/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ /* * This is a high-throughput minimal root server. It implements only * those functions of a ZT node that a root must perform and does so * using highly efficient multithreaded I/O code. It's only been * thoroughly tested on Linux but should also run on BSDs. * * Root configuration file format (JSON): * * { * "name": Name of this root for documentation/UI purposes (string) * "port": UDP port (int) * "httpPort": Local HTTP port for basic stats (int) * "relayMaxHops": Max hops (up to 7) * "planetFile": Location of planet file for pre-2.x peers (string) * "statsRoot": If present, path to periodically save stats files (string) * "s_siblings": [ * { * "name": Sibling name for UI/documentation purposes (string) * "id": Full public identity of subling (string) * "ip": IP address of sibling (string) * "port": port of subling (for ZeroTier UDP) (int) * }, ... * ] * } * * The only required field is port. If statsRoot is present then files * are periodically written there containing the root's current state. * It should be a memory filesystem like /dev/shm on Linux as these * files are large and rewritten frequently and do not need to be * persisted. * * s_siblings are other root servers that should receive packets to peers * that we can't find. This can occur due to e.g. network topology * hiccups, IP blockages, etc. s_siblings are used in the order in which * they appear with the first alive sibling being used. */ #include "../ext/cpp-httplib/httplib.h" #include "../ext/json/json.hpp" #include "../node/Address.hpp" #include "../node/CertificateOfMembership.hpp" #include "../node/Constants.hpp" #include "../node/Identity.hpp" #include "../node/InetAddress.hpp" #include "../node/Meter.hpp" #include "../node/MulticastGroup.hpp" #include "../node/Mutex.hpp" #include "../node/Packet.hpp" #include "../node/SharedPtr.hpp" #include "../node/Utils.hpp" #include "../node/AES.hpp" #include "../osdep/BlockingQueue.hpp" #include "../osdep/OSUtils.hpp" #include "geoip-html.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace ZeroTier; using json = nlohmann::json; #ifdef MSG_DONTWAIT #define SENDTO_FLAGS MSG_DONTWAIT #define RECVFROM_FLAGS 0 #else #define SENDTO_FLAGS 0 #define RECVFROM_FLAGS 0 #endif ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// /** * RootPeer is a normal peer known to this root * * This struct must remain memcpy-able. Identity, InetAddress, and * AtomicCounter all satisfy this. Take care when adding fields that * this remains true. */ struct RootPeer { ZT_ALWAYS_INLINE RootPeer() : v4s(-1), v6s(-1), lastSend(0), lastReceive(0), lastReceiveV4(0), lastReceiveV6(0), lastEcho(0), lastHello(0), vProto(-1), vMajor(-1), vMinor(-1), vRev(-1), identityValidated(false) { } ZT_ALWAYS_INLINE ~RootPeer() { Utils::burn(key, sizeof(key)); } Identity id; // Identity uint8_t key[32]; // Shared secret key InetAddress ip4, ip6; // IPv4 and IPv6 addresses int v4s, v6s; // IPv4 and IPv6 sockets int64_t lastSend; // Time of last send (any packet) int64_t lastReceive; // Time of last receive (any packet) int64_t lastReceiveV4; // Time of last IPv4 receive int64_t lastReceiveV6; // Time of last IPv6 receive int64_t lastEcho; // Time of last received ECHO int64_t lastHello; // Time of last received HELLO int vProto; // Protocol version or -1 if unknown int vMajor, vMinor, vRev; // Peer version or -1,-1,-1 if unknown bool identityValidated; // Identity has been fully verified AtomicCounter __refCount; }; // Hashers for std::unordered_map struct IdentityHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Identity& id) const { return (std::size_t)id.hashCode(); } }; struct AddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const Address& a) const { return (std::size_t)a.toInt(); } }; struct InetAddressHasher { ZT_ALWAYS_INLINE std::size_t operator()(const InetAddress& ip) const { return (std::size_t)ip.hashCode(); } }; struct MulticastGroupHasher { ZT_ALWAYS_INLINE std::size_t operator()(const MulticastGroup& mg) const { return (std::size_t)mg.hashCode(); } }; // An ordered tuple key representing an introduction of one peer to another struct RendezvousKey { RendezvousKey(const Address& aa, const Address& bb) { if (aa > bb) { a = aa; b = bb; } else { a = bb; b = aa; } } Address a, b; ZT_ALWAYS_INLINE bool operator==(const RendezvousKey& k) const { return ((a == k.a) && (b == k.b)); } ZT_ALWAYS_INLINE bool operator!=(const RendezvousKey& k) const { return ((a != k.a) || (b != k.b)); } struct Hasher { ZT_ALWAYS_INLINE std::size_t operator()(const RendezvousKey& k) const { return (std::size_t)(k.a.toInt() ^ k.b.toInt()); } }; }; struct RendezvousStats { RendezvousStats() : count(0), ts(0) { } int64_t count; int64_t ts; }; // These fields are not locked as they're only initialized on startup or are atomic static int64_t s_startTime; // Time service was started static std::vector s_ports; // Ports to bind for UDP traffic static int s_relayMaxHops = 0; // Max relay hops static Identity s_self; // My identity (including secret) static std::atomic_bool s_run; // Remains true until shutdown is ordered static json s_config; // JSON config file contents static std::string s_statsRoot; // Root to write stats, peers, etc. static std::atomic_bool s_geoInit; // True if geoIP data is initialized static std::string s_googleMapsAPIKey; // Google maps API key for GeoIP /map feature // These are only modified during GeoIP database load (if enabled) and become static after s_geoInit is set to true. static std::map, std::pair > s_geoIp4; static std::map, std::array >, std::pair > s_geoIp6; // Rate meters for statistical purposes (locks are internal to Meter) static Meter s_inputRate; static Meter s_outputRate; static Meter s_forwardRate; static Meter s_discardedForwardRate; // These fields are locked using mutexes below as they're modified during runtime static std::string s_planet; static std::vector > s_peers; static std::vector > s_peersToValidate; static std::unordered_map, MulticastGroupHasher> > s_multicastSubscriptions; static std::unordered_map, AddressHasher> s_peersByVirtAddr; static std::unordered_map s_rendezvousTracking; static std::mutex s_planet_l; static std::mutex s_peers_l; static std::mutex s_peersToValidate_l; static std::mutex s_multicastSubscriptions_l; static std::mutex s_peersByVirtAddr_l; static std::mutex s_rendezvousTracking_l; ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// // Construct GeoIP key for IPv4 IPs static ZT_ALWAYS_INLINE uint32_t ip4ToH32(const InetAddress& ip) { return Utils::ntoh((uint32_t)(((const struct sockaddr_in*)&ip)->sin_addr.s_addr)); } // Construct GeoIP key for IPv6 IPs static ZT_ALWAYS_INLINE std::array ip6ToH128(const InetAddress& ip) { std::array i128; memcpy(i128.data(), ip.rawIpData(), 16); i128[0] = Utils::ntoh(i128[0]); i128[1] = Utils::ntoh(i128[1]); return i128; } #define ZT_PACKET_IDX_EXTENDED_ARMOR_START 19 static void handlePacket(const int sock, const InetAddress* const ip, Packet& pkt) { char ipstr[128], ipstr2[128], astr[32], astr2[32], tmpstr[256]; const bool fragment = pkt[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR; const Address source(pkt.source()); const Address dest(pkt.destination()); const int64_t now = OSUtils::now(); s_inputRate.log(now, pkt.size()); if ((! fragment) && (pkt.size() < ZT_PROTO_MIN_PACKET_LENGTH)) return; if ((! fragment) && (! pkt.fragmented()) && (dest == s_self.address())) { SharedPtr peer; if ((pkt.cipher() == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE) && pkt.extendedArmor()) { if (pkt.size() < (ZT_PROTO_MIN_PACKET_LENGTH + 32)) { return; } uint8_t ephemeralSymmetric[64]; C25519::agree(s_self.c25519SecretKey(), (const uint8_t *)pkt.data() + (pkt.size() - 32), ephemeralSymmetric); SHA512(ephemeralSymmetric, ephemeralSymmetric, 32); AES cipher(ephemeralSymmetric); uint32_t ctrIv[4]; memcpy(ctrIv, pkt.data(), 12); ctrIv[3] = 0; cipher.ctr((const uint8_t *)ctrIv, (const uint8_t *)pkt.data() + ZT_PACKET_IDX_EXTENDED_ARMOR_START, (pkt.size() - ZT_PACKET_IDX_EXTENDED_ARMOR_START) - 32, (uint8_t *)pkt.data() + ZT_PACKET_IDX_EXTENDED_ARMOR_START); pkt.setSize(pkt.size() - 32); } // If this is an un-encrypted HELLO, either learn a new peer or verify // that this is a peer we already know. if ((pkt.cipher() == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE) && (pkt.verb() == Packet::VERB_HELLO)) { Identity id; if (id.deserialize(pkt, ZT_PROTO_VERB_HELLO_IDX_IDENTITY)) { { std::lock_guard p_l(s_peersByVirtAddr_l); auto p = s_peersByVirtAddr.find(source); if (p != s_peersByVirtAddr.end()) { peer = p->second; } } if (peer) { if (unlikely(peer->id != id)) { printf("%s HELLO rejected: identity address collision!" ZT_EOL_S, ip->toString(ipstr)); uint8_t key[48]; if (s_self.agree(id, key)) { const uint64_t origId = pkt.packetId(); pkt.reset(source, s_self.address(), Packet::VERB_ERROR); pkt.append((uint8_t)Packet::VERB_HELLO); pkt.append(origId); pkt.append((uint8_t)Packet::ERROR_IDENTITY_COLLISION); pkt.armor(key, true); sendto(sock, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)ip, (socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); } return; } } else { peer.set(new RootPeer); peer->identityValidated = false; if (! s_self.agree(id, peer->key)) { printf("%s HELLO rejected: key agreement failed" ZT_EOL_S, ip->toString(ipstr)); return; } if (! pkt.dearmor(peer->key)) { printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S, ip->toString(ipstr)); return; } if (! pkt.uncompress()) { printf("%s HELLO rejected: decompression failed" ZT_EOL_S, ip->toString(ipstr)); return; } peer->id = id; peer->lastReceive = now; { std::lock_guard pbv_l(s_peersByVirtAddr_l); s_peersByVirtAddr[id.address()] = peer; } { std::lock_guard pl(s_peers_l); s_peers.emplace_back(peer); } { std::lock_guard pv(s_peersToValidate_l); s_peersToValidate.emplace_back(peer); } } } } if (! peer) { { std::lock_guard pbv_l(s_peersByVirtAddr_l); auto p = s_peersByVirtAddr.find(source); if (p != s_peersByVirtAddr.end()) { peer = p->second; } } if (peer) { if (! pkt.dearmor(peer->key)) { printf("%s HELLO rejected: packet authentication failed" ZT_EOL_S, ip->toString(ipstr)); return; } if (! pkt.uncompress()) { printf("%s packet rejected: decompression failed" ZT_EOL_S, ip->toString(ipstr)); return; } } else { return; } } const int64_t now = OSUtils::now(); if (ip->isV4()) { peer->ip4 = ip; peer->v4s = sock; peer->lastReceiveV4 = now; if ((now - peer->lastReceiveV6) > ZT_PEER_ACTIVITY_TIMEOUT) peer->v6s = -1; } else if (ip->isV6()) { peer->ip6 = ip; peer->v6s = sock; peer->lastReceiveV6 = now; if ((now - peer->lastReceiveV4) > ZT_PEER_ACTIVITY_TIMEOUT) peer->v4s = -1; } peer->lastReceive = now; switch (pkt.verb()) { case Packet::VERB_HELLO: try { if ((now - peer->lastHello) > 250) { peer->lastHello = now; peer->vProto = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION]; peer->vMajor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION]; peer->vMinor = (int)pkt[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION]; peer->vRev = (int)pkt.template at(ZT_PROTO_VERB_HELLO_IDX_REVISION); const uint64_t origId = pkt.packetId(); const uint64_t ts = pkt.template at(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP); pkt.reset(source, s_self.address(), Packet::VERB_OK); pkt.append((uint8_t)Packet::VERB_HELLO); pkt.append(origId); pkt.append(ts); pkt.append((uint8_t)ZT_PROTO_VERSION); pkt.append((uint8_t)0); pkt.append((uint8_t)0); pkt.append((uint16_t)0); ip->serialize(pkt); if (peer->vProto < 20) { // send planet file for pre-2.x peers std::lock_guard pl(s_planet_l); if (s_planet.length() > 0) { pkt.append((uint16_t)s_planet.size()); pkt.append((const uint8_t*)s_planet.data(), s_planet.size()); } } pkt.armor(peer->key, true); sendto(sock, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)ip, (socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); s_outputRate.log(now, pkt.size()); peer->lastSend = now; } } catch (...) { printf("* unexpected exception handling HELLO from %s" ZT_EOL_S, ip->toString(ipstr)); } break; case Packet::VERB_ECHO: try { if ((now - peer->lastEcho) > 500) { peer->lastEcho = now; Packet outp(source, s_self.address(), Packet::VERB_OK); outp.append((uint8_t)Packet::VERB_ECHO); outp.append(pkt.packetId()); outp.append(((const uint8_t*)pkt.data()) + ZT_PACKET_IDX_PAYLOAD, pkt.size() - ZT_PACKET_IDX_PAYLOAD); outp.compress(); outp.armor(peer->key, true); sendto(sock, outp.data(), outp.size(), SENDTO_FLAGS, (const struct sockaddr*)ip, (socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); s_outputRate.log(now, outp.size()); peer->lastSend = now; } } catch (...) { printf("* unexpected exception handling ECHO from %s" ZT_EOL_S, ip->toString(ipstr)); } case Packet::VERB_WHOIS: try { std::vector > results; results.reserve(4); { std::lock_guard l(s_peersByVirtAddr_l); for (unsigned int ptr = ZT_PACKET_IDX_PAYLOAD; (ptr + ZT_ADDRESS_LENGTH) <= pkt.size(); ptr += ZT_ADDRESS_LENGTH) { auto p = s_peersByVirtAddr.find(Address(pkt.field(ptr, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH)); if (p != s_peersByVirtAddr.end()) { results.push_back(p->second); } } } if (! results.empty()) { const uint64_t origId = pkt.packetId(); pkt.reset(source, s_self.address(), Packet::VERB_OK); pkt.append((uint8_t)Packet::VERB_WHOIS); pkt.append(origId); for (auto p = results.begin(); p != results.end(); ++p) (*p)->id.serialize(pkt, false); pkt.armor(peer->key, true); sendto(sock, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)ip, (socklen_t)((ip->ss_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); s_outputRate.log(now, pkt.size()); peer->lastSend = now; } } catch (...) { printf("* unexpected exception handling ECHO from %s" ZT_EOL_S, ip->toString(ipstr)); } case Packet::VERB_MULTICAST_LIKE: try { std::lock_guard l(s_multicastSubscriptions_l); for (unsigned int ptr = ZT_PACKET_IDX_PAYLOAD; (ptr + 18) <= pkt.size(); ptr += 18) { const uint64_t nwid = pkt.template at(ptr); const MulticastGroup mg(MAC(pkt.field(ptr + 8, 6), 6), pkt.template at(ptr + 14)); s_multicastSubscriptions[nwid][mg][source] = now; } } catch (...) { printf("* unexpected exception handling MULTICAST_LIKE from %s" ZT_EOL_S, ip->toString(ipstr)); } break; case Packet::VERB_MULTICAST_GATHER: try { const uint64_t nwid = pkt.template at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID); // const unsigned int flags = pkt[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS]; const MulticastGroup mg(MAC(pkt.field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC, 6), 6), pkt.template at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI)); unsigned int gatherLimit = pkt.template at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT); if (gatherLimit > 255) gatherLimit = 255; const uint64_t origId = pkt.packetId(); pkt.reset(source, s_self.address(), Packet::VERB_OK); pkt.append((uint8_t)Packet::VERB_MULTICAST_GATHER); pkt.append(origId); pkt.append(nwid); mg.mac().appendTo(pkt); pkt.append((uint32_t)mg.adi()); { std::lock_guard l(s_multicastSubscriptions_l); auto forNet = s_multicastSubscriptions.find(nwid); if (forNet != s_multicastSubscriptions.end()) { auto forGroup = forNet->second.find(mg); if (forGroup != forNet->second.end()) { pkt.append((uint32_t)forGroup->second.size()); const unsigned int countAt = pkt.size(); pkt.addSize(2); unsigned int l = 0; for (auto g = forGroup->second.begin(); ((l < gatherLimit) && (g != forGroup->second.end())); ++g) { if (g->first != source) { ++l; g->first.appendTo(pkt); } } if (l > 0) { pkt.setAt(countAt, (uint16_t)l); pkt.armor(peer->key, true); sendto(sock, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)ip, (socklen_t)(ip->isV4() ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))); s_outputRate.log(now, pkt.size()); peer->lastSend = now; } } } } } catch (...) { printf("* unexpected exception handling MULTICAST_GATHER from %s" ZT_EOL_S, ip->toString(ipstr)); } break; default: break; } return; } // If we made it here, we are forwarding this packet to someone else and also possibly // sending a RENDEZVOUS message. int hops = 0; bool introduce = false; if (fragment) { if ((hops = (int)reinterpret_cast(&pkt)->incrementHops()) > s_relayMaxHops) { // printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr)); s_discardedForwardRate.log(now, pkt.size()); return; } } else { if ((hops = (int)pkt.incrementHops()) > s_relayMaxHops) { // printf("%s refused to forward to %s: max hop count exceeded" ZT_EOL_S,ip->toString(ipstr),dest.toString(astr)); s_discardedForwardRate.log(now, pkt.size()); return; } if (hops == 1) { RendezvousKey rk(source, dest); std::lock_guard l(s_rendezvousTracking_l); RendezvousStats& lr = s_rendezvousTracking[rk]; if ((now - lr.ts) >= 30000) { ++lr.count; lr.ts = now; introduce = true; } } } SharedPtr forwardTo; { std::lock_guard pbv_l(s_peersByVirtAddr_l); auto p = s_peersByVirtAddr.find(dest); if (p != s_peersByVirtAddr.end()) { forwardTo = p->second; } } if (unlikely(! forwardTo)) { s_discardedForwardRate.log(now, pkt.size()); return; } if (introduce) { SharedPtr sourcePeer; { std::lock_guard l(s_peersByVirtAddr_l); auto sp = s_peersByVirtAddr.find(source); if (sp != s_peersByVirtAddr.end()) { sourcePeer = sp->second; } } if (likely(sourcePeer)) { if ((sourcePeer->v6s >= 0) && (forwardTo->v6s >= 0)) { Packet outp(dest, s_self.address(), Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); source.appendTo(outp); outp.append((uint16_t)sourcePeer->ip6.port()); outp.append((uint8_t)16); outp.append((const uint8_t*)(sourcePeer->ip6.rawIpData()), 16); outp.armor(forwardTo->key, true); sendto(forwardTo->v6s, outp.data(), outp.size(), SENDTO_FLAGS, (const struct sockaddr*)&(forwardTo->ip6), (socklen_t)sizeof(struct sockaddr_in6)); s_outputRate.log(now, outp.size()); forwardTo->lastSend = now; outp.reset(source, s_self.address(), Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); dest.appendTo(outp); outp.append((uint16_t)forwardTo->ip6.port()); outp.append((uint8_t)16); outp.append((const uint8_t*)(forwardTo->ip6.rawIpData()), 16); outp.armor(sourcePeer->key, true); sendto(sourcePeer->v6s, outp.data(), outp.size(), SENDTO_FLAGS, (const struct sockaddr*)&(sourcePeer->ip6), (socklen_t)sizeof(struct sockaddr_in6)); s_outputRate.log(now, outp.size()); sourcePeer->lastSend = now; } if ((sourcePeer->v4s >= 0) && (forwardTo->v4s >= 0)) { Packet outp(dest, s_self.address(), Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); source.appendTo(outp); outp.append((uint16_t)sourcePeer->ip4.port()); outp.append((uint8_t)4); outp.append((const uint8_t*)sourcePeer->ip4.rawIpData(), 4); outp.armor(forwardTo->key, true); sendto(forwardTo->v4s, outp.data(), outp.size(), SENDTO_FLAGS, (const struct sockaddr*)&(forwardTo->ip4), (socklen_t)sizeof(struct sockaddr_in)); s_outputRate.log(now, outp.size()); forwardTo->lastSend = now; outp.reset(source, s_self.address(), Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); dest.appendTo(outp); outp.append((uint16_t)forwardTo->ip4.port()); outp.append((uint8_t)4); outp.append((const uint8_t*)(forwardTo->ip4.rawIpData()), 4); outp.armor(sourcePeer->key, true); sendto(sourcePeer->v4s, outp.data(), outp.size(), SENDTO_FLAGS, (const struct sockaddr*)&(sourcePeer->ip4), (socklen_t)sizeof(struct sockaddr_in)); s_outputRate.log(now, outp.size()); sourcePeer->lastSend = now; } } } if (forwardTo->v6s >= 0) { if (sendto(forwardTo->v6s, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)&(forwardTo->ip6), (socklen_t)sizeof(struct sockaddr_in6)) > 0) { s_outputRate.log(now, pkt.size()); s_forwardRate.log(now, pkt.size()); forwardTo->lastSend = now; } } else if (forwardTo->v4s >= 0) { if (sendto(forwardTo->v4s, pkt.data(), pkt.size(), SENDTO_FLAGS, (const struct sockaddr*)&(forwardTo->ip4), (socklen_t)sizeof(struct sockaddr_in)) > 0) { s_outputRate.log(now, pkt.size()); s_forwardRate.log(now, pkt.size()); forwardTo->lastSend = now; } } } ////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////// static int bindSocket(struct sockaddr* const bindAddr) { const int s = socket(bindAddr->sa_family, SOCK_DGRAM, 0); if (s < 0) { close(s); return -1; } int f = 16777216; while (f > 65536) { if (setsockopt(s, SOL_SOCKET, SO_RCVBUF, (const char*)&f, sizeof(f)) == 0) break; f -= 65536; } f = 16777216; while (f > 65536) { if (setsockopt(s, SOL_SOCKET, SO_SNDBUF, (const char*)&f, sizeof(f)) == 0) break; f -= 65536; } if (bindAddr->sa_family == AF_INET6) { f = 1; setsockopt(s, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&f, sizeof(f)); #ifdef IPV6_MTU_DISCOVER f = 0; setsockopt(s, IPPROTO_IPV6, IPV6_MTU_DISCOVER, &f, sizeof(f)); #endif #ifdef IPV6_DONTFRAG f = 0; setsockopt(s, IPPROTO_IPV6, IPV6_DONTFRAG, &f, sizeof(f)); #endif } #ifdef IP_DONTFRAG f = 0; setsockopt(s, IPPROTO_IP, IP_DONTFRAG, &f, sizeof(f)); #endif #ifdef IP_MTU_DISCOVER f = IP_PMTUDISC_DONT; setsockopt(s, IPPROTO_IP, IP_MTU_DISCOVER, &f, sizeof(f)); #endif /* #ifdef SO_NO_CHECK if (bindAddr->sa_family == AF_INET) { f = 1; setsockopt(s,SOL_SOCKET,SO_NO_CHECK,(void *)&f,sizeof(f)); } #endif */ #ifdef SO_REUSEPORT f = 1; setsockopt(s, SOL_SOCKET, SO_REUSEPORT, (void*)&f, sizeof(f)); #endif #ifndef __LINUX__ // linux wants just SO_REUSEPORT f = 1; setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (void*)&f, sizeof(f)); #endif #ifdef __LINUX__ struct timeval tv; tv.tv_sec = 1; tv.tv_usec = 0; setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, (const void*)&tv, sizeof(tv)); #endif if (bind(s, bindAddr, (bindAddr->sa_family == AF_INET) ? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6))) { close(s); // printf("%s\n",strerror(errno)); return -1; } return s; } static void shutdownSigHandler(int sig) { s_run = false; } int main(int argc, char** argv) { std::vector threads; std::vector sockets; int v4Sock = -1, v6Sock = -1; signal(SIGTERM, shutdownSigHandler); signal(SIGINT, shutdownSigHandler); signal(SIGQUIT, shutdownSigHandler); signal(SIGPIPE, SIG_IGN); signal(SIGUSR1, SIG_IGN); signal(SIGUSR2, SIG_IGN); signal(SIGCHLD, SIG_IGN); s_startTime = OSUtils::now(); s_geoInit = false; if (argc < 3) { printf("Usage: zerotier-root " ZT_EOL_S); return 1; } { std::string myIdStr; if (! OSUtils::readFile(argv[1], myIdStr)) { printf("FATAL: cannot read identity.secret at %s" ZT_EOL_S, argv[1]); return 1; } if (! s_self.fromString(myIdStr.c_str())) { printf("FATAL: cannot read identity.secret at %s (invalid identity)" ZT_EOL_S, argv[1]); return 1; } if (! s_self.hasPrivate()) { printf("FATAL: cannot read identity.secret at %s (missing secret key)" ZT_EOL_S, argv[1]); return 1; } } { std::string configStr; if (! OSUtils::readFile(argv[2], configStr)) { printf("FATAL: cannot read config file at %s" ZT_EOL_S, argv[2]); return 1; } try { s_config = json::parse(configStr); } catch (std::exception& exc) { printf("FATAL: config file at %s invalid: %s" ZT_EOL_S, argv[2], exc.what()); return 1; } catch (...) { printf("FATAL: config file at %s invalid: unknown exception" ZT_EOL_S, argv[2]); return 1; } if (! s_config.is_object()) { printf("FATAL: config file at %s invalid: does not contain a JSON object" ZT_EOL_S, argv[2]); return 1; } } try { auto jport = s_config["port"]; if (jport.is_array()) { for (long i = 0; i < (long)jport.size(); ++i) { int port = jport[i]; if ((port <= 0) || (port > 65535)) { printf("FATAL: invalid port in config file %d" ZT_EOL_S, port); return 1; } s_ports.push_back(port); } } else { int port = jport; if ((port <= 0) || (port > 65535)) { printf("FATAL: invalid port in config file %d" ZT_EOL_S, port); return 1; } s_ports.push_back(port); } } catch (...) { } if (s_ports.empty()) s_ports.push_back(ZT_DEFAULT_PORT); std::sort(s_ports.begin(), s_ports.end()); int httpPort = ZT_DEFAULT_PORT; try { httpPort = s_config["httpPort"]; if ((httpPort <= 0) || (httpPort > 65535)) { printf("FATAL: invalid HTTP port in config file %d" ZT_EOL_S, httpPort); return 1; } } catch (...) { httpPort = ZT_DEFAULT_PORT; } std::string planetFilePath; try { planetFilePath = s_config["planetFile"]; } catch (...) { planetFilePath = ""; } try { s_statsRoot = s_config["statsRoot"]; while ((s_statsRoot.length() > 0) && (s_statsRoot[s_statsRoot.length() - 1] == ZT_PATH_SEPARATOR)) s_statsRoot = s_statsRoot.substr(0, s_statsRoot.length() - 1); if (s_statsRoot.length() > 0) OSUtils::mkdir(s_statsRoot); } catch (...) { s_statsRoot = ""; } s_relayMaxHops = ZT_RELAY_MAX_HOPS; try { s_relayMaxHops = s_config["relayMaxHops"]; if (s_relayMaxHops > ZT_PROTO_MAX_HOPS) s_relayMaxHops = ZT_PROTO_MAX_HOPS; else if (s_relayMaxHops < 0) s_relayMaxHops = 0; } catch (...) { s_relayMaxHops = ZT_RELAY_MAX_HOPS; } try { s_googleMapsAPIKey = s_config["googleMapsAPIKey"]; std::string geoIpPath = s_config["geoIp"]; if (geoIpPath.length() > 0) { FILE* gf = fopen(geoIpPath.c_str(), "rb"); if (gf) { threads.emplace_back(std::thread([gf]() { try { char line[1024]; line[1023] = 0; while (fgets(line, sizeof(line) - 1, gf)) { InetAddress start, end; float lat = 0.0F, lon = 0.0F; int field = 0; for (char *saveptr = nullptr, *f = Utils::stok(line, ",\r\n", &saveptr); (f); f = Utils::stok(nullptr, ",\r\n", &saveptr)) { switch (field++) { case 0: start.fromString(f); break; case 1: end.fromString(f); break; case 2: lat = strtof(f, nullptr); break; case 3: lon = strtof(f, nullptr); break; } } if ((start) && (end) && (start.ss_family == end.ss_family) && (lat >= -90.0F) && (lat <= 90.0F) && (lon >= -180.0F) && (lon <= 180.0F)) { if (start.ss_family == AF_INET) { s_geoIp4[std::pair(ip4ToH32(start), ip4ToH32(end))] = std::pair(lat, lon); } else if (start.ss_family == AF_INET6) { s_geoIp6[std::pair, std::array >(ip6ToH128(start), ip6ToH128(end))] = std::pair(lat, lon); } } } s_geoInit = true; } catch (...) { } fclose(gf); })); } } } catch (...) { } unsigned int ncores = std::thread::hardware_concurrency(); if (ncores == 0) ncores = 1; s_run = true; threads.push_back(std::thread([]() { std::vector > toValidate; while (s_run) { { std::lock_guard l(s_peersToValidate_l); toValidate.swap(s_peersToValidate); } for (auto p = toValidate.begin(); p != toValidate.end(); ++p) { if (likely(! (*p)->identityValidated)) { if (likely((*p)->id.locallyValidate())) { (*p)->identityValidated = true; } else { { std::lock_guard p_l(s_peersByVirtAddr_l); auto pp = s_peersByVirtAddr.find((*p)->id.address()); if ((pp != s_peersByVirtAddr.end()) && (pp->second == *p)) { s_peersByVirtAddr.erase(pp); } } { std::lock_guard p_l(s_peers_l); for (auto pp = s_peers.begin(); pp != s_peers.end(); ++pp) { if (*p == *pp) { s_peers.erase(pp); break; } } } } } } toValidate.clear(); usleep(1000); } })); for (auto port = s_ports.begin(); port != s_ports.end(); ++port) { for (unsigned int tn = 0; tn < ncores; ++tn) { struct sockaddr_in6 in6; memset(&in6, 0, sizeof(in6)); in6.sin6_family = AF_INET6; in6.sin6_port = htons((uint16_t)*port); const int s6 = bindSocket((struct sockaddr*)&in6); if (s6 < 0) { std::cout << "ERROR: unable to bind to port " << *port << ZT_EOL_S; exit(1); } struct sockaddr_in in4; memset(&in4, 0, sizeof(in4)); in4.sin_family = AF_INET; in4.sin_port = htons((uint16_t)*port); const int s4 = bindSocket((struct sockaddr*)&in4); if (s4 < 0) { std::cout << "ERROR: unable to bind to port " << *port << ZT_EOL_S; exit(1); } sockets.push_back(s6); sockets.push_back(s4); if (v4Sock < 0) v4Sock = s4; if (v6Sock < 0) v6Sock = s6; threads.push_back(std::thread([s6, s4]() { struct sockaddr_in6 in6; Packet* pkt = new Packet(); for (;;) { memset(&in6, 0, sizeof(in6)); socklen_t sl = sizeof(in6); const int pl = (int)recvfrom(s6, pkt->unsafeData(), pkt->capacity(), RECVFROM_FLAGS, (struct sockaddr*)&in6, &sl); if (pl > 0) { if ((pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH) && (pl <= ZT_PROTO_MAX_PACKET_LENGTH)) { try { pkt->setSize((unsigned int)pl); handlePacket(s6, reinterpret_cast(&in6), *pkt); } catch (std::exception& exc) { char ipstr[128]; printf("WARNING: unexpected exception handling packet from %s: %s" ZT_EOL_S, reinterpret_cast(&in6)->toString(ipstr), exc.what()); } catch (int exc) { char ipstr[128]; printf("WARNING: unexpected exception handling packet from %s: ZT exception code %d" ZT_EOL_S, reinterpret_cast(&in6)->toString(ipstr), exc); } catch (...) { char ipstr[128]; printf("WARNING: unexpected exception handling packet from %s: unknown exception" ZT_EOL_S, reinterpret_cast(&in6)->toString(ipstr)); } } } else if (! s_run) { break; } } delete pkt; })); threads.push_back(std::thread([s6, s4]() { struct sockaddr_in in4; Packet* pkt = new Packet(); for (;;) { memset(&in4, 0, sizeof(in4)); socklen_t sl = sizeof(in4); const int pl = (int)recvfrom(s4, pkt->unsafeData(), pkt->capacity(), RECVFROM_FLAGS, (struct sockaddr*)&in4, &sl); if (pl > 0) { if ((pl >= ZT_PROTO_MIN_FRAGMENT_LENGTH) && (pl <= ZT_PROTO_MAX_PACKET_LENGTH)) { try { pkt->setSize((unsigned int)pl); handlePacket(s4, reinterpret_cast(&in4), *pkt); } catch (std::exception& exc) { char ipstr[128]; printf("WARNING: unexpected exception handling packet from %s: %s" ZT_EOL_S, reinterpret_cast(&in4)->toString(ipstr), exc.what()); } catch (int exc) { char ipstr[128]; printf("WARNING: unexpected exception handling packet from %s: ZT exception code %d" ZT_EOL_S, reinterpret_cast(&in4)->toString(ipstr), exc); } catch (...) { char ipstr[128]; printf("WARNING: unexpected exception handling packet from %s: unknown exception" ZT_EOL_S, reinterpret_cast(&in4)->toString(ipstr)); } } } else if (! s_run) { break; } } delete pkt; })); } } // A minimal read-only local API for monitoring and status queries httplib::Server apiServ; threads.push_back(std::thread([&apiServ, httpPort]() { // Human readable status page apiServ.Get("/", [](const httplib::Request& req, httplib::Response& res) { std::ostringstream o; o << "ZeroTier Root Server " << ZEROTIER_ONE_VERSION_MAJOR << '.' << ZEROTIER_ONE_VERSION_MINOR << '.' << ZEROTIER_ONE_VERSION_REVISION << ZT_EOL_S; o << "(c)2019 ZeroTier, Inc." ZT_EOL_S "Licensed under the ZeroTier BSL 1.1" ZT_EOL_S ZT_EOL_S; s_peersByVirtAddr_l.lock(); o << "Peers Online: " << s_peersByVirtAddr.size() << ZT_EOL_S; s_peersByVirtAddr_l.unlock(); res.set_content(o.str(), "text/plain"); }); apiServ.Get("/metrics", [](const httplib::Request& req, httplib::Response& res) { std::ostringstream o; int64_t now = OSUtils::now(); char buf[11]; const char* root_id = s_self.address().toString(buf); o << "# HELP root_peers_online Number of active peers online" << ZT_EOL_S; o << "# TYPE root_peers_online gauge" << ZT_EOL_S; s_peersByVirtAddr_l.lock(); o << "root_peers_online{root_id=\"" << root_id << "\"} " << s_peersByVirtAddr.size() << ZT_EOL_S; s_peersByVirtAddr_l.unlock(); o << "# HELP root_input_rate Input rate MiB/s" << ZT_EOL_S; o << "# TYPE root_input_rate gauge" << ZT_EOL_S; o << "root_input_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_inputRate.perSecond(now) / 1048576.0) << ZT_EOL_S; o << "# HELP root_output_rate Output rate MiB/s" << ZT_EOL_S; o << "# TYPE root_output_rate gauge" << ZT_EOL_S; o << "root_output_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_outputRate.perSecond(now) / 1048576.0) << ZT_EOL_S; o << "# HELP root_forwarded_rate Forwarded packet rate MiB/s" << ZT_EOL_S; o << "# TYPE root_forwarded_rate gauge" << ZT_EOL_S; o << "root_forwarded_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_forwardRate.perSecond(now) / 1048576.0) << ZT_EOL_S; o << "# HELP root_discarded_rate Discarded forwards MiB/s" << ZT_EOL_S; o << "# TYPE root_discarded_rate gauge" << ZT_EOL_S; o << "root_discarded_rate{root_id=\"" << root_id << "\"} " << std::setprecision(5) << (s_discardedForwardRate.perSecond(now) / 1048576.0) << ZT_EOL_S; res.set_content(o.str(), "text/plain"); }); // Peer list for compatibility with software that monitors regular nodes apiServ.Get("/peer", [](const httplib::Request& req, httplib::Response& res) { char tmp[256]; std::ostringstream o; o << '['; try { bool first = true; std::lock_guard l(s_peers_l); for (auto p = s_peers.begin(); p != s_peers.end(); ++p) { if (first) first = false; else o << ','; o << "{\"address\":\"" << (*p)->id.address().toString(tmp) << "\"" ",\"latency\":-1" ",\"paths\":["; if ((*p)->v4s >= 0) { o << "{\"active\":true" ",\"address\":\"" << (*p)->ip4.toIpString(tmp) << "\\/" << (*p)->ip4.port() << "\"" ",\"expired\":false" ",\"lastReceive\":" << (*p)->lastReceive << ",\"lastSend\":" << (*p)->lastSend << ",\"preferred\":true" ",\"trustedPathId\":0}"; } if ((*p)->v6s >= 0) { if ((*p)->v4s >= 0) o << ','; o << "{\"active\":true" ",\"address\":\"" << (*p)->ip6.toIpString(tmp) << "\\/" << (*p)->ip6.port() << "\"" ",\"expired\":false" ",\"lastReceive\":" << (*p)->lastReceive << ",\"lastSend\":" << (*p)->lastSend << ",\"preferred\":" << (((*p)->ip4) ? "false" : "true") << ",\"trustedPathId\":0}"; } o << "]" ",\"role\":\"LEAF\"" ",\"version\":\"" << (*p)->vMajor << '.' << (*p)->vMinor << '.' << (*p)->vRev << "\"" ",\"versionMajor\":" << (*p)->vMajor << ",\"versionMinor\":" << (*p)->vMinor << ",\"versionRev\":" << (*p)->vRev << "}"; } } catch (...) { } o << ']'; res.set_content(o.str(), "application/json"); }); // GeoIP map if enabled apiServ.Get("/map", [](const httplib::Request& req, httplib::Response& res) { char tmp[4096]; if (! s_geoInit) { res.set_content("Not enabled or GeoIP CSV file not finished reading.", "text/plain"); return; } std::ostringstream o; o << ZT_GEOIP_HTML_HEAD; try { bool firstCoord = true; std::pair k4(0, 0xffffffff); std::pair, std::array > k6; k6.second[0] = 0xffffffffffffffffULL; k6.second[1] = 0xffffffffffffffffULL; std::unordered_map, InetAddressHasher> ips; { std::lock_guard l(s_peers_l); for (auto p = s_peers.begin(); p != s_peers.end(); ++p) { if ((*p)->v4s >= 0) ips[(*p)->ip4].insert((*p)->id.address()); if ((*p)->v6s >= 0) ips[(*p)->ip6].insert((*p)->id.address()); } } for (auto p = ips.begin(); p != ips.end(); ++p) { if (p->first.isV4()) { k4.first = ip4ToH32(p->first); auto geo = std::map, std::pair >::reverse_iterator(s_geoIp4.upper_bound(k4)); uint32_t bestRangeSize = 0xffffffff; std::pair bestRangeLatLon; while (geo != s_geoIp4.rend()) { if ((geo->first.first <= k4.first) && (geo->first.second >= k4.first)) { uint32_t range = geo->first.second - geo->first.first; if (range <= bestRangeSize) { bestRangeSize = range; bestRangeLatLon = geo->second; } } else if ((geo->first.first < k4.first) && (geo->first.second < k4.first)) { break; } ++geo; } if (bestRangeSize != 0xffffffff) { if (! firstCoord) o << ','; firstCoord = false; o << "{lat:" << bestRangeLatLon.first << ",lng:" << bestRangeLatLon.second << ",_l:\""; bool firstAddr = true; for (auto a = p->second.begin(); a != p->second.end(); ++a) { if (! firstAddr) o << ','; o << a->toString(tmp); firstAddr = false; } o << "\"}"; } } else if (p->first.isV6()) { k6.first = ip6ToH128(p->first); auto geo = std::map, std::array >, std::pair >::reverse_iterator(s_geoIp6.upper_bound(k6)); while (geo != s_geoIp6.rend()) { if ((geo->first.first <= k6.first) && (geo->first.second >= k6.first)) { if (! firstCoord) o << ','; firstCoord = false; o << "{lat:" << geo->second.first << ",lng:" << geo->second.second << ",_l:\""; bool firstAddr = true; for (auto a = p->second.begin(); a != p->second.end(); ++a) { if (! firstAddr) o << ','; o << a->toString(tmp); firstAddr = false; } o << "\"}"; break; } else if ((geo->first.first < k6.first) && (geo->first.second < k6.first)) { break; } ++geo; } } } } catch (...) { res.set_content("Internal error: unexpected exception resolving GeoIP locations", "text/plain"); return; } OSUtils::ztsnprintf(tmp, sizeof(tmp), ZT_GEOIP_HTML_TAIL, s_googleMapsAPIKey.c_str()); o << tmp; res.set_content(o.str(), "text/html"); }); apiServ.listen("127.0.0.1", httpPort, 0); })); // In the main thread periodically clean stuff up int64_t lastCleaned = 0; int64_t lastWroteStats = 0; while (s_run) { sleep(1); const int64_t now = OSUtils::now(); if ((now - lastCleaned) > 300000) { lastCleaned = now; // Old multicast subscription cleanup { std::lock_guard l(s_multicastSubscriptions_l); for (auto a = s_multicastSubscriptions.begin(); a != s_multicastSubscriptions.end();) { for (auto b = a->second.begin(); b != a->second.end();) { for (auto c = b->second.begin(); c != b->second.end();) { if ((now - c->second) > ZT_MULTICAST_LIKE_EXPIRE) b->second.erase(c++); else ++c; } if (b->second.empty()) a->second.erase(b++); else ++b; } if (a->second.empty()) s_multicastSubscriptions.erase(a++); else ++a; } } try { std::vector > toRemove; toRemove.reserve(1024); { std::lock_guard pbi_l(s_peers_l); std::vector > newPeers; newPeers.reserve(s_peers.size()); for (auto p = s_peers.begin(); p != s_peers.end(); ++p) { if ((now - (*p)->lastReceive) > ZT_PEER_ACTIVITY_TIMEOUT) { toRemove.emplace_back(); p->swap(toRemove.back()); } else { newPeers.emplace_back(); p->swap(newPeers.back()); } } newPeers.swap(s_peers); } for (auto p = toRemove.begin(); p != toRemove.end(); ++p) { { std::lock_guard pbv_l(s_peersByVirtAddr_l); auto pbv = s_peersByVirtAddr.find((*p)->id.address()); if ((pbv != s_peersByVirtAddr.end()) && (pbv->second == *p)) { s_peersByVirtAddr.erase(pbv); } } } } catch (...) { } // Remove old rendezvous entries { std::lock_guard l(s_rendezvousTracking_l); for (auto lr = s_rendezvousTracking.begin(); lr != s_rendezvousTracking.end();) { if ((now - lr->second.ts) > ZT_PEER_ACTIVITY_TIMEOUT) s_rendezvousTracking.erase(lr++); else ++lr; } } } // Write stats if configured to do so, and periodically refresh planet file (if any) if (((now - lastWroteStats) > 15000) && (s_statsRoot.length() > 0)) { lastWroteStats = now; try { if (planetFilePath.length() > 0) { std::string planetData; if ((OSUtils::readFile(planetFilePath.c_str(), planetData)) && (planetData.length() > 0)) { std::lock_guard pl(s_planet_l); s_planet = planetData; } } } catch (...) { std::lock_guard pl(s_planet_l); s_planet.clear(); } std::string peersFilePath(s_statsRoot); peersFilePath.append("/.peers.tmp"); FILE* pf = fopen(peersFilePath.c_str(), "wb"); if (pf) { std::vector > sp; { std::lock_guard pbi_l(s_peers_l); sp.reserve(s_peers.size()); for (auto p = s_peers.begin(); p != s_peers.end(); ++p) { sp.emplace_back(*p); } } std::sort(sp.begin(), sp.end(), [](const SharedPtr& a, const SharedPtr& b) { return (a->id < b->id); }); fprintf(pf, "Address %21s %45s %10s %6s %10s" ZT_EOL_S, "IPv4", "IPv6", "Age(sec)", "Vers", "Fwd(KiB/s)"); { char ip4[128], ip6[128], ver[128]; for (auto p = sp.begin(); p != sp.end(); ++p) { if ((*p)->v4s >= 0) { (*p)->ip4.toString(ip4); } else { ip4[0] = '-'; ip4[1] = 0; } if ((*p)->v6s >= 0) { (*p)->ip6.toString(ip6); } else { ip6[0] = '-'; ip6[1] = 0; } OSUtils::ztsnprintf(ver, sizeof(ver), "%d.%d.%d", (*p)->vMajor, (*p)->vMinor, (*p)->vRev); fprintf(pf, "%.10llx %21s %45s %10.4f %6s" ZT_EOL_S, (unsigned long long)(*p)->id.address().toInt(), ip4, ip6, fabs((double)(now - (*p)->lastReceive) / 1000.0), ver); } } fclose(pf); std::string peersFilePath2(s_statsRoot); peersFilePath2.append("/peers"); OSUtils::rm(peersFilePath2); OSUtils::rename(peersFilePath.c_str(), peersFilePath2.c_str()); } std::string statsFilePath(s_statsRoot); statsFilePath.append("/.stats.tmp"); FILE* sf = fopen(statsFilePath.c_str(), "wb"); if (sf) { fprintf(sf, "Uptime (seconds) : %ld" ZT_EOL_S, (long)((now - s_startTime) / 1000)); s_peersByVirtAddr_l.lock(); fprintf(sf, "Peers : %llu" ZT_EOL_S, (unsigned long long)s_peersByVirtAddr.size()); s_peersByVirtAddr_l.unlock(); s_rendezvousTracking_l.lock(); uint64_t unsuccessfulp2p = 0; for (auto lr = s_rendezvousTracking.begin(); lr != s_rendezvousTracking.end(); ++lr) { if (lr->second.count > 6) // 6 == two attempts per edge, one for each direction ++unsuccessfulp2p; } fprintf(sf, "Recent P2P Graph Edges : %llu" ZT_EOL_S, (unsigned long long)s_rendezvousTracking.size()); if (s_rendezvousTracking.empty()) { fprintf(sf, "Recent P2P Success Rate : 100.0000%%" ZT_EOL_S); } else { fprintf(sf, "Recent P2P Success Rate : %.4f%%" ZT_EOL_S, (1.0 - ((double)unsuccessfulp2p / (double)s_rendezvousTracking.size())) * 100.0); } s_rendezvousTracking_l.unlock(); fprintf(sf, "Input (MiB/s) : %.4f" ZT_EOL_S, s_inputRate.perSecond(now) / 1048576.0); fprintf(sf, "Output (MiB/s) : %.4f" ZT_EOL_S, s_outputRate.perSecond(now) / 1048576.0); fprintf(sf, "Forwarded (MiB/s) : %.4f" ZT_EOL_S, s_forwardRate.perSecond(now) / 1048576.0); fprintf(sf, "Discarded Forward (MiB/s) : %.4f" ZT_EOL_S, s_discardedForwardRate.perSecond(now) / 1048576.0); fclose(sf); std::string statsFilePath2(s_statsRoot); statsFilePath2.append("/stats"); OSUtils::rm(statsFilePath2); OSUtils::rename(statsFilePath.c_str(), statsFilePath2.c_str()); } } } // If we received a kill signal, close everything and wait // for threads to die before exiting. s_run = false; // sanity check apiServ.stop(); for (auto s = sockets.begin(); s != sockets.end(); ++s) { shutdown(*s, SHUT_RDWR); close(*s); } for (auto t = threads.begin(); t != threads.end(); ++t) t->join(); return 0; }