unexpected exception code: " + std::to_string(e); break; } } } catch (...) { Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = "unexpected exception in main thread: unknown exception"; } try { Mutex::Lock _l(_tcpConnections_m); while (! _tcpConnections.empty()) _phy.close((*_tcpConnections.begin())->sock); } catch (...) { } { Mutex::Lock _l(_nets_m); _nets.clear(); } delete _updater; _updater = (SoftwareUpdater*)0; delete _node; _node = (Node*)0; return _termReason; } void readLocalSettings() { // Read local configuration std::map ppc; // LEGACY: support old "trustedpaths" flat file FILE* trustpaths = fopen((_homePath + ZT_PATH_SEPARATOR_S "trustedpaths").c_str(), "r"); if (trustpaths) { fprintf(stderr, "WARNING: 'trustedpaths' flat file format is deprecated in favor of path definitions in local.conf" ZT_EOL_S); char buf[1024]; while (fgets(buf, sizeof(buf), trustpaths)) { int fno = 0; char* saveptr = (char*)0; uint64_t trustedPathId = 0; InetAddress trustedPathNetwork; for (char* f = Utils::stok(buf, "=\r\n \t", &saveptr); (f); f = Utils::stok((char*)0, "=\r\n \t", &saveptr)) { if (fno == 0) { trustedPathId = Utils::hexStrToU64(f); } else if (fno == 1) { trustedPathNetwork = InetAddress(f); } else break; ++fno; } if ((trustedPathId != 0) && ((trustedPathNetwork.ss_family == AF_INET) || (trustedPathNetwork.ss_family == AF_INET6)) && (trustedPathNetwork.netmaskBits() > 0)) { ppc[trustedPathNetwork].trustedPathId = trustedPathId; ppc[trustedPathNetwork].mtu = 0; // use default } } fclose(trustpaths); } // Read local config file Mutex::Lock _l2(_localConfig_m); std::string lcbuf; if (OSUtils::readFile((_homePath + ZT_PATH_SEPARATOR_S "local.conf").c_str(), lcbuf)) { if (lcbuf.length() > 0) { try { _localConfig = OSUtils::jsonParse(lcbuf); if (! _localConfig.is_object()) { fprintf(stderr, "ERROR: unable to parse local.conf (root element is not a JSON object)" ZT_EOL_S); exit(1); } } catch (...) { fprintf(stderr, "ERROR: unable to parse local.conf (invalid JSON)" ZT_EOL_S); exit(1); } } } // Make a copy so lookups don't modify in place; json lc(_localConfig); // Get any trusted paths in local.conf (we'll parse the rest of physical[] elsewhere) json& physical = lc["physical"]; if (physical.is_object()) { for (json::iterator phy(physical.begin()); phy != physical.end(); ++phy) { InetAddress net(OSUtils::jsonString(phy.key(), "").c_str()); if (net) { if (phy.value().is_object()) { uint64_t tpid; if ((tpid = OSUtils::jsonInt(phy.value()["trustedPathId"], 0ULL)) != 0ULL) { if ((net.ss_family == AF_INET) || (net.ss_family == AF_INET6)) ppc[net].trustedPathId = tpid; } ppc[net].mtu = (int)OSUtils::jsonInt(phy.value()["mtu"], 0ULL); // 0 means use default } } } } json& settings = lc["settings"]; if (settings.is_object()) { // Allow controller DB path to be put somewhere else const std::string cdbp(OSUtils::jsonString(settings["controllerDbPath"], "")); if (cdbp.length() > 0) _controllerDbPath = cdbp; _ssoRedirectURL = OSUtils::jsonString(settings["ssoRedirectURL"], ""); #ifdef ZT_CONTROLLER_USE_LIBPQ // TODO: Redis config json& redis = settings["redis"]; if (redis.is_object() && _rc == NULL) { _rc = new RedisConfig; _rc->hostname = OSUtils::jsonString(redis["hostname"], ""); _rc->port = OSUtils::jsonInt(redis["port"], 0); _rc->password = OSUtils::jsonString(redis["password"], ""); _rc->clusterMode = OSUtils::jsonBool(redis["clusterMode"], false); } #endif // Bind to wildcard instead of to specific interfaces (disables full tunnel capability) json& bind = settings["bind"]; if (bind.is_array()) { for (unsigned long i = 0; i < bind.size(); ++i) { const std::string ips(OSUtils::jsonString(bind[i], "")); if (ips.length() > 0) { InetAddress ip(ips.c_str()); if ((ip.ss_family == AF_INET) || (ip.ss_family == AF_INET6)) explicitBind.push_back(ip); } } } } // Set trusted paths if there are any if (! ppc.empty()) { for (std::map::iterator i(ppc.begin()); i != ppc.end(); ++i) _node->setPhysicalPathConfiguration(reinterpret_cast(&(i->first)), &(i->second)); } } virtual ReasonForTermination reasonForTermination() const { Mutex::Lock _l(_termReason_m); return _termReason; } virtual std::string fatalErrorMessage() const { Mutex::Lock _l(_termReason_m); return _fatalErrorMessage; } virtual std::string portDeviceName(uint64_t nwid) const { Mutex::Lock _l(_nets_m); std::map::const_iterator n(_nets.find(nwid)); if ((n != _nets.end()) && (n->second.tap())) return n->second.tap()->deviceName(); else return std::string(); } #ifdef ZT_SDK virtual std::string givenHomePath() { return _homePath; } void getRoutes(uint64_t nwid, void* routeArray, unsigned int* numRoutes) { Mutex::Lock _l(_nets_m); NetworkState& n = _nets[nwid]; *numRoutes = *numRoutes < n.config().routeCount ? *numRoutes : n.config().routeCount; for (unsigned int i = 0; i < *numRoutes; i++) { ZT_VirtualNetworkRoute* vnr = (ZT_VirtualNetworkRoute*)routeArray; memcpy(&vnr[i], &(n.config().routes[i]), sizeof(ZT_VirtualNetworkRoute)); } } virtual Node* getNode() { return _node; } #endif // ZT_SDK virtual void terminate() { _run_m.lock(); _run = false; _run_m.unlock(); _phy.whack(); } virtual bool getNetworkSettings(const uint64_t nwid, NetworkSettings& settings) const { Mutex::Lock _l(_nets_m); std::map::const_iterator n(_nets.find(nwid)); if (n == _nets.end()) return false; settings = n->second.settings(); return true; } virtual bool setNetworkSettings(const uint64_t nwid, const NetworkSettings& settings) { char nlcpath[4096]; OSUtils::ztsnprintf(nlcpath, sizeof(nlcpath), "%s" ZT_PATH_SEPARATOR_S "%.16llx.local.conf", _networksPath.c_str(), nwid); FILE* out = fopen(nlcpath, "w"); if (out) { fprintf(out, "allowManaged=%d\n", (int)settings.allowManaged); fprintf(out, "allowGlobal=%d\n", (int)settings.allowGlobal); fprintf(out, "allowDefault=%d\n", (int)settings.allowDefault); fprintf(out, "allowDNS=%d\n", (int)settings.allowDNS); fclose(out); } return true; } // Internal HTTP Control Plane void startHTTPControlPlane() { // control plane endpoints std::string bondShowPath = "/bond/show/([0-9a-fA-F]{10})"; std::string bondRotatePath = "/bond/rotate/([0-9a-fA-F]{10})"; std::string setBondMtuPath = "/bond/setmtu/([0-9]{1,6})/([a-zA-Z0-9_]{1,16})/([0-9a-fA-F\\.\\:]{1,39})"; std::string configPath = "/config"; std::string configPostPath = "/config/settings"; std::string healthPath = "/health"; std::string moonListPath = "/moon"; std::string moonPath = "/moon/([0-9a-fA-F]{10})"; std::string networkListPath = "/network"; std::string networkPath = "/network/([0-9a-fA-F]{16})"; std::string peerListPath = "/peer"; std::string peerPath = "/peer/([0-9a-fA-F]{10})"; std::string statusPath = "/status"; std::string metricsPath = "/metrics"; std::vector noAuthEndpoints { "/sso", "/health" }; auto setContent = [=](const httplib::Request& req, httplib::Response& res, std::string content) { if (req.has_param("jsonp")) { if (content.length() > 0) { res.set_content(req.get_param_value("jsonp") + "(" + content + ");", "application/javascript"); } else { res.set_content(req.get_param_value("jsonp") + "(null);", "application/javascript"); } } else { if (content.length() > 0) { res.set_content(content, "application/json"); } else { res.set_content("{}", "application/json"); } } }; // // static file server for app ui' // if (_enableWebServer) { static std::string appUiPath = "/app"; static char appUiDir[16384]; sprintf(appUiDir, "%s%s", _homePath.c_str(), appUiPath.c_str()); auto ret = _controlPlane.set_mount_point(appUiPath, appUiDir); _controlPlaneV6.set_mount_point(appUiPath, appUiDir); if (! ret) { fprintf(stderr, "Mounting app directory failed. Creating it. Path: %s - Dir: %s\n", appUiPath.c_str(), appUiDir); if (! OSUtils::mkdir(appUiDir)) { fprintf(stderr, "Could not create app directory either. Path: %s - Dir: %s\n", appUiPath.c_str(), appUiDir); } else { ret = _controlPlane.set_mount_point(appUiPath, appUiDir); _controlPlaneV6.set_mount_point(appUiPath, appUiDir); if (! ret) { fprintf(stderr, "Really could not create and mount directory. Path: %s - Dir: %s\nWeb apps won't work.\n", appUiPath.c_str(), appUiDir); } } } if (ret) { // fallback to /index.html for paths that don't exist for SPAs auto indexFallbackGet = [](const httplib::Request& req, httplib::Response& res) { // fprintf(stderr, "fallback \n"); auto match = req.matches[1]; if (match.matched) { // fallback char indexHtmlPath[16384]; sprintf(indexHtmlPath, "%s/%s/%s", appUiDir, match.str().c_str(), "index.html"); // fprintf(stderr, "fallback path %s\n", indexHtmlPath); std::string indexHtml; if (! OSUtils::readFile(indexHtmlPath, indexHtml)) { res.status = 500; return; } res.set_content(indexHtml.c_str(), "text/html"); } else { res.status = 500; return; } }; auto slashRedirect = [](const httplib::Request& req, httplib::Response& res) { // fprintf(stderr, "redirect \n"); // add .html std::string htmlFile; char htmlPath[16384]; sprintf(htmlPath, "%s%s%s", appUiDir, (req.path).substr(appUiPath.length()).c_str(), ".html"); // fprintf(stderr, "path: %s\n", htmlPath); if (OSUtils::readFile(htmlPath, htmlFile)) { res.set_content(htmlFile.c_str(), "text/html"); return; } else { res.status = 301; res.set_header("location", req.path + "/"); } }; // auto missingAssetGet = [&, setContent](const httplib::Request &req, httplib::Response &res) { // fprintf(stderr, "missing \n"); // res.status = 404; // std::string html = "oops"; // res.set_content(html, "text/plain"); // res.set_header("Content-Type", "text/plain"); // return; // }; // auto fix no trailing slash by adding .html or redirecting to path/ _controlPlane.Get(appUiPath + R"((/[\w|-]+)+$)", slashRedirect); _controlPlaneV6.Get(appUiPath + R"((/[\w|-]+)+$)", slashRedirect); // // 404 missing assets for *.ext paths // s.Get(appUiPath + R"(/\.\w+$)", missingAssetGet); // sv6.Get(appUiPath + R"(/\.\w+$)", missingAssetGet); // fallback to index.html for unknown paths/files _controlPlane.Get(appUiPath + R"((/[\w|-]+)(/[\w|-]+)*/$)", indexFallbackGet); _controlPlaneV6.Get(appUiPath + R"((/[\w|-]+)(/[\w|-]+)*/$)", indexFallbackGet); } } auto authCheck = [=](const httplib::Request& req, httplib::Response& res) { if (req.path == "/metrics") { if (req.has_header("x-zt1-auth")) { std::string token = req.get_header_value("x-zt1-auth"); if (token == _metricsToken || token == _authToken) { return httplib::Server::HandlerResponse::Unhandled; } } else if (req.has_param("auth")) { std::string token = req.get_param_value("auth"); if (token == _metricsToken || token == _authToken) { return httplib::Server::HandlerResponse::Unhandled; } } else if (req.has_header("authorization")) { std::string auth = req.get_header_value("authorization"); if (bearerTokenValid(auth, _metricsToken) || bearerTokenValid(auth, _authToken)) { return httplib::Server::HandlerResponse::Unhandled; } } setContent(req, res, "{}"); res.status = 401; return httplib::Server::HandlerResponse::Handled; } else { std::string r = req.remote_addr; InetAddress remoteAddr(r.c_str()); bool ipAllowed = false; bool isAuth = false; // If localhost, allow if (remoteAddr.ipScope() == InetAddress::IP_SCOPE_LOOPBACK) { ipAllowed = true; } if (! ipAllowed) { for (auto i = _allowManagementFrom.begin(); i != _allowManagementFrom.end(); ++i) { if (i->containsAddress(remoteAddr)) { ipAllowed = true; break; } } } if (ipAllowed) { // auto-pass endpoints in `noAuthEndpoints`. No auth token required if (std::find(noAuthEndpoints.begin(), noAuthEndpoints.end(), req.path) != noAuthEndpoints.end()) { isAuth = true; } // Web Apps base path if (req.path.rfind("/app", 0) == 0) { // starts with /app isAuth = true; } if (! isAuth) { // check auth token if (req.has_header("x-zt1-auth")) { std::string token = req.get_header_value("x-zt1-auth"); if (token == _authToken) { isAuth = true; } } else if (req.has_param("auth")) { std::string token = req.get_param_value("auth"); if (token == _authToken) { isAuth = true; } } else if (req.has_header("authorization")) { std::string auth = req.get_header_value("authorization"); isAuth = bearerTokenValid(auth, _authToken); } } } if (ipAllowed && isAuth) { return httplib::Server::HandlerResponse::Unhandled; } setContent(req, res, "{}"); res.status = 401; return httplib::Server::HandlerResponse::Handled; } }; auto bondShow = [&, setContent](const httplib::Request& req, httplib::Response& res) { if (! _node->bondController()->inUse()) { setContent(req, res, ""); res.status = 400; return; } ZT_PeerList* pl = _node->peers(); if (pl) { bool foundBond = false; auto id = req.matches[1]; auto out = json::object(); uint64_t wantp = Utils::hexStrToU64(id.str().c_str()); for (unsigned long i = 0; i < pl->peerCount; ++i) { if (pl->peers[i].address == wantp) { SharedPtr bond = _node->bondController()->getBondByPeerId(wantp); if (bond) { _peerToJson(out, &(pl->peers[i]), bond, (_tcpFallbackTunnel != (TcpConnection*)0)); setContent(req, res, out.dump()); foundBond = true; } else { setContent(req, res, ""); res.status = 400; } break; } } if (! foundBond) { setContent(req, res, ""); res.status = 400; } } _node->freeQueryResult((void*)pl); }; _controlPlane.Get(bondShowPath, bondShow); _controlPlaneV6.Get(bondShowPath, bondShow); auto bondRotate = [&, setContent](const httplib::Request& req, httplib::Response& res) { if (! _node->bondController()->inUse()) { setContent(req, res, ""); res.status = 400; return; } auto bondID = req.matches[1]; uint64_t id = Utils::hexStrToU64(bondID.str().c_str()); SharedPtr bond = _node->bondController()->getBondByPeerId(id); if (bond) { if (bond->abForciblyRotateLink()) { res.status = 200; } else { res.status = 400; } } else { fprintf(stderr, "unable to find bond to peer %llx\n", (unsigned long long)id); res.status = 400; } setContent(req, res, "{}"); }; _controlPlane.Post(bondRotatePath, bondRotate); _controlPlane.Put(bondRotatePath, bondRotate); _controlPlaneV6.Post(bondRotatePath, bondRotate); _controlPlaneV6.Put(bondRotatePath, bondRotate); auto setMtu = [&, setContent](const httplib::Request& req, httplib::Response& res) { if (! _node->bondController()->inUse()) { setContent(req, res, "Bonding layer isn't active yet"); res.status = 400; return; } uint32_t mtu = atoi(req.matches[1].str().c_str()); if (mtu < 68 || mtu > 65535) { setContent(req, res, "Specified MTU is not reasonable"); res.status = 400; return; } res.status = _node->bondController()->setAllMtuByTuple(mtu, req.matches[2].str().c_str(), req.matches[3].str().c_str()) ? 200 : 400; if (res.status == 400) { setContent(req, res, "Unable to find specified link"); return; } setContent(req, res, "{}"); }; _controlPlane.Post(setBondMtuPath, setMtu); _controlPlane.Put(setBondMtuPath, setMtu); _controlPlaneV6.Post(setBondMtuPath, setMtu); _controlPlaneV6.Put(setBondMtuPath, setMtu); auto getConfig = [&, setContent](const httplib::Request& req, httplib::Response& res) { std::string config; { Mutex::Lock lc(_localConfig_m); config = _localConfig.dump(); } if (config == "null") { config = "{}"; } setContent(req, res, config); }; _controlPlane.Get(configPath, getConfig); _controlPlaneV6.Get(configPath, getConfig); auto configPost = [&, setContent](const httplib::Request& req, httplib::Response& res) { json j(OSUtils::jsonParse(req.body)); if (j.is_object()) { Mutex::Lock lcl(_localConfig_m); json lc(_localConfig); for (json::const_iterator s(j.begin()); s != j.end(); ++s) { lc["settings"][s.key()] = s.value(); } std::string lcStr = OSUtils::jsonDump(lc, 4); if (OSUtils::writeFile((_homePath + ZT_PATH_SEPARATOR_S "local.conf").c_str(), lcStr)) { _localConfig = lc; } } setContent(req, res, "{}"); }; _controlPlane.Post(configPostPath, configPost); _controlPlane.Put(configPostPath, configPost); _controlPlaneV6.Post(configPostPath, configPost); _controlPlaneV6.Put(configPostPath, configPost); auto healthGet = [&, setContent](const httplib::Request& req, httplib::Response& res) { json out = json::object(); char tmp[256]; ZT_NodeStatus status; _node->status(&status); out["online"] = (bool)(status.online != 0); out["versionMajor"] = ZEROTIER_ONE_VERSION_MAJOR; out["versionMinor"] = ZEROTIER_ONE_VERSION_MINOR; out["versionRev"] = ZEROTIER_ONE_VERSION_REVISION; out["versionBuild"] = ZEROTIER_ONE_VERSION_BUILD; OSUtils::ztsnprintf(tmp, sizeof(tmp), "%d.%d.%d", ZEROTIER_ONE_VERSION_MAJOR, ZEROTIER_ONE_VERSION_MINOR, ZEROTIER_ONE_VERSION_REVISION); out["version"] = tmp; out["clock"] = OSUtils::now(); setContent(req, res, out.dump()); }; _controlPlane.Get(healthPath, healthGet); _controlPlaneV6.Get(healthPath, healthGet); auto moonListGet = [&, setContent](const httplib::Request& req, httplib::Response& res) { std::vector moons(_node->moons()); auto out = json::array(); for (auto i = moons.begin(); i != moons.end(); ++i) { json mj; _moonToJson(mj, *i); out.push_back(mj); } setContent(req, res, out.dump()); }; _controlPlane.Get(moonListPath, moonListGet); _controlPlaneV6.Get(moonListPath, moonListGet); auto moonGet = [&, setContent](const httplib::Request& req, httplib::Response& res) { std::vector moons(_node->moons()); auto input = req.matches[1]; auto out = json::object(); const uint64_t id = Utils::hexStrToU64(input.str().c_str()); for (auto i = moons.begin(); i != moons.end(); ++i) { if (i->id() == id) { _moonToJson(out, *i); break; } } setContent(req, res, out.dump()); }; _controlPlane.Get(moonPath, moonGet); _controlPlaneV6.Get(moonPath, moonGet); auto moonPost = [&, setContent](const httplib::Request& req, httplib::Response& res) { auto input = req.matches[1]; uint64_t seed = 0; try { json j(OSUtils::jsonParse(req.body)); if (j.is_object()) { seed = Utils::hexStrToU64(OSUtils::jsonString(j["seed"], "0").c_str()); } } catch (...) { // discard invalid JSON } std::vector moons(_node->moons()); const uint64_t id = Utils::hexStrToU64(input.str().c_str()); bool found = false; auto out = json::object(); for (std::vector::const_iterator m(moons.begin()); m != moons.end(); ++m) { if (m->id() == id) { _moonToJson(out, *m); found = true; break; } } if (! found && seed != 0) { char tmp[64]; OSUtils::ztsnprintf(tmp, sizeof(tmp), "%.16llx", id); out["id"] = tmp; out["roots"] = json::array(); out["timestamp"] = 0; out["signature"] = json(); out["updatesMustBeSignedBy"] = json(); out["waiting"] = true; _node->orbit((void*)0, id, seed); } setContent(req, res, out.dump()); }; _controlPlane.Post(moonPath, moonPost); _controlPlane.Put(moonPath, moonPost); _controlPlaneV6.Post(moonPath, moonPost); _controlPlaneV6.Put(moonPath, moonPost); auto moonDelete = [&, setContent](const httplib::Request& req, httplib::Response& res) { auto input = req.matches[1]; uint64_t id = Utils::hexStrToU64(input.str().c_str()); auto out = json::object(); _node->deorbit((void*)0, id); out["result"] = true; setContent(req, res, out.dump()); }; _controlPlane.Delete(moonPath, moonDelete); auto networkListGet = [&, setContent](const httplib::Request& req, httplib::Response& res) { Mutex::Lock _l(_nets_m); auto out = json::array(); for (auto it = _nets.begin(); it != _nets.end(); ++it) { NetworkState& ns = it->second; json nj; _networkToJson(nj, ns); out.push_back(nj); } setContent(req, res, out.dump()); }; _controlPlane.Get(networkListPath, networkListGet); _controlPlaneV6.Get(networkListPath, networkListGet); auto networkGet = [&, setContent](const httplib::Request& req, httplib::Response& res) { Mutex::Lock _l(_nets_m); auto input = req.matches[1]; const uint64_t nwid = Utils::hexStrToU64(input.str().c_str()); if (_nets.find(nwid) != _nets.end()) { auto out = json::object(); NetworkState& ns = _nets[nwid]; _networkToJson(out, ns); setContent(req, res, out.dump()); return; } setContent(req, res, ""); res.status = 404; }; _controlPlane.Get(networkPath, networkGet); _controlPlaneV6.Get(networkPath, networkGet); auto networkPost = [&, setContent](const httplib::Request& req, httplib::Response& res) { auto input = req.matches[1]; uint64_t wantnw = Utils::hexStrToU64(input.str().c_str()); _node->join(wantnw, (void*)0, (void*)0); auto out = json::object(); Mutex::Lock l(_nets_m); bool allowDefault = false; if (! _nets.empty()) { NetworkState& ns = _nets[wantnw]; try { json j(OSUtils::jsonParse(req.body)); json& allowManaged = j["allowManaged"]; if (allowManaged.is_boolean()) { ns.setAllowManaged((bool)allowManaged); } json& allowGlobal = j["allowGlobal"]; if (allowGlobal.is_boolean()) { ns.setAllowGlobal((bool)allowGlobal); } json& _allowDefault = j["allowDefault"]; if (_allowDefault.is_boolean()) { allowDefault = _allowDefault; ns.setAllowDefault((bool)allowDefault); } json& allowDNS = j["allowDNS"]; if (allowDNS.is_boolean()) { ns.setAllowDNS((bool)allowDNS); } } catch (...) { // discard invalid JSON } setNetworkSettings(wantnw, ns.settings()); if (ns.tap()) { syncManagedStuff(ns, true, true, true); } _networkToJson(out, ns); } #ifdef __FreeBSD__ if (! ! allowDefault) { res.status = 400; setContent(req, res, "Allow Default does not work properly on FreeBSD. See #580"); } else { setContent(req, res, out.dump()); } #else setContent(req, res, out.dump()); #endif }; _controlPlane.Post(networkPath, networkPost); _controlPlane.Put(networkPath, networkPost); _controlPlaneV6.Post(networkPath, networkPost); _controlPlaneV6.Put(networkPath, networkPost); auto networkDelete = [&, setContent](const httplib::Request& req, httplib::Response& res) { auto input = req.matches[1]; auto out = json::object(); ZT_VirtualNetworkList* nws = _node->networks(); uint64_t wantnw = Utils::hexStrToU64(input.str().c_str()); for (unsigned long i = 0; i < nws->networkCount; ++i) { if (nws->networks[i].nwid == wantnw) { _node->leave(wantnw, (void**)0, (void*)0); out["result"] = true; } } _node->freeQueryResult((void*)nws); setContent(req, res, out.dump()); }; _controlPlane.Delete(networkPath, networkDelete); _controlPlaneV6.Delete(networkPath, networkDelete); auto peerListGet = [&, setContent](const httplib::Request& req, httplib::Response& res) { ZT_PeerList* pl = _node->peers(); auto out = nlohmann::json::array(); for (unsigned long i = 0; i < pl->peerCount; ++i) { nlohmann::json pj; SharedPtr bond = SharedPtr(); if (pl->peers[i].isBonded) { const uint64_t id = pl->peers[i].address; bond = _node->bondController()->getBondByPeerId(id); } _peerToJson(pj, &(pl->peers[i]), bond, (_tcpFallbackTunnel != (TcpConnection*)0)); out.push_back(pj); } _node->freeQueryResult((void*)pl); setContent(req, res, out.dump()); }; _controlPlane.Get(peerListPath, peerListGet); _controlPlaneV6.Get(peerListPath, peerListGet); auto peerGet = [&, setContent](const httplib::Request& req, httplib::Response& res) { ZT_PeerList* pl = _node->peers(); auto input = req.matches[1]; uint64_t wantp = Utils::hexStrToU64(input.str().c_str()); auto out = json::object(); for (unsigned long i = 0; i < pl->peerCount; ++i) { if (pl->peers[i].address == wantp) { SharedPtr bond = SharedPtr(); if (pl->peers[i].isBonded) { bond = _node->bondController()->getBondByPeerId(wantp); } _peerToJson(out, &(pl->peers[i]), bond, (_tcpFallbackTunnel != (TcpConnection*)0)); break; } } _node->freeQueryResult((void*)pl); setContent(req, res, out.dump()); }; _controlPlane.Get(peerPath, peerGet); _controlPlaneV6.Get(peerPath, peerGet); auto statusGet = [&, setContent](const httplib::Request& req, httplib::Response& res) { ZT_NodeStatus status; _node->status(&status); auto out = json::object(); char tmp[256] = {}; OSUtils::ztsnprintf(tmp, sizeof(tmp), "%.10llx", status.address); out["address"] = tmp; out["publicIdentity"] = status.publicIdentity; out["online"] = (bool)(status.online != 0); out["tcpFallbackActive"] = (_tcpFallbackTunnel != (TcpConnection*)0); out["versionMajor"] = ZEROTIER_ONE_VERSION_MAJOR; out["versionMinor"] = ZEROTIER_ONE_VERSION_MINOR; out["versionRev"] = ZEROTIER_ONE_VERSION_REVISION; out["versionBuild"] = ZEROTIER_ONE_VERSION_BUILD; OSUtils::ztsnprintf(tmp, sizeof(tmp), "%d.%d.%d", ZEROTIER_ONE_VERSION_MAJOR, ZEROTIER_ONE_VERSION_MINOR, ZEROTIER_ONE_VERSION_REVISION); out["version"] = tmp; out["clock"] = OSUtils::now(); { Mutex::Lock _l(_localConfig_m); out["config"] = _localConfig; } json& settings = out["config"]["settings"]; settings["allowTcpFallbackRelay"] = OSUtils::jsonBool(settings["allowTcpFallbackRelay"], _allowTcpFallbackRelay); settings["forceTcpRelay"] = OSUtils::jsonBool(settings["forceTcpRelay"], _forceTcpRelay); settings["primaryPort"] = OSUtils::jsonInt(settings["primaryPort"], (uint64_t)_primaryPort) & 0xffff; settings["secondaryPort"] = OSUtils::jsonInt(settings["secondaryPort"], (uint64_t)_ports[1]) & 0xffff; settings["tertiaryPort"] = OSUtils::jsonInt(settings["tertiaryPort"], (uint64_t)_tertiaryPort) & 0xffff; settings["homeDir"] = _homePath; // Enumerate all local address/port pairs that this node is listening on std::vector boundAddrs(_binder.allBoundLocalInterfaceAddresses()); auto boundAddrArray = json::array(); for (int i = 0; i < boundAddrs.size(); i++) { char ipBuf[64] = { 0 }; boundAddrs[i].toString(ipBuf); boundAddrArray.push_back(ipBuf); } settings["listeningOn"] = boundAddrArray; // Enumerate all external address/port pairs that are reported for this node std::vector surfaceAddrs = _node->SurfaceAddresses(); auto surfaceAddrArray = json::array(); for (int i = 0; i < surfaceAddrs.size(); i++) { char ipBuf[64] = { 0 }; surfaceAddrs[i].toString(ipBuf); surfaceAddrArray.push_back(ipBuf); } settings["surfaceAddresses"] = surfaceAddrArray; #ifdef ZT_USE_MINIUPNPC settings["portMappingEnabled"] = OSUtils::jsonBool(settings["portMappingEnabled"], true); #else settings["portMappingEnabled"] = false; // not supported in build #endif #ifndef ZT_SDK settings["softwareUpdate"] = OSUtils::jsonString(settings["softwareUpdate"], ZT_SOFTWARE_UPDATE_DEFAULT); settings["softwareUpdateChannel"] = OSUtils::jsonString(settings["softwareUpdateChannel"], ZT_SOFTWARE_UPDATE_DEFAULT_CHANNEL); #endif const World planet(_node->planet()); out["planetWorldId"] = planet.id(); out["planetWorldTimestamp"] = planet.timestamp(); setContent(req, res, out.dump()); }; _controlPlane.Get(statusPath, statusGet); _controlPlaneV6.Get(statusPath, statusGet); #if ZT_SSO_ENABLED std::string ssoPath = "/sso"; auto ssoGet = [this](const httplib::Request& req, httplib::Response& res) { std::string htmlTemplatePath = _homePath + ZT_PATH_SEPARATOR + "sso-auth.template.html"; std::string htmlTemplate; if (! OSUtils::readFile(htmlTemplatePath.c_str(), htmlTemplate)) { htmlTemplate = ssoResponseTemplate; } std::string responseContentType = "text/html"; std::string responseBody = ""; json outData; if (req.has_param("error")) { std::string error = req.get_param_value("error"); std::string desc = req.get_param_value("error_description"); json data; outData["isError"] = true; outData["messageText"] = (std::string("ERROR ") + error + std::string(": ") + desc); responseBody = inja::render(htmlTemplate, outData); res.set_content(responseBody, responseContentType); res.status = 500; return; } // SSO redirect handling std::string state = req.get_param_value("state"); char* nwid = zeroidc::zeroidc_network_id_from_state(state.c_str()); outData["networkId"] = std::string(nwid); const uint64_t id = Utils::hexStrToU64(nwid); zeroidc::free_cstr(nwid); Mutex::Lock l(_nets_m); if (_nets.find(id) != _nets.end()) { NetworkState& ns = _nets[id]; std::string code = req.get_param_value("code"); char* ret = ns.doTokenExchange(code.c_str()); json ssoResult = json::parse(ret); if (ssoResult.is_object()) { if (ssoResult.contains("errorMessage")) { outData["isError"] = true; outData["messageText"] = ssoResult["errorMessage"]; responseBody = inja::render(htmlTemplate, outData); res.set_content(responseBody, responseContentType); res.status = 500; } else { outData["isError"] = false; outData["messageText"] = "Authentication Successful. You may now access the network."; responseBody = inja::render(htmlTemplate, outData); res.set_content(responseBody, responseContentType); } } else { // not an object? We got a problem outData["isError"] = true; outData["messageText"] = "ERROR: Unkown SSO response. Please contact your administrator."; responseBody = inja::render(htmlTemplate, outData); res.set_content(responseBody, responseContentType); res.status = 500; } zeroidc::free_cstr(ret); } }; _controlPlane.Get(ssoPath, ssoGet); _controlPlaneV6.Get(ssoPath, ssoGet); #endif auto metricsGet = [this](const httplib::Request& req, httplib::Response& res) { std::string statspath = _homePath + ZT_PATH_SEPARATOR + "metrics.prom"; std::string metrics; if (OSUtils::readFile(statspath.c_str(), metrics)) { res.set_content(metrics, "text/plain"); } else { res.set_content("{}", "application/json"); res.status = 500; } }; _controlPlane.Get(metricsPath, metricsGet); _controlPlaneV6.Get(metricsPath, metricsGet); auto exceptionHandler = [&, setContent](const httplib::Request& req, httplib::Response& res, std::exception_ptr ep) { char buf[1024]; auto fmt = "{\"error\": %d, \"description\": \"%s\"}"; try { std::rethrow_exception(ep); } catch (std::exception& e) { snprintf(buf, sizeof(buf), fmt, 500, e.what()); } catch (...) { snprintf(buf, sizeof(buf), fmt, 500, "Unknown Exception"); } setContent(req, res, buf); res.status = 500; }; _controlPlane.set_exception_handler(exceptionHandler); _controlPlaneV6.set_exception_handler(exceptionHandler); if (_controller) { _controller->configureHTTPControlPlane(_controlPlane, _controlPlaneV6, setContent); } _controlPlane.set_pre_routing_handler(authCheck); _controlPlaneV6.set_pre_routing_handler(authCheck); #if ZT_DEBUG == 1 _controlPlane.set_logger([](const httplib::Request& req, const httplib::Response& res) { fprintf(stderr, "%s", http_log(req, res).c_str()); }); _controlPlaneV6.set_logger([](const httplib::Request& req, const httplib::Response& res) { fprintf(stderr, "%s", http_log(req, res).c_str()); }); #endif if (_primaryPort == 0) { fprintf(stderr, "unable to determine local control port"); exit(-1); } bool v4controlPlaneBound = false; _controlPlane.set_address_family(AF_INET); if (_controlPlane.bind_to_port("0.0.0.0", _primaryPort)) { _serverThread = std::thread([&] { _serverThreadRunning = true; fprintf(stderr, "Starting Control Plane...\n"); if (! _controlPlane.listen_after_bind()) { fprintf(stderr, "Error on listen_after_bind()\n"); } fprintf(stderr, "Control Plane Stopped\n"); _serverThreadRunning = false; }); v4controlPlaneBound = true; } else { fprintf(stderr, "Error binding control plane to 0.0.0.0:%d\n", _primaryPort); v4controlPlaneBound = false; } bool v6controlPlaneBound = false; _controlPlaneV6.set_address_family(AF_INET6); if (_controlPlaneV6.bind_to_port("::", _primaryPort)) { _serverThreadV6 = std::thread([&] { _serverThreadRunningV6 = true; fprintf(stderr, "Starting V6 Control Plane...\n"); if (! _controlPlaneV6.listen_after_bind()) { fprintf(stderr, "Error on V6 listen_after_bind()\n"); } fprintf(stderr, "V6 Control Plane Stopped\n"); _serverThreadRunningV6 = false; }); v6controlPlaneBound = true; } else { fprintf(stderr, "Error binding control plane to [::]:%d\n", _primaryPort); v6controlPlaneBound = false; } if (! v4controlPlaneBound && ! v6controlPlaneBound) { fprintf(stderr, "ERROR: Could not bind control plane. Exiting...\n"); exit(-1); } } // Must be called after _localConfig is read or modified void applyLocalConfig() { Mutex::Lock _l(_localConfig_m); json lc(_localConfig); _v4Hints.clear(); _v6Hints.clear(); _v4Blacklists.clear(); _v6Blacklists.clear(); json& virt = lc["virtual"]; if (virt.is_object()) { for (json::iterator v(virt.begin()); v != virt.end(); ++v) { const std::string nstr = v.key(); if ((nstr.length() == ZT_ADDRESS_LENGTH_HEX) && (v.value().is_object())) { const Address ztaddr(Utils::hexStrToU64(nstr.c_str())); if (ztaddr) { const uint64_t ztaddr2 = ztaddr.toInt(); std::vector& v4h = _v4Hints[ztaddr2]; std::vector& v6h = _v6Hints[ztaddr2]; std::vector& v4b = _v4Blacklists[ztaddr2]; std::vector& v6b = _v6Blacklists[ztaddr2]; json& tryAddrs = v.value()["try"]; if (tryAddrs.is_array()) { for (unsigned long i = 0; i < tryAddrs.size(); ++i) { const InetAddress ip(OSUtils::jsonString(tryAddrs[i], "").c_str()); if (ip.ss_family == AF_INET) v4h.push_back(ip); else if (ip.ss_family == AF_INET6) v6h.push_back(ip); } } json& blAddrs = v.value()["blacklist"]; if (blAddrs.is_array()) { for (unsigned long i = 0; i < blAddrs.size(); ++i) { const InetAddress ip(OSUtils::jsonString(blAddrs[i], "").c_str()); if (ip.ss_family == AF_INET) v4b.push_back(ip); else if (ip.ss_family == AF_INET6) v6b.push_back(ip); } } if (v4h.empty()) _v4Hints.erase(ztaddr2); if (v6h.empty()) _v6Hints.erase(ztaddr2); if (v4b.empty()) _v4Blacklists.erase(ztaddr2); if (v6b.empty()) _v6Blacklists.erase(ztaddr2); } } } } _globalV4Blacklist.clear(); _globalV6Blacklist.clear(); json& physical = lc["physical"]; if (physical.is_object()) { for (json::iterator phy(physical.begin()); phy != physical.end(); ++phy) { const InetAddress net(OSUtils::jsonString(phy.key(), "").c_str()); if ((net) && (net.netmaskBits() > 0)) { if (phy.value().is_object()) { if (OSUtils::jsonBool(phy.value()["blacklist"], false)) { if (net.ss_family == AF_INET) _globalV4Blacklist.push_back(net); else if (net.ss_family == AF_INET6) _globalV6Blacklist.push_back(net); } } } } } _allowManagementFrom.clear(); _interfacePrefixBlacklist.clear(); json& settings = lc["settings"]; if (! _node->bondController()->inUse()) { _node->bondController()->setBinder(&_binder); // defaultBondingPolicy std::string defaultBondingPolicyStr(OSUtils::jsonString(settings["defaultBondingPolicy"], "")); int defaultBondingPolicy = _node->bondController()->getPolicyCodeByStr(defaultBondingPolicyStr); _node->bondController()->setBondingLayerDefaultPolicy(defaultBondingPolicy); _node->bondController()->setBondingLayerDefaultPolicyStr(defaultBondingPolicyStr); // Used if custom policy // Custom Policies json& customBondingPolicies = settings["policies"]; for (json::iterator policyItr = customBondingPolicies.begin(); policyItr != customBondingPolicies.end(); ++policyItr) { // Custom Policy std::string customPolicyStr(policyItr.key()); json& customPolicy = policyItr.value(); std::string basePolicyStr(OSUtils::jsonString(customPolicy["basePolicy"], "")); if (basePolicyStr.empty()) { fprintf(stderr, "error: no base policy was specified for custom policy (%s)\n", customPolicyStr.c_str()); } int basePolicyCode = _node->bondController()->getPolicyCodeByStr(basePolicyStr); if (basePolicyCode == ZT_BOND_POLICY_NONE) { fprintf(stderr, "error: custom policy (%s) is invalid, unknown base policy (%s).\n", customPolicyStr.c_str(), basePolicyStr.c_str()); continue; } if (_node->bondController()->getPolicyCodeByStr(customPolicyStr) != ZT_BOND_POLICY_NONE) { fprintf(stderr, "error: custom policy (%s) will be ignored, cannot use standard policy names for custom policies.\n", customPolicyStr.c_str()); continue; } // New bond, used as a copy template for new instances SharedPtr newTemplateBond = new Bond(NULL, basePolicyStr, customPolicyStr, SharedPtr()); newTemplateBond->setPolicy(basePolicyCode); // Custom link quality spec json& linkQualitySpec = customPolicy["linkQuality"]; if (linkQualitySpec.size() == ZT_QOS_PARAMETER_SIZE) { float weights[ZT_QOS_PARAMETER_SIZE] = {}; weights[ZT_QOS_LAT_MAX_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["lat_max"], 0.0); weights[ZT_QOS_PDV_MAX_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["pdv_max"], 0.0); weights[ZT_QOS_PLR_MAX_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["plr_max"], 0.0); weights[ZT_QOS_PER_MAX_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["per_max"], 0.0); weights[ZT_QOS_LAT_WEIGHT_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["lat_weight"], 0.0); weights[ZT_QOS_PDV_WEIGHT_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["pdv_weight"], 0.0); weights[ZT_QOS_PLR_WEIGHT_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["plr_weight"], 0.0); weights[ZT_QOS_PER_WEIGHT_IDX] = (float)OSUtils::jsonDouble(linkQualitySpec["per_weight"], 0.0); newTemplateBond->setUserLinkQualitySpec(weights, ZT_QOS_PARAMETER_SIZE); } // Bond-specific properties newTemplateBond->setUpDelay(OSUtils::jsonInt(customPolicy["upDelay"], -1)); newTemplateBond->setDownDelay(OSUtils::jsonInt(customPolicy["downDelay"], -1)); newTemplateBond->setFailoverInterval(OSUtils::jsonInt(customPolicy["failoverInterval"], ZT_BOND_FAILOVER_DEFAULT_INTERVAL)); newTemplateBond->setPacketsPerLink(OSUtils::jsonInt(customPolicy["packetsPerLink"], -1)); // Policy-Specific link set json& links = customPolicy["links"]; for (json::iterator linkItr = links.begin(); linkItr != links.end(); ++linkItr) { std::string linkNameStr(linkItr.key()); json& link = linkItr.value(); bool enabled = OSUtils::jsonInt(link["enabled"], true); uint32_t capacity = OSUtils::jsonInt(link["capacity"], 0); uint8_t ipvPref = OSUtils::jsonInt(link["ipvPref"], 0); uint16_t mtu = OSUtils::jsonInt(link["mtu"], 0); std::string failoverToStr(OSUtils::jsonString(link["failoverTo"], "")); // Mode std::string linkModeStr(OSUtils::jsonString(link["mode"], "spare")); uint8_t linkMode = ZT_BOND_SLAVE_MODE_SPARE; if (linkModeStr == "primary") { linkMode = ZT_BOND_SLAVE_MODE_PRIMARY; } if (linkModeStr == "spare") { linkMode = ZT_BOND_SLAVE_MODE_SPARE; } // ipvPref if ((ipvPref != 0) && (ipvPref != 4) && (ipvPref != 6) && (ipvPref != 46) && (ipvPref != 64)) { fprintf(stderr, "error: invalid ipvPref value (%d), link disabled.\n", ipvPref); enabled = false; } if (linkMode == ZT_BOND_SLAVE_MODE_SPARE && failoverToStr.length()) { fprintf(stderr, "error: cannot specify failover links for spares, link disabled.\n"); failoverToStr = ""; enabled = false; } _node->bondController()->addCustomLink(customPolicyStr, new Link(linkNameStr, ipvPref, mtu, capacity, enabled, linkMode, failoverToStr)); } std::string linkSelectMethodStr(OSUtils::jsonString(customPolicy["activeReselect"], "always")); if (linkSelectMethodStr == "always") { newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_ALWAYS); } if (linkSelectMethodStr == "better") { newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_BETTER); } if (linkSelectMethodStr == "failure") { newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_FAILURE); } if (linkSelectMethodStr == "optimize") { newTemplateBond->setLinkSelectMethod(ZT_BOND_RESELECTION_POLICY_OPTIMIZE); } if (newTemplateBond->getLinkSelectMethod() < 0 || newTemplateBond->getLinkSelectMethod() > 3) { fprintf(stderr, "warning: invalid value (%s) for linkSelectMethod, assuming mode: always\n", linkSelectMethodStr.c_str()); } if (! _node->bondController()->addCustomPolicy(newTemplateBond)) { fprintf(stderr, "error: a custom policy of this name (%s) already exists.\n", customPolicyStr.c_str()); } } // Peer-specific bonding json& peerSpecificBonds = settings["peerSpecificBonds"]; for (json::iterator peerItr = peerSpecificBonds.begin(); peerItr != peerSpecificBonds.end(); ++peerItr) { _node->bondController()->assignBondingPolicyToPeer(std::stoull(peerItr.key(), 0, 16), peerItr.value()); } // Check settings if (defaultBondingPolicyStr.length() && ! defaultBondingPolicy && ! _node->bondController()->inUse()) { fprintf(stderr, "error: unknown policy (%s) specified by defaultBondingPolicy, bond disabled.\n", defaultBondingPolicyStr.c_str()); } } // bondingPolicy cannot be used with allowTcpFallbackRelay bool _forceTcpRelayTmp = (OSUtils::jsonBool(settings["forceTcpRelay"], false)); bool _bondInUse = _node->bondController()->inUse(); if (_forceTcpRelayTmp && _bondInUse) { fprintf(stderr, "Warning: forceTcpRelay cannot be used with multipath. Disabling forceTcpRelay\n"); } _allowTcpFallbackRelay = (OSUtils::jsonBool(settings["allowTcpFallbackRelay"], true) && ! _node->bondController()->inUse()); _forceTcpRelay = (_forceTcpRelayTmp && ! _node->bondController()->inUse()); _enableWebServer = (OSUtils::jsonBool(settings["enableWebServer"], false)); #ifdef ZT_TCP_FALLBACK_RELAY _fallbackRelayAddress = InetAddress(OSUtils::jsonString(settings["tcpFallbackRelay"], ZT_TCP_FALLBACK_RELAY).c_str()); #endif _primaryPort = (unsigned int)OSUtils::jsonInt(settings["primaryPort"], (uint64_t)_primaryPort) & 0xffff; _allowSecondaryPort = OSUtils::jsonBool(settings["allowSecondaryPort"], true); _secondaryPort = (unsigned int)OSUtils::jsonInt(settings["secondaryPort"], 0); _tertiaryPort = (unsigned int)OSUtils::jsonInt(settings["tertiaryPort"], 0); if (_secondaryPort != 0 || _tertiaryPort != 0) { fprintf(stderr, "WARNING: using manually-specified secondary and/or tertiary ports. This can cause NAT issues." ZT_EOL_S); } _portMappingEnabled = OSUtils::jsonBool(settings["portMappingEnabled"], true); _node->setLowBandwidthMode(OSUtils::jsonBool(settings["lowBandwidthMode"], false)); #if defined(__LINUX__) || defined(__FreeBSD__) _multicoreEnabled = OSUtils::jsonBool(settings["multicoreEnabled"], false); _concurrency = OSUtils::jsonInt(settings["concurrency"], 1); _cpuPinningEnabled = OSUtils::jsonBool(settings["cpuPinningEnabled"], false); if (_multicoreEnabled) { unsigned int maxConcurrency = std::thread::hardware_concurrency(); if (_concurrency <= 1 || _concurrency >= maxConcurrency) { unsigned int conservativeDefault = (std::thread::hardware_concurrency() >= 4 ? 2 : 1); fprintf(stderr, "Concurrency level provided (%d) is invalid, assigning conservative default value of (%d)\n", _concurrency, conservativeDefault); _concurrency = conservativeDefault; } setUpMultithreading(); } else { // Force values in case the user accidentally defined them with multicore disabled _concurrency = 1; _cpuPinningEnabled = false; } #else _multicoreEnabled = false; _concurrency = 1; _cpuPinningEnabled = false; #endif #ifndef ZT_SDK const std::string up(OSUtils::jsonString(settings["softwareUpdate"], ZT_SOFTWARE_UPDATE_DEFAULT)); const bool udist = OSUtils::jsonBool(settings["softwareUpdateDist"], false); if (((up == "apply") || (up == "download")) || (udist)) { if (! _updater) _updater = new SoftwareUpdater(*_node, _homePath); _updateAutoApply = (up == "apply"); _updater->setUpdateDistribution(udist); _updater->setChannel(OSUtils::jsonString(settings["softwareUpdateChannel"], ZT_SOFTWARE_UPDATE_DEFAULT_CHANNEL)); } else { delete _updater; _updater = (SoftwareUpdater*)0; _updateAutoApply = false; } #endif json& ignoreIfs = settings["interfacePrefixBlacklist"]; if (ignoreIfs.is_array()) { for (unsigned long i = 0; i < ignoreIfs.size(); ++i) { const std::string tmp(OSUtils::jsonString(ignoreIfs[i], "")); if (tmp.length() > 0) _interfacePrefixBlacklist.push_back(tmp); } } json& amf = settings["allowManagementFrom"]; if (amf.is_array()) { for (unsigned long i = 0; i < amf.size(); ++i) { const InetAddress nw(OSUtils::jsonString(amf[i], "").c_str()); if (nw) _allowManagementFrom.push_back(nw); } } } #if ZT_VAULT_SUPPORT json& vault = settings["vault"]; if (vault.is_object()) { const std::string url(OSUtils::jsonString(vault["vaultURL"], "").c_str()); if (! url.empty()) { _vaultURL = url; } const std::string token(OSUtils::jsonString(vault["vaultToken"], "").c_str()); if (! token.empty()) { _vaultToken = token; } const std::string path(OSUtils::jsonString(vault["vaultPath"], "").c_str()); if (! path.empty()) { _vaultPath = path; } } // also check environment variables for values. Environment variables // will override local.conf variables const std::string envURL(getenv("VAULT_ADDR")); if (! envURL.empty()) { _vaultURL = envURL; } const std::string envToken(getenv("VAULT_TOKEN")); if (! envToken.empty()) { _vaultToken = envToken; } const std::string envPath(getenv("VAULT_PATH")); if (! envPath.empty()) { _vaultPath = envPath; } if (! _vaultURL.empty() && ! _vaultToken.empty()) { _vaultEnabled = true; } #endif // Checks if a managed IP or route target is allowed bool checkIfManagedIsAllowed(const NetworkState& n, const InetAddress& target) { if (! n.allowManaged()) return false; if (! n.allowManagedWhitelist().empty()) { bool allowed = false; for (InetAddress addr : n.allowManagedWhitelist()) { if (addr.containsAddress(target) && addr.netmaskBits() <= target.netmaskBits()) { allowed = true; break; } } if (! allowed) return false; } if (target.isDefaultRoute()) return n.allowDefault(); switch (target.ipScope()) { case InetAddress::IP_SCOPE_NONE: case InetAddress::IP_SCOPE_MULTICAST: case InetAddress::IP_SCOPE_LOOPBACK: case InetAddress::IP_SCOPE_LINK_LOCAL: return false; case InetAddress::IP_SCOPE_GLOBAL: return n.allowGlobal(); default: return true; } } // Match only an IP from a vector of IPs -- used in syncManagedStuff() inline bool matchIpOnly(const std::set& ips, const InetAddress& ip) const { for (std::set::const_iterator i(ips.begin()); i != ips.end(); ++i) { if (i->ipsEqual(ip)) return true; } return false; } // Apply or update managed IPs for a configured network (be sure n.tap exists) void syncManagedStuff(NetworkState& n, bool syncIps, bool syncRoutes, bool syncDns) { char ipbuf[64]; // assumes _nets_m is locked if (syncIps) { std::vector newManagedIps; newManagedIps.reserve(n.config().assignedAddressCount); #ifdef __APPLE__ std::vector newManagedIps2; newManagedIps2.reserve(n.config().assignedAddressCount); #endif for (unsigned int i = 0; i < n.config().assignedAddressCount; ++i) { const InetAddress* ii = reinterpret_cast(&(n.config().assignedAddresses[i])); if (checkIfManagedIsAllowed(n, *ii)) newManagedIps.push_back(*ii); } std::sort(newManagedIps.begin(), newManagedIps.end()); newManagedIps.erase(std::unique(newManagedIps.begin(), newManagedIps.end()), newManagedIps.end()); for (std::vector::iterator ip(n.managedIps().begin()); ip != n.managedIps().end(); ++ip) { if (std::find(newManagedIps.begin(), newManagedIps.end(), *ip) == newManagedIps.end()) { if (! n.tap()->removeIp(*ip)) fprintf(stderr, "ERROR: unable to remove ip address %s" ZT_EOL_S, ip->toString(ipbuf)); #ifdef __WINDOWS__ WinFWHelper::removeICMPRule(*ip, n.config().nwid); #endif } } for (std::vector::iterator ip(newManagedIps.begin()); ip != newManagedIps.end(); ++ip) { #ifdef __APPLE__ // We can't add multiple addresses to an interface on macOs unless we futz with the netmask. // see `man ifconfig`, alias section // "If the address is on the same subnet as the first network address for this interface, a non-conflicting netmask must be given. Usually 0xffffffff is most appropriate." auto same_subnet = [ip](InetAddress i) { return ip->network() == i.network(); }; #endif if (std::find(n.managedIps().begin(), n.managedIps().end(), *ip) == n.managedIps().end()) { #ifdef __APPLE__ // if same subnet as a previously added address if (std::find_if(n.managedIps().begin(), n.managedIps().end(), same_subnet) != n.managedIps().end() || std::find_if(newManagedIps2.begin(), newManagedIps2.end(), same_subnet) != newManagedIps2.end()) { if (ip->isV4()) { ip->setPort(32); } else { ip->setPort(128); } } else { newManagedIps2.push_back(*ip); } #endif if (! n.tap()->addIp(*ip)) { fprintf(stderr, "ERROR: unable to add ip address %s" ZT_EOL_S, ip->toString(ipbuf)); } else { #ifdef __WINDOWS__ WinFWHelper::newICMPRule(*ip, n.config().nwid); #endif } } } #ifdef __APPLE__ if (! MacDNSHelper::addIps6(n.config().nwid, n.config().mac, n.tap()->deviceName().c_str(), newManagedIps)) { fprintf(stderr, "ERROR: unable to add v6 addresses to system configuration" ZT_EOL_S); } if (! MacDNSHelper::addIps4(n.config().nwid, n.config().mac, n.tap()->deviceName().c_str(), newManagedIps)) { fprintf(stderr, "ERROR: unable to add v4 addresses to system configuration" ZT_EOL_S); } #endif n.setManagedIps(newManagedIps); } if (syncRoutes) { // Get tap device name (use LUID in hex on Windows) and IP addresses. #if defined(__WINDOWS__) && ! defined(ZT_SDK) char tapdevbuf[64]; OSUtils::ztsnprintf(tapdevbuf, sizeof(tapdevbuf), "%.16llx", (unsigned long long)((WindowsEthernetTap*)(n.tap().get()))->luid().Value); std::string tapdev(tapdevbuf); #else std::string tapdev(n.tap()->deviceName()); #endif std::vector tapIps(n.tap()->ips()); std::set myIps(tapIps.begin(), tapIps.end()); for (unsigned int i = 0; i < n.config().assignedAddressCount; ++i) myIps.insert(InetAddress(n.config().assignedAddresses[i])); std::set haveRouteTargets; for (unsigned int i = 0; i < n.config().routeCount; ++i) { const InetAddress* const target = reinterpret_cast(&(n.config().routes[i].target)); const InetAddress* const via = reinterpret_cast(&(n.config().routes[i].via)); // Make sure we are allowed to set this managed route, and that 'via' is not our IP. The latter // avoids setting routes via the router on the router. if ((! checkIfManagedIsAllowed(n, *target)) || ((via->ss_family == target->ss_family) && (matchIpOnly(myIps, *via)))) continue; // Find an IP on the interface that can be a source IP, abort if no IPs assigned. const InetAddress* src = nullptr; unsigned int mostMatchingPrefixBits = 0; for (std::set::const_iterator i(myIps.begin()); i != myIps.end(); ++i) { const unsigned int matchingPrefixBits = i->matchingPrefixBits(*target); if (matchingPrefixBits >= mostMatchingPrefixBits && ((target->isV4() && i->isV4()) || (target->isV6() && i->isV6()))) { mostMatchingPrefixBits = matchingPrefixBits; src = &(*i); } } if (! src) continue; // Ignore routes implied by local managed IPs since adding the IP adds the route. // Apple on the other hand seems to need this at least on some versions. #ifndef __APPLE__ bool haveRoute = false; for (std::vector::iterator ip(n.managedIps().begin()); ip != n.managedIps().end(); ++ip) { if ((target->netmaskBits() == ip->netmaskBits()) && (target->containsAddress(*ip))) { haveRoute = true; break; } } if (haveRoute) continue; #endif haveRouteTargets.insert(*target); #ifndef ZT_SDK SharedPtr& mr = n.managedRoutes()[*target]; if (! mr) mr.set(new ManagedRoute(*target, *via, *src, tapdev.c_str())); #endif } for (std::map >::iterator r(n.managedRoutes().begin()); r != n.managedRoutes().end();) { if (haveRouteTargets.find(r->first) == haveRouteTargets.end()) n.managedRoutes().erase(r++); else ++r; } // Sync device-local managed routes first, then indirect results. That way // we don't get destination unreachable for routes that are via things // that do not yet have routes in the system. for (std::map >::iterator r(n.managedRoutes().begin()); r != n.managedRoutes().end(); ++r) { if (! r->second->via()) r->second->sync(); } for (std::map >::iterator r(n.managedRoutes().begin()); r != n.managedRoutes().end(); ++r) { if (r->second->via() && (! r->second->target().isDefaultRoute() || _node->online())) { r->second->sync(); } } } if (syncDns) { if (n.allowDNS()) { if (strlen(n.config().dns.domain) != 0) { std::vector servers; for (int j = 0; j < ZT_MAX_DNS_SERVERS; ++j) { InetAddress a(n.config().dns.server_addr[j]); if (a.isV4() || a.isV6()) { servers.push_back(a); } } n.tap()->setDns(n.config().dns.domain, servers); } } else { #ifdef __APPLE__ MacDNSHelper::removeDNS(n.config().nwid); #elif defined(__WINDOWS__) WinDNSHelper::removeDNS(n.config().nwid); #endif } } } // ========================================================================= // Handlers for Node and Phy<> callbacks // ========================================================================= inline void phyOnDatagram(PhySocket* sock, void** uptr, const struct sockaddr* localAddr, const struct sockaddr* from, void* data, unsigned long len) { if (_forceTcpRelay) { return; } Metrics::udp_recv += len; const uint64_t now = OSUtils::now(); if ((len >= 16) && (reinterpret_cast(from)->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) { _lastDirectReceiveFromGlobal = now; } const ZT_ResultCode rc = _node->processWirePacket(nullptr, now, reinterpret_cast(sock), reinterpret_cast(from), data, len, &_nextBackgroundTaskDeadline); if (ZT_ResultCode_isFatal(rc)) { char tmp[256]; OSUtils::ztsnprintf(tmp, sizeof(tmp), "fatal error code from processWirePacket: %d", (int)rc); Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = tmp; this->terminate(); } } inline void phyOnTcpConnect(PhySocket* sock, void** uptr, bool success) { if (! success) { phyOnTcpClose(sock, uptr); return; } TcpConnection* const tc = reinterpret_cast(*uptr); if (! tc) { // sanity check _phy.close(sock, true); return; } tc->sock = sock; if (tc->type == TcpConnection::TCP_TUNNEL_OUTGOING) { if (_tcpFallbackTunnel) _phy.close(_tcpFallbackTunnel->sock); _tcpFallbackTunnel = tc; _phy.streamSend(sock, ZT_TCP_TUNNEL_HELLO, sizeof(ZT_TCP_TUNNEL_HELLO)); } else { _phy.close(sock, true); } } inline void phyOnTcpAccept(PhySocket* sockL, PhySocket* sockN, void** uptrL, void** uptrN, const struct sockaddr* from) { if (! from) { _phy.close(sockN, false); return; } else { #ifdef ZT_SDK // Immediately close new local connections. The intention is to prevent the backplane from being accessed when operating as libzt if (! allowHttpBackplaneManagement && ((InetAddress*)from)->ipScope() == InetAddress::IP_SCOPE_LOOPBACK) { _phy.close(sockN, false); return; } #endif TcpConnection* tc = new TcpConnection(); { Mutex::Lock _l(_tcpConnections_m); _tcpConnections.push_back(tc); } tc->type = TcpConnection::TCP_UNCATEGORIZED_INCOMING; tc->parent = this; tc->sock = sockN; tc->remoteAddr = from; tc->lastReceive = OSUtils::now(); http_parser_init(&(tc->parser), HTTP_REQUEST); tc->parser.data = (void*)tc; tc->messageSize = 0; *uptrN = (void*)tc; } } void phyOnTcpClose(PhySocket* sock, void** uptr) { TcpConnection* tc = (TcpConnection*)*uptr; if (tc) { if (tc == _tcpFallbackTunnel) { _tcpFallbackTunnel = (TcpConnection*)0; } { Mutex::Lock _l(_tcpConnections_m); _tcpConnections.erase(std::remove(_tcpConnections.begin(), _tcpConnections.end(), tc), _tcpConnections.end()); } delete tc; } } void phyOnTcpData(PhySocket* sock, void** uptr, void* data, unsigned long len) { try { if (! len) return; // sanity check, should never happen Metrics::tcp_recv += len; TcpConnection* tc = reinterpret_cast(*uptr); tc->lastReceive = OSUtils::now(); switch (tc->type) { case TcpConnection::TCP_UNCATEGORIZED_INCOMING: return; case TcpConnection::TCP_HTTP_INCOMING: case TcpConnection::TCP_HTTP_OUTGOING: http_parser_execute(&(tc->parser), &HTTP_PARSER_SETTINGS, (const char*)data, len); if ((tc->parser.upgrade) || (tc->parser.http_errno != HPE_OK)) _phy.close(sock); return; case TcpConnection::TCP_TUNNEL_OUTGOING: tc->readq.append((const char*)data, len); while (tc->readq.length() >= 5) { const char* data = tc->readq.data(); const unsigned long mlen = (((((unsigned long)data[3]) & 0xff) << 8) | (((unsigned long)data[4]) & 0xff)); if (tc->readq.length() >= (mlen + 5)) { InetAddress from; unsigned long plen = mlen; // payload length, modified if there's an IP header data += 5; // skip forward past pseudo-TLS junk and mlen if (plen == 4) { // Hello message, which isn't sent by proxy and would be ignored by client } else if (plen) { // Messages should contain IPv4 or IPv6 source IP address data switch (data[0]) { case 4: // IPv4 if (plen >= 7) { from.set((const void*)(data + 1), 4, ((((unsigned int)data[5]) & 0xff) << 8) | (((unsigned int)data[6]) & 0xff)); data += 7; // type + 4 byte IP + 2 byte port plen -= 7; } else { _phy.close(sock); return; } break; case 6: // IPv6 if (plen >= 19) { from.set((const void*)(data + 1), 16, ((((unsigned int)data[17]) & 0xff) << 8) | (((unsigned int)data[18]) & 0xff)); data += 19; // type + 16 byte IP + 2 byte port plen -= 19; } else { _phy.close(sock); return; } break; case 0: // none/omitted ++data; --plen; break; default: // invalid address type _phy.close(sock); return; } if (from) { InetAddress fakeTcpLocalInterfaceAddress((uint32_t)0xffffffff, 0xffff); const ZT_ResultCode rc = _node->processWirePacket((void*)0, OSUtils::now(), -1, reinterpret_cast(&from), data, plen, &_nextBackgroundTaskDeadline); if (ZT_ResultCode_isFatal(rc)) { char tmp[256]; OSUtils::ztsnprintf(tmp, sizeof(tmp), "fatal error code from processWirePacket: %d", (int)rc); Mutex::Lock _l(_termReason_m); _termReason = ONE_UNRECOVERABLE_ERROR; _fatalErrorMessage = tmp; this->terminate(); _phy.close(sock); return; } } } if (tc->readq.length() > (mlen + 5)) tc->readq.erase(tc->readq.begin(), tc->readq.begin() + (mlen + 5)); else tc->readq.clear(); } else break; } return; } } catch (...) { _phy.close(sock); } } inline void phyOnTcpWritable(PhySocket* sock, void** uptr) { TcpConnection* tc = reinterpret_cast(*uptr); bool closeit = false; { Mutex::Lock _l(tc->writeq_m); if (tc->writeq.length() > 0) { long sent = (long)_phy.streamSend(sock, tc->writeq.data(), (unsigned long)tc->writeq.length(), true); Metrics::tcp_send += sent; if (sent > 0) { if ((unsigned long)sent >= (unsigned long)tc->writeq.length()) { tc->writeq.clear(); _phy.setNotifyWritable(sock, false); if (tc->type == TcpConnection::TCP_HTTP_INCOMING) closeit = true; // HTTP keep alive not supported } else { tc->writeq.erase(tc->writeq.begin(), tc->writeq.begin() + sent); } } } else { _phy.setNotifyWritable(sock, false); } } if (closeit) _phy.close(sock); } inline void phyOnFileDescriptorActivity(PhySocket* sock, void** uptr, bool readable, bool writable) { } inline void phyOnUnixAccept(PhySocket* sockL, PhySocket* sockN, void** uptrL, void** uptrN) { } inline void phyOnUnixClose(PhySocket* sock, void** uptr) { } inline void phyOnUnixData(PhySocket* sock, void** uptr, void* data, unsigned long len) { } inline void phyOnUnixWritable(PhySocket* sock, void** uptr) { } inline int nodeVirtualNetworkConfigFunction(uint64_t nwid, void** nuptr, enum ZT_VirtualNetworkConfigOperation op, const ZT_VirtualNetworkConfig* nwc) { Mutex::Lock _l(_nets_m); NetworkState& n = _nets[nwid]; n.setWebPort(_primaryPort); switch (op) { case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP: if (! n.tap()) { try { char friendlyName[128]; OSUtils::ztsnprintf(friendlyName, sizeof(friendlyName), "ZeroTier One [%.16llx]", nwid); n.setTap(EthernetTap::newInstance(nullptr, _concurrency, _cpuPinningEnabled, _homePath.c_str(), MAC(nwc->mac), nwc->mtu, (unsigned int)ZT_IF_METRIC, nwid, friendlyName, StapFrameHandler, (void*)this)); *nuptr = (void*)&n; char nlcpath[256]; OSUtils::ztsnprintf(nlcpath, sizeof(nlcpath), "%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.local.conf", _homePath.c_str(), nwid); std::string nlcbuf; if (OSUtils::readFile(nlcpath, nlcbuf)) { Dictionary<4096> nc; nc.load(nlcbuf.c_str()); Buffer<1024> allowManaged; if (nc.get("allowManaged", allowManaged) && allowManaged.size() > 0) { std::string addresses(allowManaged.begin(), allowManaged.size()); if (allowManaged.size() <= 5) { // untidy parsing for backward compatibility if (allowManaged[0] == '1' || allowManaged[0] == 't' || allowManaged[0] == 'T') { n.setAllowManaged(true); } else { n.setAllowManaged(false); } } else { // this should be a list of IP addresses n.setAllowManaged(true); size_t pos = 0; while (true) { size_t nextPos = addresses.find(',', pos); std::string address = addresses.substr(pos, (nextPos == std::string::npos ? addresses.size() : nextPos) - pos); n.addToAllowManagedWhiteList(InetAddress(address.c_str())); if (nextPos == std::string::npos) break; pos = nextPos + 1; } } } else { n.setAllowManaged(true); } n.setAllowGlobal(nc.getB("allowGlobal", false)); n.setAllowDefault(nc.getB("allowDefault", false)); n.setAllowDNS(nc.getB("allowDNS", false)); } } catch (std::exception& exc) { #ifdef __WINDOWS__ FILE* tapFailLog = fopen((_homePath + ZT_PATH_SEPARATOR_S "port_error_log.txt").c_str(), "a"); if (tapFailLog) { fprintf(tapFailLog, "%.16llx: %s" ZT_EOL_S, (unsigned long long)nwid, exc.what()); fclose(tapFailLog); } #else fprintf(stderr, "ERROR: unable to configure virtual network port: %s" ZT_EOL_S, exc.what()); #endif _nets.erase(nwid); return -999; } catch (...) { return -999; // tap init failed } } // After setting up tap, fall through to CONFIG_UPDATE since we also want to do this... case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE: n.setConfig(nwc); if (n.tap()) { // sanity check #if defined(__WINDOWS__) && ! defined(ZT_SDK) // wait for up to 5 seconds for the WindowsEthernetTap to actually be initialized // // without WindowsEthernetTap::isInitialized() returning true, the won't actually // be online yet and setting managed routes on it will fail. const int MAX_SLEEP_COUNT = 500; for (int i = 0; ! ((WindowsEthernetTap*)(n.tap().get()))->isInitialized() && i < MAX_SLEEP_COUNT; i++) { Sleep(10); } #endif syncManagedStuff(n, true, true, true); n.tap()->setMtu(nwc->mtu); } else { _nets.erase(nwid); return -999; // tap init failed } break; case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN: case ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY: if (n.tap()) { // sanity check #if defined(__WINDOWS__) && ! defined(ZT_SDK) std::string winInstanceId(((WindowsEthernetTap*)(n.tap().get()))->instanceId()); #endif *nuptr = (void*)0; n.tap().reset(); _nets.erase(nwid); #if defined(__WINDOWS__) && ! defined(ZT_SDK) if ((op == ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY) && (winInstanceId.length() > 0)) { WindowsEthernetTap::deletePersistentTapDevice(winInstanceId.c_str()); WinFWHelper::removeICMPRules(nwid); } #endif if (op == ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY) { char nlcpath[256]; OSUtils::ztsnprintf(nlcpath, sizeof(nlcpath), "%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.local.conf", _homePath.c_str(), nwid); OSUtils::rm(nlcpath); } } else { _nets.erase(nwid); } break; } return 0; } inline void nodeEventCallback(enum ZT_Event event, const void* metaData) { switch (event) { case ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION: { Mutex::Lock _l(_termReason_m); _termReason = ONE_IDENTITY_COLLISION; _fatalErrorMessage = "identity/address collision"; this->terminate(); } break; case ZT_EVENT_TRACE: { if (metaData) { ::fprintf(stderr, "%s" ZT_EOL_S, (const char*)metaData); ::fflush(stderr); } } break; case ZT_EVENT_USER_MESSAGE: { const ZT_UserMessage* um = reinterpret_cast(metaData); if ((um->typeId == ZT_SOFTWARE_UPDATE_USER_MESSAGE_TYPE) && (_updater)) { _updater->handleSoftwareUpdateUserMessage(um->origin, um->data, um->length); } } break; case ZT_EVENT_REMOTE_TRACE: { const ZT_RemoteTrace* rt = reinterpret_cast(metaData); if ((rt) && (rt->len > 0) && (rt->len <= ZT_MAX_REMOTE_TRACE_SIZE) && (rt->data)) _controller->handleRemoteTrace(*rt); } default: break; } } #if ZT_VAULT_SUPPORT inline bool nodeVaultPutIdentity(enum ZT_StateObjectType type, const void* data, int len) { bool retval = false; if (type != ZT_STATE_OBJECT_IDENTITY_PUBLIC && type != ZT_STATE_OBJECT_IDENTITY_SECRET) { return retval; } CURL* curl = curl_easy_init(); if (curl) { char token[512] = { 0 }; snprintf(token, sizeof(token), "X-Vault-Token: %s", _vaultToken.c_str()); struct curl_slist* chunk = NULL; chunk = curl_slist_append(chunk, token); char content_type[512] = { 0 }; snprintf(content_type, sizeof(content_type), "Content-Type: application/json"); chunk = curl_slist_append(chunk, content_type); curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk); char url[2048] = { 0 }; snprintf(url, sizeof(url), "%s/v1/%s", _vaultURL.c_str(), _vaultPath.c_str()); curl_easy_setopt(curl, CURLOPT_URL, url); json d = json::object(); if (type == ZT_STATE_OBJECT_IDENTITY_PUBLIC) { std::string key((const char*)data, len); d["public"] = key; } else if (type == ZT_STATE_OBJECT_IDENTITY_SECRET) { std::string key((const char*)data, len); d["secret"] = key; } if (! d.empty()) { std::string post = d.dump(); if (! post.empty()) { curl_easy_setopt(curl, CURLOPT_POSTFIELDS, post.c_str()); curl_easy_setopt(curl, CURLOPT_POSTFIELDSIZE, post.length()); #ifndef NDEBUG curl_easy_setopt(curl, CURLOPT_VERBOSE, 1L); #endif CURLcode res = curl_easy_perform(curl); if (res == CURLE_OK) { long response_code = 0; curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &response_code); if (response_code == 200 || response_code == 204) { retval = true; } } } } curl_easy_cleanup(curl); curl = NULL; curl_slist_free_all(chunk); chunk = NULL; } return retval; } #endif inline void nodeStatePutFunction(enum ZT_StateObjectType type, const uint64_t id[2], const void* data, int len) { #if ZT_VAULT_SUPPORT if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC)) { if (nodeVaultPutIdentity(type, data, len)) { // value successfully written to Vault return; } // else fallback to disk } #endif char p[1024]; FILE* f; bool secure = false; char dirname[1024]; dirname[0] = 0; switch (type) { case ZT_STATE_OBJECT_IDENTITY_PUBLIC: OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "identity.public", _homePath.c_str()); break; case ZT_STATE_OBJECT_IDENTITY_SECRET: OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "identity.secret", _homePath.c_str()); secure = true; break; case ZT_STATE_OBJECT_PLANET: OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "planet", _homePath.c_str()); break; case ZT_STATE_OBJECT_MOON: OSUtils::ztsnprintf(dirname, sizeof(dirname), "%s" ZT_PATH_SEPARATOR_S "moons.d", _homePath.c_str()); OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "%.16llx.moon", dirname, (unsigned long long)id[0]); break; case ZT_STATE_OBJECT_NETWORK_CONFIG: OSUtils::ztsnprintf(dirname, sizeof(dirname), "%s" ZT_PATH_SEPARATOR_S "networks.d", _homePath.c_str()); OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "%.16llx.conf", dirname, (unsigned long long)id[0]); break; case ZT_STATE_OBJECT_PEER: OSUtils::ztsnprintf(dirname, sizeof(dirname), "%s" ZT_PATH_SEPARATOR_S "peers.d", _homePath.c_str()); OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "%.10llx.peer", dirname, (unsigned long long)id[0]); break; default: return; } if ((len >= 0) && (data)) { // Check to see if we've already written this first. This reduces // redundant writes and I/O overhead on most platforms and has // little effect on others. f = fopen(p, "rb"); if (f) { char* const buf = (char*)malloc(len * 4); if (buf) { long l = (long)fread(buf, 1, (size_t)(len * 4), f); fclose(f); if ((l == (long)len) && (memcmp(data, buf, l) == 0)) { free(buf); return; } free(buf); } } f = fopen(p, "wb"); if ((! f) && (dirname[0])) { // create subdirectory if it does not exist OSUtils::mkdir(dirname); f = fopen(p, "wb"); } if (f) { if (fwrite(data, len, 1, f) != 1) fprintf(stderr, "WARNING: unable to write to file: %s (I/O error)" ZT_EOL_S, p); fclose(f); if (secure) OSUtils::lockDownFile(p, false); } else { fprintf(stderr, "WARNING: unable to write to file: %s (unable to open)" ZT_EOL_S, p); } } else { OSUtils::rm(p); } } #if ZT_VAULT_SUPPORT inline int nodeVaultGetIdentity(enum ZT_StateObjectType type, void* data, unsigned int maxlen) { if (type != ZT_STATE_OBJECT_IDENTITY_SECRET && type != ZT_STATE_OBJECT_IDENTITY_PUBLIC) { return -1; } int ret = -1; CURL* curl = curl_easy_init(); if (curl) { char token[512] = { 0 }; snprintf(token, sizeof(token), "X-Vault-Token: %s", _vaultToken.c_str()); struct curl_slist* chunk = NULL; chunk = curl_slist_append(chunk, token); curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk); char url[2048] = { 0 }; snprintf(url, sizeof(url), "%s/v1/%s", _vaultURL.c_str(), _vaultPath.c_str()); curl_easy_setopt(curl, CURLOPT_URL, url); std::string response; std::string res_headers; curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, &curlResponseWrite); curl_easy_setopt(curl, CURLOPT_WRITEDATA, &response); curl_easy_setopt(curl, CURLOPT_HEADERDATA, &res_headers); #ifndef NDEBUG curl_easy_setopt(curl, CURLOPT_VERBOSE, 1L); #endif CURLcode res = curl_easy_perform(curl); if (res == CURLE_OK) { long response_code = 0; curl_easy_getinfo(curl, CURLINFO_RESPONSE_CODE, &response_code); if (response_code == 200) { try { json payload = json::parse(response); if (! payload["data"].is_null()) { json& d = payload["data"]; if (type == ZT_STATE_OBJECT_IDENTITY_SECRET) { std::string secret = OSUtils::jsonString(d["secret"], ""); if (! secret.empty()) { ret = (int)secret.length(); memcpy(data, secret.c_str(), ret); } } else if (type == ZT_STATE_OBJECT_IDENTITY_PUBLIC) { std::string pub = OSUtils::jsonString(d["public"], ""); if (! pub.empty()) { ret = (int)pub.length(); memcpy(data, pub.c_str(), ret); } } } } catch (...) { ret = -1; } } } curl_easy_cleanup(curl); curl = NULL; curl_slist_free_all(chunk); chunk = NULL; } return ret; } #endif inline int nodeStateGetFunction(enum ZT_StateObjectType type, const uint64_t id[2], void* data, unsigned int maxlen) { #if ZT_VAULT_SUPPORT if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC)) { int retval = nodeVaultGetIdentity(type, data, maxlen); if (retval >= 0) return retval; // else continue file based lookup } #endif char p[4096]; switch (type) { case ZT_STATE_OBJECT_IDENTITY_PUBLIC: OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "identity.public", _homePath.c_str()); break; case ZT_STATE_OBJECT_IDENTITY_SECRET: OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "identity.secret", _homePath.c_str()); break; case ZT_STATE_OBJECT_PLANET: OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "planet", _homePath.c_str()); break; case ZT_STATE_OBJECT_MOON: OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "moons.d" ZT_PATH_SEPARATOR_S "%.16llx.moon", _homePath.c_str(), (unsigned long long)id[0]); break; case ZT_STATE_OBJECT_NETWORK_CONFIG: OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "networks.d" ZT_PATH_SEPARATOR_S "%.16llx.conf", _homePath.c_str(), (unsigned long long)id[0]); break; case ZT_STATE_OBJECT_PEER: OSUtils::ztsnprintf(p, sizeof(p), "%s" ZT_PATH_SEPARATOR_S "peers.d" ZT_PATH_SEPARATOR_S "%.10llx.peer", _homePath.c_str(), (unsigned long long)id[0]); break; default: return -1; } FILE* f = fopen(p, "rb"); if (f) { int n = (int)fread(data, 1, maxlen, f); fclose(f); #if ZT_VAULT_SUPPORT if (_vaultEnabled && (type == ZT_STATE_OBJECT_IDENTITY_SECRET || type == ZT_STATE_OBJECT_IDENTITY_PUBLIC)) { // If we've gotten here while Vault is enabled, Vault does not know the key and it's been // read from disk instead. // // We should put the value in Vault and remove the local file. if (nodeVaultPutIdentity(type, data, n)) { unlink(p); } } #endif if (n >= 0) return n; } return -1; } inline int nodeWirePacketSendFunction(const int64_t localSocket, const struct sockaddr_storage* addr, const void* data, unsigned int len, unsigned int ttl) { #ifdef ZT_TCP_FALLBACK_RELAY if (_allowTcpFallbackRelay) { if (addr->ss_family == AF_INET) { // TCP fallback tunnel support, currently IPv4 only if ((len >= 16) && (reinterpret_cast(addr)->ipScope() == InetAddress::IP_SCOPE_GLOBAL)) { // Engage TCP tunnel fallback if we haven't received anything valid from a global // IP address in ZT_TCP_FALLBACK_AFTER milliseconds. If we do start getting // valid direct traffic we'll stop using it and close the socket after a while. const int64_t now = OSUtils::now(); if (_forceTcpRelay || (((now - _lastDirectReceiveFromGlobal) > ZT_TCP_FALLBACK_AFTER) && ((now - _lastRestart) > ZT_TCP_FALLBACK_AFTER))) { if (_tcpFallbackTunnel) { bool flushNow = false; { Mutex::Lock _l(_tcpFallbackTunnel->writeq_m); if (_tcpFallbackTunnel->writeq.size() < (1024 * 64)) { if (_tcpFallbackTunnel->writeq.length() == 0) { _phy.setNotifyWritable(_tcpFallbackTunnel->sock, true); flushNow = true; } const unsigned long mlen = len + 7; _tcpFallbackTunnel->writeq.push_back((char)0x17); _tcpFallbackTunnel->writeq.push_back((char)0x03); _tcpFallbackTunnel->writeq.push_back((char)0x03); // fake TLS 1.2 header _tcpFallbackTunnel->writeq.push_back((char)((mlen >> 8) & 0xff)); _tcpFallbackTunnel->writeq.push_back((char)(mlen & 0xff)); _tcpFallbackTunnel->writeq.push_back((char)4); // IPv4 _tcpFallbackTunnel->writeq.append(reinterpret_cast(reinterpret_cast(&(reinterpret_cast(addr)->sin_addr.s_addr))), 4); _tcpFallbackTunnel->writeq.append(reinterpret_cast(reinterpret_cast(&(reinterpret_cast(addr)->sin_port))), 2); _tcpFallbackTunnel->writeq.append((const char*)data, len); } } if (flushNow) { void* tmpptr = (void*)_tcpFallbackTunnel; phyOnTcpWritable(_tcpFallbackTunnel->sock, &tmpptr); } } else if (_forceTcpRelay || (((now - _lastSendToGlobalV4) < ZT_TCP_FALLBACK_AFTER) && ((now - _lastSendToGlobalV4) > (ZT_PING_CHECK_INTERVAL / 2)))) { const InetAddress addr(_fallbackRelayAddress); TcpConnection* tc = new TcpConnection(); { Mutex::Lock _l(_tcpConnections_m); _tcpConnections.push_back(tc); } tc->type = TcpConnection::TCP_TUNNEL_OUTGOING; tc->remoteAddr = addr; tc->lastReceive = OSUtils::now(); tc->parent = this; tc->sock = (PhySocket*)0; // set in connect handler tc->messageSize = 0; bool connected = false; _phy.tcpConnect(reinterpret_cast(&addr), connected, (void*)tc, true); } } _lastSendToGlobalV4 = now; } } } if (_forceTcpRelay) { // Shortcut here so that we don't emit any UDP packets return 0; } #endif // ZT_TCP_FALLBACK_RELAY // Even when relaying we still send via UDP. This way if UDP starts // working we can instantly "fail forward" to it and stop using TCP // proxy fallback, which is slow. if ((localSocket != -1) && (localSocket != 0) && (_binder.isUdpSocketValid((PhySocket*)((uintptr_t)localSocket)))) { if ((ttl) && (addr->ss_family == AF_INET)) { _phy.setIp4UdpTtl((PhySocket*)((uintptr_t)localSocket), ttl); } const bool r = _phy.udpSend((PhySocket*)((uintptr_t)localSocket), (const struct sockaddr*)addr, data, len); if ((ttl) && (addr->ss_family == AF_INET)) { _phy.setIp4UdpTtl((PhySocket*)((uintptr_t)localSocket), 255); } return ((r) ? 0 : -1); } else { return ((_binder.udpSendAll(_phy, addr, data, len, ttl)) ? 0 : -1); } } inline void nodeVirtualNetworkFrameFunction(uint64_t nwid, void** nuptr, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len) { NetworkState* n = reinterpret_cast(*nuptr); if ((! n) || (! n->tap())) { return; } n->tap()->put(MAC(sourceMac), MAC(destMac), etherType, data, len); } inline int nodePathCheckFunction(uint64_t ztaddr, const int64_t localSocket, const struct sockaddr_storage* remoteAddr) { // Make sure we're not trying to do ZeroTier-over-ZeroTier { Mutex::Lock _l(_nets_m); for (std::map::const_iterator n(_nets.begin()); n != _nets.end(); ++n) { if (n->second.tap()) { std::vector ips(n->second.tap()->ips()); for (std::vector::const_iterator i(ips.begin()); i != ips.end(); ++i) { if (i->containsAddress(*(reinterpret_cast(remoteAddr)))) { return 0; } } } } } /* Note: I do not think we need to scan for overlap with managed routes * because of the "route forking" and interface binding that we do. This * ensures (we hope) that ZeroTier traffic will still take the physical * path even if its managed routes override this for other traffic. Will * revisit if we see recursion problems. */ // Check blacklists const Hashtable >* blh = (const Hashtable >*)0; const std::vector* gbl = (const std::vector*)0; if (remoteAddr->ss_family == AF_INET) { blh = &_v4Blacklists; gbl = &_globalV4Blacklist; } else if (remoteAddr->ss_family == AF_INET6) { blh = &_v6Blacklists; gbl = &_globalV6Blacklist; } if (blh) { Mutex::Lock _l(_localConfig_m); const std::vector* l = blh->get(ztaddr); if (l) { for (std::vector::const_iterator a(l->begin()); a != l->end(); ++a) { if (a->containsAddress(*reinterpret_cast(remoteAddr))) return 0; } } } if (gbl) { for (std::vector::const_iterator a(gbl->begin()); a != gbl->end(); ++a) { if (a->containsAddress(*reinterpret_cast(remoteAddr))) return 0; } } return 1; } inline int nodePathLookupFunction(uint64_t ztaddr, int family, struct sockaddr_storage* result) { const Hashtable >* lh = (const Hashtable >*)0; if (family < 0) lh = (_node->prng() & 1) ? &_v4Hints : &_v6Hints; else if (family == AF_INET) lh = &_v4Hints; else if (family == AF_INET6) lh = &_v6Hints; else return 0; const std::vector* l = lh->get(ztaddr); if ((l) && (! l->empty())) { memcpy(result, &((*l)[(unsigned long)_node->prng() % l->size()]), sizeof(struct sockaddr_storage)); return 1; } else return 0; } inline void tapFrameHandler(uint64_t nwid, const MAC& from, const MAC& to, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len) { _node->processVirtualNetworkFrame((void*)0, OSUtils::now(), nwid, from.toInt(), to.toInt(), etherType, vlanId, data, len, &_nextBackgroundTaskDeadline); } inline void onHttpResponseFromClient(TcpConnection* tc) { _phy.close(tc->sock); } bool shouldBindInterface(const char* ifname, const InetAddress& ifaddr) { #if defined(__linux__) || defined(linux) || defined(__LINUX__) || defined(__linux) if ((ifname[0] == 'l') && (ifname[1] == 'o')) return false; // loopback if ((ifname[0] == 'z') && (ifname[1] == 't')) return false; // sanity check: zt# if ((ifname[0] == 't') && (ifname[1] == 'u') && (ifname[2] == 'n')) return false; // tun# is probably an OpenVPN tunnel or similar if ((ifname[0] == 't') && (ifname[1] == 'a') && (ifname[2] == 'p')) return false; // tap# is probably an OpenVPN tunnel or similar #endif #ifdef __APPLE__ if ((ifname[0] == 'f') && (ifname[1] == 'e') && (ifname[2] == 't') && (ifname[3] == 'h')) return false; // ... as is feth# if ((ifname[0] == 'l') && (ifname[1] == 'o')) return false; // loopback if ((ifname[0] == 'z') && (ifname[1] == 't')) return false; // sanity check: zt# if ((ifname[0] == 't') && (ifname[1] == 'u') && (ifname[2] == 'n')) return false; // tun# is probably an OpenVPN tunnel or similar if ((ifname[0] == 't') && (ifname[1] == 'a') && (ifname[2] == 'p')) return false; // tap# is probably an OpenVPN tunnel or similar if ((ifname[0] == 'u') && (ifname[1] == 't') && (ifname[2] == 'u') && (ifname[3] == 'n')) return false; // ... as is utun# #endif #ifdef __FreeBSD__ if ((ifname[0] == 'l') && (ifname[1] == 'o')) return false; // loopback if ((ifname[0] == 'z') && (ifname[1] == 't')) return false; // sanity check: zt# #endif { Mutex::Lock _l(_localConfig_m); for (std::vector::const_iterator p(_interfacePrefixBlacklist.begin()); p != _interfacePrefixBlacklist.end(); ++p) { if (! strncmp(p->c_str(), ifname, p->length())) return false; } } { // Check global blacklists const std::vector* gbl = (const std::vector*)0; if (ifaddr.ss_family == AF_INET) { gbl = &_globalV4Blacklist; } else if (ifaddr.ss_family == AF_INET6) { gbl = &_globalV6Blacklist; } if (gbl) { Mutex::Lock _l(_localConfig_m); for (std::vector::const_iterator a(gbl->begin()); a != gbl->end(); ++a) { if (a->containsAddress(ifaddr)) return false; } } } { Mutex::Lock _l(_nets_m); for (std::map::const_iterator n(_nets.begin()); n != _nets.end(); ++n) { if (n->second.tap()) { std::vector ips(n->second.tap()->ips()); for (std::vector::const_iterator i(ips.begin()); i != ips.end(); ++i) { if (i->ipsEqual(ifaddr)) return false; } #ifdef _WIN32 if (n->second.tap()->friendlyName() == ifname) return false; #endif } } } return true; } unsigned int _getRandomPort() { unsigned int randp = 0; Utils::getSecureRandom(&randp, sizeof(randp)); randp = 20000 + (randp % 45500); for (int i = 0;; ++i) { if (i > 1000) { return 0; } else if (++randp >= 65536) { randp = 20000; } if (_trialBind(randp)) break; } return randp; } bool _trialBind(unsigned int port) { struct sockaddr_in in4; struct sockaddr_in6 in6; PhySocket* tb; memset(&in4, 0, sizeof(in4)); in4.sin_family = AF_INET; in4.sin_port = Utils::hton((uint16_t)port); tb = _phy.udpBind(reinterpret_cast(&in4), (void*)0, 0); if (tb) { _phy.close(tb, false); tb = _phy.tcpListen(reinterpret_cast(&in4), (void*)0); if (tb) { _phy.close(tb, false); return true; } } memset(&in6, 0, sizeof(in6)); in6.sin6_family = AF_INET6; in6.sin6_port = Utils::hton((uint16_t)port); tb = _phy.udpBind(reinterpret_cast(&in6), (void*)0, 0); if (tb) { _phy.close(tb, false); tb = _phy.tcpListen(reinterpret_cast(&in6), (void*)0); if (tb) { _phy.close(tb, false); return true; } } return false; } }; static int SnodeVirtualNetworkConfigFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t nwid, void** nuptr, enum ZT_VirtualNetworkConfigOperation op, const ZT_VirtualNetworkConfig* nwconf) { return reinterpret_cast(uptr)->nodeVirtualNetworkConfigFunction(nwid, nuptr, op, nwconf); } static void SnodeEventCallback(ZT_Node* node, void* uptr, void* tptr, enum ZT_Event event, const void* metaData) { reinterpret_cast(uptr)->nodeEventCallback(event, metaData); } static void SnodeStatePutFunction(ZT_Node* node, void* uptr, void* tptr, enum ZT_StateObjectType type, const uint64_t id[2], const void* data, int len) { reinterpret_cast(uptr)->nodeStatePutFunction(type, id, data, len); } static int SnodeStateGetFunction(ZT_Node* node, void* uptr, void* tptr, enum ZT_StateObjectType type, const uint64_t id[2], void* data, unsigned int maxlen) { return reinterpret_cast(uptr)->nodeStateGetFunction(type, id, data, maxlen); } static int SnodeWirePacketSendFunction(ZT_Node* node, void* uptr, void* tptr, int64_t localSocket, const struct sockaddr_storage* addr, const void* data, unsigned int len, unsigned int ttl) { return reinterpret_cast(uptr)->nodeWirePacketSendFunction(localSocket, addr, data, len, ttl); } static void SnodeVirtualNetworkFrameFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t nwid, void** nuptr, uint64_t sourceMac, uint64_t destMac, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len) { reinterpret_cast(uptr)->nodeVirtualNetworkFrameFunction(nwid, nuptr, sourceMac, destMac, etherType, vlanId, data, len); } static int SnodePathCheckFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t ztaddr, int64_t localSocket, const struct sockaddr_storage* remoteAddr) { return reinterpret_cast(uptr)->nodePathCheckFunction(ztaddr, localSocket, remoteAddr); } static int SnodePathLookupFunction(ZT_Node* node, void* uptr, void* tptr, uint64_t ztaddr, int family, struct sockaddr_storage* result) { return reinterpret_cast(uptr)->nodePathLookupFunction(ztaddr, family, result); } static void StapFrameHandler(void* uptr, void* tptr, uint64_t nwid, const MAC& from, const MAC& to, unsigned int etherType, unsigned int vlanId, const void* data, unsigned int len) { reinterpret_cast(uptr)->tapFrameHandler(nwid, from, to, etherType, vlanId, data, len); } static int ShttpOnMessageBegin(http_parser* parser) { TcpConnection* tc = reinterpret_cast(parser->data); tc->currentHeaderField = ""; tc->currentHeaderValue = ""; tc->messageSize = 0; tc->url.clear(); tc->status.clear(); tc->headers.clear(); tc->readq.clear(); return 0; } static int ShttpOnUrl(http_parser* parser, const char* ptr, size_t length) { TcpConnection* tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; tc->url.append(ptr, length); return 0; } #if (HTTP_PARSER_VERSION_MAJOR >= 2) && (HTTP_PARSER_VERSION_MINOR >= 2) static int ShttpOnStatus(http_parser* parser, const char* ptr, size_t length) #else static int ShttpOnStatus(http_parser* parser) #endif { return 0; } static int ShttpOnHeaderField(http_parser* parser, const char* ptr, size_t length) { TcpConnection* tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; if ((tc->currentHeaderField.length()) && (tc->currentHeaderValue.length())) { tc->headers[tc->currentHeaderField] = tc->currentHeaderValue; tc->currentHeaderField = ""; tc->currentHeaderValue = ""; } for (size_t i = 0; i < length; ++i) tc->currentHeaderField.push_back(OSUtils::toLower(ptr[i])); return 0; } static int ShttpOnValue(http_parser* parser, const char* ptr, size_t length) { TcpConnection* tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; tc->currentHeaderValue.append(ptr, length); return 0; } static int ShttpOnHeadersComplete(http_parser* parser) { TcpConnection* tc = reinterpret_cast(parser->data); if ((tc->currentHeaderField.length()) && (tc->currentHeaderValue.length())) tc->headers[tc->currentHeaderField] = tc->currentHeaderValue; return 0; } static int ShttpOnBody(http_parser* parser, const char* ptr, size_t length) { TcpConnection* tc = reinterpret_cast(parser->data); tc->messageSize += (unsigned long)length; if (tc->messageSize > ZT_MAX_HTTP_MESSAGE_SIZE) return -1; tc->readq.append(ptr, length); return 0; } static int ShttpOnMessageComplete(http_parser* parser) { TcpConnection* tc = reinterpret_cast(parser->data); if (tc->type == TcpConnection::TCP_HTTP_INCOMING) {} else { tc->parent->onHttpResponseFromClient(tc); } return 0; } } // anonymous namespace std::string OneService::platformDefaultHomePath() { return OSUtils::platformDefaultHomePath(); } OneService* OneService::newInstance(const char* hp, unsigned int port) { return new OneServiceImpl(hp, port); } OneService::~OneService() { } } // namespace ZeroTier