/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2024-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_UTILS_HPP #define ZT_UTILS_HPP #include "Constants.hpp" #ifdef ZT_ARCH_X64 #include #include #include #endif namespace ZeroTier { namespace Utils { #ifndef __WINDOWS__ #include #endif // Macros to convert endian-ness at compile time for constants. #if __BYTE_ORDER == __LITTLE_ENDIAN #define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)((uint16_t)((uint16_t)(x) << 8U) | (uint16_t)((uint16_t)(x) >> 8U))) #define ZT_CONST_TO_BE_UINT64(x) ( \ (((uint64_t)(x) & 0x00000000000000ffULL) << 56U) | \ (((uint64_t)(x) & 0x000000000000ff00ULL) << 40U) | \ (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24U) | \ (((uint64_t)(x) & 0x00000000ff000000ULL) << 8U) | \ (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8U) | \ (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24U) | \ (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40U) | \ (((uint64_t)(x) & 0xff00000000000000ULL) >> 56U)) #else #define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)(x)) #define ZT_CONST_TO_BE_UINT64(x) ((uint64_t)(x)) #endif #ifdef ZT_ARCH_X64 struct CPUIDRegisters { uint32_t eax,ebx,ecx,edx; bool rdrand; bool aes; CPUIDRegisters(); }; extern const CPUIDRegisters CPUID; #endif /** * 256 zero bits / 32 zero bytes */ extern const uint64_t ZERO256[4]; /** * Hexadecimal characters 0-f */ extern const char HEXCHARS[16]; /** * Lock memory to prevent swapping out to secondary storage (if possible) * * This is used to attempt to prevent the swapping out of long-term stored secure * credentials like secret keys. It isn't supported on all platforms and may not * be absolutely guaranteed to work, but it's a countermeasure. * * @param p Memory to lock * @param l Size of memory */ static ZT_INLINE void memoryLock(const void *const p,const unsigned int l) noexcept { #ifndef __WINDOWS__ mlock(p,l); #endif } /** * Unlock memory locked with memoryLock() * * @param p Memory to unlock * @param l Size of memory */ static ZT_INLINE void memoryUnlock(const void *const p,const unsigned int l) noexcept { #ifndef __WINDOWS__ munlock(p,l); #endif } /** * Perform a time-invariant binary comparison * * @param a First binary string * @param b Second binary string * @param len Length of strings * @return True if strings are equal */ bool secureEq(const void *a,const void *b,unsigned int len) noexcept; /** * Be absolutely sure to zero memory * * This uses some hacks to be totally sure the compiler does not optimize it out. * * @param ptr Memory to zero * @param len Length of memory in bytes */ void burn(void *ptr,unsigned int len); /** * @param n Number to convert * @param s Buffer, at least 24 bytes in size * @return String containing 'n' in base 10 form */ char *decimal(unsigned long n,char s[24]) noexcept; /** * Convert an unsigned integer into hex * * @param i Any unsigned integer * @param s Buffer to receive hex, must be at least (2*sizeof(i))+1 in size or overflow will occur. * @return Pointer to s containing hex string with trailing zero byte */ char *hex(uint8_t i,char s[3]) noexcept; /** * Convert an unsigned integer into hex * * @param i Any unsigned integer * @param s Buffer to receive hex, must be at least (2*sizeof(i))+1 in size or overflow will occur. * @return Pointer to s containing hex string with trailing zero byte */ char *hex(uint16_t i,char s[5]) noexcept; /** * Convert an unsigned integer into hex * * @param i Any unsigned integer * @param s Buffer to receive hex, must be at least (2*sizeof(i))+1 in size or overflow will occur. * @return Pointer to s containing hex string with trailing zero byte */ char *hex(uint32_t i,char s[9]) noexcept; /** * Convert an unsigned integer into hex * * @param i Any unsigned integer * @param s Buffer to receive hex, must be at least (2*sizeof(i))+1 in size or overflow will occur. * @return Pointer to s containing hex string with trailing zero byte */ char *hex(uint64_t i,char s[17]) noexcept; /** * Decode an unsigned integer in hex format * * @param s String to decode, non-hex chars are ignored * @return Unsigned integer */ uint64_t unhex(const char *s) noexcept; /** * Convert a byte array into hex * * @param d Bytes * @param l Length of bytes * @param s String buffer, must be at least (l*2)+1 in size or overflow will occur * @return Pointer to filled string buffer */ char *hex(const void *d,unsigned int l,char *s) noexcept; /** * Decode a hex string * * @param h Hex C-string (non hex chars are ignored) * @param hlen Maximum length of string (will stop at terminating zero) * @param buf Output buffer * @param buflen Length of output buffer * @return Number of written bytes */ unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen) noexcept; /** * Generate secure random bytes * * This will try to use whatever OS sources of entropy are available. It's * guarded by an internal mutex so it's thread-safe. * * @param buf Buffer to fill * @param bytes Number of random bytes to generate */ void getSecureRandom(void *buf,unsigned int bytes) noexcept; /** * @return Secure random 64-bit integer */ uint64_t getSecureRandomU64() noexcept; /** * Encode string to base32 * * @param data Binary data to encode * @param length Length of data in bytes * @param result Result buffer * @param bufSize Size of result buffer * @return Number of bytes written */ int b32e(const uint8_t *data,int length,char *result,int bufSize) noexcept; /** * Decode base32 string * * @param encoded C-string in base32 format (non-base32 characters are ignored) * @param result Result buffer * @param bufSize Size of result buffer * @return Number of bytes written or -1 on error */ int b32d(const char *encoded, uint8_t *result, int bufSize) noexcept; /** * Get a non-cryptographic random integer */ uint64_t random() noexcept; /** * Perform a safe C string copy, ALWAYS null-terminating the result * * This will never ever EVER result in dest[] not being null-terminated * regardless of any input parameter (other than len==0 which is invalid). * * @param dest Destination buffer (must not be NULL) * @param len Length of dest[] (if zero, false is returned and nothing happens) * @param src Source string (if NULL, dest will receive a zero-length string and true is returned) * @return True on success, false on overflow (buffer will still be 0-terminated) */ bool scopy(char *dest,unsigned int len,const char *src) noexcept; /** * Mix bits in a 64-bit integer (non-cryptographic) * * https://nullprogram.com/blog/2018/07/31/ * * @param x Integer to mix * @return Hashed value */ static ZT_INLINE uint64_t hash64(uint64_t x) noexcept { x ^= x >> 30U; x *= 0xbf58476d1ce4e5b9ULL; x ^= x >> 27U; x *= 0x94d049bb133111ebULL; x ^= x >> 31U; return x; } /** * Check if a buffer's contents are all zero */ static ZT_INLINE bool allZero(const void *const b,unsigned int l) noexcept { for(unsigned int i=0;i(b)[i] != 0) return false; } return true; } /** * Wrapper around reentrant strtok functions, which differ in name by platform * * @param str String to tokenize or NULL for subsequent calls * @param delim Delimiter * @param saveptr Pointer to pointer where function can save state * @return Next token or NULL if none */ static ZT_INLINE char *stok(char *str,const char *delim,char **saveptr) noexcept { #ifdef __WINDOWS__ return strtok_s(str,delim,saveptr); #else return strtok_r(str,delim,saveptr); #endif } static ZT_INLINE unsigned int strToUInt(const char *s) noexcept { return (unsigned int)strtoul(s,nullptr,10); } static ZT_INLINE unsigned long long hexStrToU64(const char *s) noexcept { #ifdef __WINDOWS__ return (unsigned long long)_strtoui64(s,nullptr,16); #else return strtoull(s,nullptr,16); #endif } /** * Compute 32-bit FNV-1a checksum * * See: http://www.isthe.com/chongo/tech/comp/fnv/ * * @param data Data to checksum * @param len Length of data * @return FNV1a checksum */ static ZT_INLINE uint32_t fnv1a32(const void *const data,const unsigned int len) noexcept { uint32_t h = 0x811c9dc5; const uint32_t p = 0x01000193; for(unsigned int i=0;i(data)[i]) * p; return h; } #ifdef __GNUC__ static ZT_INLINE unsigned int countBits(const uint8_t v) noexcept { return (unsigned int)__builtin_popcount((unsigned int)v); } static ZT_INLINE unsigned int countBits(const uint16_t v) noexcept { return (unsigned int)__builtin_popcount((unsigned int)v); } static ZT_INLINE unsigned int countBits(const uint32_t v) noexcept { return (unsigned int)__builtin_popcountl((unsigned long)v); } static ZT_INLINE unsigned int countBits(const uint64_t v) noexcept{ return (unsigned int)__builtin_popcountll((unsigned long long)v); } #else template static ZT_INLINE unsigned int countBits(T v) noexcept { v = v - ((v >> 1) & (T)~(T)0/3); v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); v = (v + (v >> 4)) & (T)~(T)0/255*15; return (unsigned int)((v * ((~((T)0))/((T)255))) >> ((sizeof(T) - 1) * 8)); } #endif /** * Unconditionally swap bytes regardless of host byte order * * @param n Integer to swap * @return Integer with bytes reversed */ static ZT_INLINE uint64_t swapBytes(const uint64_t n) noexcept { #ifdef __GNUC__ return __builtin_bswap64(n); #else #ifdef _MSC_VER return (uint64_t)_byteswap_uint64((unsigned __int64)n); #else return ( ((n & 0x00000000000000ffULL) << 56) | ((n & 0x000000000000ff00ULL) << 40) | ((n & 0x0000000000ff0000ULL) << 24) | ((n & 0x00000000ff000000ULL) << 8) | ((n & 0x000000ff00000000ULL) >> 8) | ((n & 0x0000ff0000000000ULL) >> 24) | ((n & 0x00ff000000000000ULL) >> 40) | ((n & 0xff00000000000000ULL) >> 56) ); #endif #endif } /** * Unconditionally swap bytes regardless of host byte order * * @param n Integer to swap * @return Integer with bytes reversed */ static ZT_INLINE uint32_t swapBytes(const uint32_t n) noexcept { #if defined(__GNUC__) return __builtin_bswap32(n); #else #ifdef _MSC_VER return (uint32_t)_byteswap_ulong((unsigned long)n); #else return htonl(n); #endif #endif } /** * Unconditionally swap bytes regardless of host byte order * * @param n Integer to swap * @return Integer with bytes reversed */ static ZT_INLINE uint16_t swapBytes(const uint16_t n) noexcept { #if defined(__GNUC__) return __builtin_bswap16(n); #else #ifdef _MSC_VER return (uint16_t)_byteswap_ushort((unsigned short)n); #else return htons(n); #endif #endif } // These are helper adapters to load and swap integer types special cased by size // to work with all typedef'd variants, signed/unsigned, etc. template class _swap_bytes_bysize; template class _swap_bytes_bysize { public: static ZT_INLINE I s(const I n) noexcept { return n; } }; template class _swap_bytes_bysize { public: static ZT_INLINE I s(const I n) noexcept { return (I)swapBytes((uint16_t)n); } }; template class _swap_bytes_bysize { public: static ZT_INLINE I s(const I n) noexcept { return (I)swapBytes((uint32_t)n); } }; template class _swap_bytes_bysize { public: static ZT_INLINE I s(const I n) noexcept { return (I)swapBytes((uint64_t)n); } }; template class _load_be_bysize; template class _load_be_bysize { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return p[0]; }}; template class _load_be_bysize { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)(((unsigned int)p[0] << 8U) | (unsigned int)p[1]); }}; template class _load_be_bysize { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)(((uint32_t)p[0] << 24U) | ((uint32_t)p[1] << 16U) | ((uint32_t)p[2] << 8U) | (uint32_t)p[3]); }}; template class _load_be_bysize { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)(((uint64_t)p[0] << 56U) | ((uint64_t)p[1] << 48U) | ((uint64_t)p[2] << 40U) | ((uint64_t)p[3] << 32U) | ((uint64_t)p[4] << 24U) | ((uint64_t)p[5] << 16U) | ((uint64_t)p[6] << 8U) | (uint64_t)p[7]); }}; template class _load_le_bysize; template class _load_le_bysize { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return p[0]; }}; template class _load_le_bysize { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)((unsigned int)p[0] | ((unsigned int)p[1] << 8U)); }}; template class _load_le_bysize { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)((uint32_t)p[0] | ((uint32_t)p[1] << 8U) | ((uint32_t)p[2] << 16U) | ((uint32_t)p[3] << 24U)); }}; template class _load_le_bysize { public: static ZT_INLINE I l(const uint8_t *const p) noexcept { return (I)((uint64_t)p[0] | ((uint64_t)p[1] << 8U) | ((uint64_t)p[2] << 16U) | ((uint64_t)p[3] << 24U) | ((uint64_t)p[4] << 32U) | ((uint64_t)p[5] << 40U) | ((uint64_t)p[6] << 48U) | ((uint64_t)p[7]) << 56U); }}; /** * Convert any signed or unsigned integer type to big-endian ("network") byte order * * @tparam I Integer type (usually inferred) * @param n Value to convert * @return Value in big-endian order */ template static ZT_INLINE I hton(const I n) noexcept { #if __BYTE_ORDER == __LITTLE_ENDIAN return _swap_bytes_bysize::s(n); #else return n; #endif } /** * Convert any signed or unsigned integer type to host byte order from big-endian ("network") byte order * * @tparam I Integer type (usually inferred) * @param n Value to convert * @return Value in host byte order */ template static ZT_INLINE I ntoh(const I n) noexcept { #if __BYTE_ORDER == __LITTLE_ENDIAN return _swap_bytes_bysize::s(n); #else return n; #endif } /** * Copy bits from memory into an integer type without modifying their order * * @tparam I Type to load * @param p Byte stream, must be at least sizeof(I) in size * @return Loaded raw integer */ template static ZT_INLINE I loadAsIsEndian(const void *const p) noexcept { #ifdef ZT_NO_UNALIGNED_ACCESS I tmp; for(int i=0;i<(int)sizeof(I);++i) reinterpret_cast(&tmp)[i] = reinterpret_cast(p)[i]; return tmp; #else return *reinterpret_cast(p); #endif } /** * Copy bits from memory into an integer type without modifying their order * * @tparam I Type to store * @param p Byte array (must be at least sizeof(I)) * @param i Integer to store */ template static ZT_INLINE void storeAsIsEndian(void *const p,const I i) noexcept { #ifdef ZT_NO_UNALIGNED_ACCESS for(unsigned int k=0;k(p)[k] = reinterpret_cast(&i)[k]; #else *reinterpret_cast(p) = i; #endif } /** * Decode a big-endian value from a byte stream * * @tparam I Type to decode (should be unsigned e.g. uint32_t or uint64_t) * @param p Byte stream, must be at least sizeof(I) in size * @return Decoded integer */ template static ZT_INLINE I loadBigEndian(const void *const p) noexcept { #ifdef ZT_NO_UNALIGNED_ACCESS return _load_be_bysize::l(reinterpret_cast(p)); #else return ntoh(*reinterpret_cast(p)); #endif } /** * Save an integer in big-endian format * * @tparam I Integer type to store (usually inferred) * @param p Byte stream to write (must be at least sizeof(I)) * #param i Integer to write */ template static ZT_INLINE void storeBigEndian(void *const p,I i) noexcept { #ifdef ZT_NO_UNALIGNED_ACCESS storeAsIsEndian(p,hton(i)); #else *reinterpret_cast(p) = hton(i); #endif } /** * Decode a little-endian value from a byte stream * * @tparam I Type to decode * @param p Byte stream, must be at least sizeof(I) in size * @return Decoded integer */ template static ZT_INLINE I loadLittleEndian(const void *const p) noexcept { #if __BYTE_ORDER == __BIG_ENDIAN || defined(ZT_NO_UNALIGNED_ACCESS) return _load_le_bysize::l(reinterpret_cast(p)); #else return *reinterpret_cast(p); #endif } /** * Save an integer in little-endian format * * @tparam I Integer type to store (usually inferred) * @param p Byte stream to write (must be at least sizeof(I)) * #param i Integer to write */ template static ZT_INLINE void storeLittleEndian(void *const p,const I i) noexcept { #if __BYTE_ORDER == __BIG_ENDIAN storeAsIsEndian(p,_swap_bytes_bysize::s(i)); #else #ifdef ZT_NO_UNALIGNED_ACCESS storeAsIsEndian(p,i); #else *reinterpret_cast(p) = i; #endif #endif } /** * Copy memory block whose size is known at compile time * * @tparam L Size of memory * @param dest Destination memory * @param src Source memory */ template static ZT_INLINE void copy(void *const dest,const void *const src) noexcept { #ifdef ZT_ARCH_X64 uint8_t *volatile d = reinterpret_cast(dest); const uint8_t *s = reinterpret_cast(src); for(unsigned int i=0;i<(L >> 6U);++i) { __m128i x0 = _mm_loadu_si128(reinterpret_cast(s)); __m128i x1 = _mm_loadu_si128(reinterpret_cast(s + 16)); __m128i x2 = _mm_loadu_si128(reinterpret_cast(s + 32)); __m128i x3 = _mm_loadu_si128(reinterpret_cast(s + 48)); s += 64; _mm_storeu_si128(reinterpret_cast<__m128i *>(d),x0); _mm_storeu_si128(reinterpret_cast<__m128i *>(d + 16),x1); _mm_storeu_si128(reinterpret_cast<__m128i *>(d + 32),x2); _mm_storeu_si128(reinterpret_cast<__m128i *>(d + 48),x3); d += 64; } if ((L & 32U) != 0) { __m128i x0 = _mm_loadu_si128(reinterpret_cast(s)); __m128i x1 = _mm_loadu_si128(reinterpret_cast(s + 16)); s += 32; _mm_storeu_si128(reinterpret_cast<__m128i *>(d),x0); _mm_storeu_si128(reinterpret_cast<__m128i *>(d + 16),x1); d += 32; } if ((L & 16U) != 0) { __m128i x0 = _mm_loadu_si128(reinterpret_cast(s)); s += 16; _mm_storeu_si128(reinterpret_cast<__m128i *>(d),x0); d += 16; } if ((L & 8U) != 0) { *reinterpret_cast(d) = *reinterpret_cast(s); s += 8; d += 8; } if ((L & 4U) != 0) { *reinterpret_cast(d) = *reinterpret_cast(s); s += 4; d += 4; } if ((L & 2U) != 0) { *reinterpret_cast(d) = *reinterpret_cast(s); s += 2; d += 2; } if ((L & 1U) != 0) { *d = *s; } #else memcpy(dest,src,L); #endif } /** * Copy memory block whose size is known at run time * * @param dest Destination memory * @param src Source memory * @param len Bytes to copy */ static ZT_INLINE void copy(void *const dest,const void *const src,unsigned int len) noexcept { memcpy(dest,src,len); } /** * Zero memory block whose size is known at compile time * * @tparam L Size in bytes * @param dest Memory to zero */ template static ZT_INLINE void zero(void *const dest) noexcept { #ifdef ZT_ARCH_X64 uint8_t *volatile d = reinterpret_cast(dest); __m128i z = _mm_setzero_si128(); for(unsigned int i=0;i<(L >> 6U);++i) { _mm_storeu_si128(reinterpret_cast<__m128i *>(d),z); _mm_storeu_si128(reinterpret_cast<__m128i *>(d + 16),z); _mm_storeu_si128(reinterpret_cast<__m128i *>(d + 32),z); _mm_storeu_si128(reinterpret_cast<__m128i *>(d + 48),z); d += 64; } if ((L & 32U) != 0) { _mm_storeu_si128(reinterpret_cast<__m128i *>(d),z); _mm_storeu_si128(reinterpret_cast<__m128i *>(d + 16),z); d += 32; } if ((L & 16U) != 0) { _mm_storeu_si128(reinterpret_cast<__m128i *>(d),z); d += 16; } if ((L & 8U) != 0) { *reinterpret_cast(d) = 0; d += 8; } if ((L & 4U) != 0) { *reinterpret_cast(d) = 0; d += 4; } if ((L & 2U) != 0) { *reinterpret_cast(d) = 0; d += 2; } if ((L & 1U) != 0) { *d = 0; } #else memset(dest,0,L); #endif } /** * Zero memory block whose size is known at run time * * @param dest Memory to zero * @param len Size in bytes */ static ZT_INLINE void zero(void *const dest,const unsigned int len) noexcept { memset(dest,0,len); } } // namespace Utils } // namespace ZeroTier #endif