/*
 * Copyright (c)2013-2021 ZeroTier, Inc.
 *
 * Use of this software is governed by the Business Source License included
 * in the LICENSE.TXT file in the project's root directory.
 *
 * Change Date: 2026-01-01
 *
 * On the date above, in accordance with the Business Source License, use
 * of this software will be governed by version 2.0 of the Apache License.
 */
/****/

#include <cstring>
#include <cstdlib>

#include "Constants.hpp"
#include "Network.hpp"
#include "RuntimeEnvironment.hpp"
#include "MAC.hpp"
#include "Address.hpp"
#include "InetAddress.hpp"
#include "NetworkController.hpp"
#include "Peer.hpp"
#include "Trace.hpp"
#include "ScopedPtr.hpp"
#include "Buf.hpp"

#include <set>

namespace ZeroTier {

namespace {

// Returns true if packet appears valid; pos and proto will be set
bool _ipv6GetPayload(const uint8_t *frameData, unsigned int frameLen, unsigned int &pos, unsigned int &proto) noexcept
{
	if (frameLen < 40)
		return false;
	pos = 40;
	proto = frameData[6];
	while (pos <= frameLen) {
		switch (proto) {
			case 0: // hop-by-hop options
			case 43: // routing
			case 60: // destination options
			case 135: // mobility options
				if ((pos + 8) > frameLen)
					return false; // invalid!
				proto = frameData[pos];
				pos += ((unsigned int)frameData[pos + 1] * 8) + 8;
				break;

				//case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway
				//case 50:
				//case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff
			default:
				return true;
		}
	}
	return false; // overflow == invalid
}

enum _doZtFilterResult
{
	DOZTFILTER_NO_MATCH,
	DOZTFILTER_DROP,
	DOZTFILTER_REDIRECT,
	DOZTFILTER_ACCEPT,
	DOZTFILTER_SUPER_ACCEPT
};

_doZtFilterResult _doZtFilter(
	const RuntimeEnvironment *RR,
	Trace::RuleResultLog &rrl,
	const NetworkConfig &nconf,
	const Member *membership,       // can be NULL
	const bool inbound,
	const Address &ztSource,
	Address &ztDest,                    // MUTABLE -- is changed on REDIRECT actions
	const MAC &macSource,
	const MAC &macDest,
	const uint8_t *const frameData,
	const unsigned int frameLen,
	const unsigned int etherType,
	const unsigned int vlanId,
	const ZT_VirtualNetworkRule *rules, // cannot be NULL
	const unsigned int ruleCount,
	Address &cc,                        // MUTABLE -- set to TEE destination if TEE action is taken or left alone otherwise
	unsigned int &ccLength,             // MUTABLE -- set to length of packet payload to TEE
	bool &ccWatch,                      // MUTABLE -- set to true for WATCH target as opposed to normal TEE
	uint8_t &qosBucket) noexcept        // MUTABLE -- set to the value of the argument provided to PRIORITY
{
	// Set to true if we are a TEE/REDIRECT/WATCH target
	bool superAccept = false;

	// The default match state for each set of entries starts as 'true' since an
	// ACTION with no MATCH entries preceding it is always taken.
	uint8_t thisSetMatches = 1;

	rrl.clear();

	for (unsigned int rn = 0; rn < ruleCount; ++rn) {
		const ZT_VirtualNetworkRuleType rt = (ZT_VirtualNetworkRuleType)(rules[rn].t & 0x3fU);

		// First check if this is an ACTION
		if ((unsigned int)rt <= (unsigned int)ZT_NETWORK_RULE_ACTION__MAX_ID) {
			if (thisSetMatches) {
				switch (rt) {
					case ZT_NETWORK_RULE_ACTION_PRIORITY:
						qosBucket = (rules[rn].v.qosBucket >= 0 && rules[rn].v.qosBucket <= 8) ? rules[rn].v.qosBucket : 4; // 4 = default bucket (no priority)
						return DOZTFILTER_ACCEPT;

					case ZT_NETWORK_RULE_ACTION_DROP:
						return DOZTFILTER_DROP;

					case ZT_NETWORK_RULE_ACTION_ACCEPT:
						return (superAccept ? DOZTFILTER_SUPER_ACCEPT : DOZTFILTER_ACCEPT); // match, accept packet

						// These are initially handled together since preliminary logic is common
					case ZT_NETWORK_RULE_ACTION_TEE:
					case ZT_NETWORK_RULE_ACTION_WATCH:
					case ZT_NETWORK_RULE_ACTION_REDIRECT: {
						const Address fwdAddr(rules[rn].v.fwd.address);
						if (fwdAddr == ztSource) {
							// Skip as no-op since source is target
						} else if (fwdAddr == RR->identity.address()) {
							if (inbound) {
								return DOZTFILTER_SUPER_ACCEPT;
							} else {
							}
						} else if (fwdAddr == ztDest) {
						} else {
							if (rt == ZT_NETWORK_RULE_ACTION_REDIRECT) {
								ztDest = fwdAddr;
								return DOZTFILTER_REDIRECT;
							} else {
								cc = fwdAddr;
								ccLength = (rules[rn].v.fwd.length != 0) ? ((frameLen < (unsigned int)rules[rn].v.fwd.length) ? frameLen : (unsigned int)rules[rn].v.fwd.length) : frameLen;
								ccWatch = (rt == ZT_NETWORK_RULE_ACTION_WATCH);
							}
						}
					}
						continue;

					case ZT_NETWORK_RULE_ACTION_BREAK:
						return DOZTFILTER_NO_MATCH;

						// Unrecognized ACTIONs are ignored as no-ops
					default:
						continue;
				}
			} else {
				// If this is an incoming packet and we are a TEE or REDIRECT target, we should
				// super-accept if we accept at all. This will cause us to accept redirected or
				// tee'd packets in spite of MAC and ZT addressing checks.
				if (inbound) {
					switch (rt) {
						case ZT_NETWORK_RULE_ACTION_TEE:
						case ZT_NETWORK_RULE_ACTION_WATCH:
						case ZT_NETWORK_RULE_ACTION_REDIRECT:
							if (RR->identity.address().toInt() == rules[rn].v.fwd.address)
								superAccept = true;
							break;
						default:
							break;
					}
				}

				thisSetMatches = 1; // reset to default true for next batch of entries
				continue;
			}
		}

		// Circuit breaker: no need to evaluate an AND if the set's match state
		// is currently false since anything AND false is false.
		if ((!thisSetMatches) && (!(rules[rn].t & 0x40U))) {
			rrl.logSkipped(rn, thisSetMatches);
			continue;
		}

		// If this was not an ACTION evaluate next MATCH and update thisSetMatches with (AND [result])
		uint8_t thisRuleMatches = 0;
		uint64_t ownershipVerificationMask = 1; // this magic value means it hasn't been computed yet -- this is done lazily the first time it's needed
		switch (rt) {
			case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS:
				thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztSource.toInt());
				break;
			case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS:
				thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztDest.toInt());
				break;
			case ZT_NETWORK_RULE_MATCH_VLAN_ID:
				thisRuleMatches = (uint8_t)(rules[rn].v.vlanId == (uint16_t)vlanId);
				break;
			case ZT_NETWORK_RULE_MATCH_VLAN_PCP:
				// NOT SUPPORTED YET
				thisRuleMatches = (uint8_t)(rules[rn].v.vlanPcp == 0);
				break;
			case ZT_NETWORK_RULE_MATCH_VLAN_DEI:
				// NOT SUPPORTED YET
				thisRuleMatches = (uint8_t)(rules[rn].v.vlanDei == 0);
				break;
			case ZT_NETWORK_RULE_MATCH_MAC_SOURCE:
				thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac) == macSource);
				break;
			case ZT_NETWORK_RULE_MATCH_MAC_DEST:
				thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac) == macDest);
				break;
			case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE:
				if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
					thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip), 4, rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 12), 4, 0)));
				} else {
					thisRuleMatches = 0;
				}
				break;
			case ZT_NETWORK_RULE_MATCH_IPV4_DEST:
				if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
					thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip), 4, rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 16), 4, 0)));
				} else {
					thisRuleMatches = 0;
				}
				break;
			case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE:
				if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
					thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip, 16, rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 8), 16, 0)));
				} else {
					thisRuleMatches = 0;
				}
				break;
			case ZT_NETWORK_RULE_MATCH_IPV6_DEST:
				if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
					thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip, 16, rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 24), 16, 0)));
				} else {
					thisRuleMatches = 0;
				}
				break;
			case ZT_NETWORK_RULE_MATCH_IP_TOS:
				if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
					const uint8_t tosMasked = frameData[1] & rules[rn].v.ipTos.mask;
					thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0]) && (tosMasked <= rules[rn].v.ipTos.value[1]));
				} else if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
					const uint8_t tosMasked = (((frameData[0] << 4U) & 0xf0U) | ((frameData[1] >> 4U) & 0x0fU)) & rules[rn].v.ipTos.mask;
					thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0]) && (tosMasked <= rules[rn].v.ipTos.value[1]));
				} else {
					thisRuleMatches = 0;
				}
				break;
			case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL:
				if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
					thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == frameData[9]);
				} else if (etherType == ZT_ETHERTYPE_IPV6) {
					unsigned int pos = 0, proto = 0;
					if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
						thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == (uint8_t)proto);
					} else {
						thisRuleMatches = 0;
					}
				} else {
					thisRuleMatches = 0;
				}
				break;
			case ZT_NETWORK_RULE_MATCH_ETHERTYPE:
				thisRuleMatches = (uint8_t)(rules[rn].v.etherType == (uint16_t)etherType);
				break;
			case ZT_NETWORK_RULE_MATCH_ICMP:
				if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
					if (frameData[9] == 0x01) { // IP protocol == ICMP
						const unsigned int ihl = (frameData[0] & 0xfU) * 4;
						if (frameLen >= (ihl + 2)) {
							if (rules[rn].v.icmp.type == frameData[ihl]) {
								if ((rules[rn].v.icmp.flags & 0x01) != 0) {
									thisRuleMatches = (uint8_t)(frameData[ihl + 1] == rules[rn].v.icmp.code);
								} else {
									thisRuleMatches = 1;
								}
							} else {
								thisRuleMatches = 0;
							}
						} else {
							thisRuleMatches = 0;
						}
					} else {
						thisRuleMatches = 0;
					}
				} else if (etherType == ZT_ETHERTYPE_IPV6) {
					unsigned int pos = 0, proto = 0;
					if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
						if ((proto == 0x3a) && (frameLen >= (pos + 2))) {
							if (rules[rn].v.icmp.type == frameData[pos]) {
								if ((rules[rn].v.icmp.flags & 0x01) != 0) {
									thisRuleMatches = (uint8_t)(frameData[pos + 1] == rules[rn].v.icmp.code);
								} else {
									thisRuleMatches = 1;
								}
							} else {
								thisRuleMatches = 0;
							}
						} else {
							thisRuleMatches = 0;
						}
					} else {
						thisRuleMatches = 0;
					}
				} else {
					thisRuleMatches = 0;
				}
				break;
			case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE:
			case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE:
				if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
					const unsigned int headerLen = 4 * (frameData[0] & 0xfU);
					int p = -1;
					switch (frameData[9]) { // IP protocol number
						// All these start with 16-bit source and destination port in that order
						case 0x06: // TCP
						case 0x11: // UDP
						case 0x84: // SCTP
						case 0x88: // UDPLite
							if (frameLen > (headerLen + 4)) {
								unsigned int pos = headerLen + ((rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) ? 2 : 0);
								p = (int)(frameData[pos++] << 8U);
								p |= (int)frameData[pos];
							}
							break;
					}

					thisRuleMatches = (p >= 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0]) && (p <= (int)rules[rn].v.port[1])) : (uint8_t)0;
				} else if (etherType == ZT_ETHERTYPE_IPV6) {
					unsigned int pos = 0, proto = 0;
					if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
						int p = -1;
						switch (proto) { // IP protocol number
							// All these start with 16-bit source and destination port in that order
							case 0x06: // TCP
							case 0x11: // UDP
							case 0x84: // SCTP
							case 0x88: // UDPLite
								if (frameLen > (pos + 4)) {
									if (rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) pos += 2;
									p = (int)(frameData[pos++] << 8U);
									p |= (int)frameData[pos];
								}
								break;
						}
						thisRuleMatches = (p > 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0]) && (p <= (int)rules[rn].v.port[1])) : (uint8_t)0;
					} else {
						thisRuleMatches = 0;
					}
				} else {
					thisRuleMatches = 0;
				}
				break;
			case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: {
				uint64_t cf = (inbound) ? ZT_RULE_PACKET_CHARACTERISTICS_INBOUND : 0ULL;
				if (macDest.isMulticast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_MULTICAST;
				if (macDest.isBroadcast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_BROADCAST;
				if (ownershipVerificationMask == 1) {
					ownershipVerificationMask = 0;
					InetAddress src;
					if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) {
						src.set((const void *)(frameData + 12), 4, 0);
					} else if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) {
						// IPv6 NDP requires special handling, since the src and dest IPs in the packet are empty or link-local.
						if ((frameLen >= (40 + 8 + 16)) && (frameData[6] == 0x3a) && ((frameData[40] == 0x87) || (frameData[40] == 0x88))) {
							if (frameData[40] == 0x87) {
								// Neighbor solicitations contain no reliable source address, so we implement a small
								// hack by considering them authenticated. Otherwise you would pretty much have to do
								// this manually in the rule set for IPv6 to work at all.
								ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
							} else {
								// Neighbor advertisements on the other hand can absolutely be authenticated.
								src.set((const void *)(frameData + 40 + 8), 16, 0);
							}
						} else {
							// Other IPv6 packets can be handled normally
							src.set((const void *)(frameData + 8), 16, 0);
						}
					} else if ((etherType == ZT_ETHERTYPE_ARP) && (frameLen >= 28)) {
						src.set((const void *)(frameData + 14), 4, 0);
					}
					if (inbound) {
						if (membership) {
							if ((src) && (membership->peerOwnsAddress< InetAddress >(nconf, src)))
								ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
							if (membership->peerOwnsAddress< MAC >(nconf, macSource))
								ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED;
						}
					} else {
						for (unsigned int i = 0; i < nconf.certificateOfOwnershipCount; ++i) {
							if ((src) && (nconf.certificatesOfOwnership[i].owns(src)))
								ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED;
							if (nconf.certificatesOfOwnership[i].owns(macSource))
								ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED;
						}
					}
				}
				cf |= ownershipVerificationMask;
				if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20) && (frameData[9] == 0x06)) {
					const unsigned int headerLen = 4 * (frameData[0] & 0xfU);
					cf |= (uint64_t)frameData[headerLen + 13];
					cf |= (((uint64_t)(frameData[headerLen + 12] & 0x0fU)) << 8U);
				} else if (etherType == ZT_ETHERTYPE_IPV6) {
					unsigned int pos = 0, proto = 0;
					if (_ipv6GetPayload(frameData, frameLen, pos, proto)) {
						if ((proto == 0x06) && (frameLen > (pos + 14))) {
							cf |= (uint64_t)frameData[pos + 13];
							cf |= (((uint64_t)(frameData[pos + 12] & 0x0fU)) << 8U);
						}
					}
				}
				thisRuleMatches = (uint8_t)((cf & rules[rn].v.characteristics) != 0);
			}
				break;
			case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE:
				thisRuleMatches = (uint8_t)((frameLen >= (unsigned int)rules[rn].v.frameSize[0]) && (frameLen <= (unsigned int)rules[rn].v.frameSize[1]));
				break;
			case ZT_NETWORK_RULE_MATCH_RANDOM:
				thisRuleMatches = (uint8_t)((uint32_t)(Utils::random() & 0xffffffffULL) <= rules[rn].v.randomProbability);
				break;
			case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE:
			case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND:
			case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR:
			case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR:
			case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL: {
				const TagCredential *const localTag = std::lower_bound(&(nconf.tags[0]), &(nconf.tags[nconf.tagCount]), rules[rn].v.tag.id, TagCredential::IdComparePredicate());
				if ((localTag != &(nconf.tags[nconf.tagCount])) && (localTag->id() == rules[rn].v.tag.id)) {
					const TagCredential *const remoteTag = ((membership) ? membership->getTag(nconf, rules[rn].v.tag.id) : (const TagCredential *)0);
					if (remoteTag) {
						const uint32_t ltv = localTag->value();
						const uint32_t rtv = remoteTag->value();
						if (rt == ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE) {
							const uint32_t diff = (ltv > rtv) ? (ltv - rtv) : (rtv - ltv);
							thisRuleMatches = (uint8_t)(diff <= rules[rn].v.tag.value);
						} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND) {
							thisRuleMatches = (uint8_t)((ltv & rtv) == rules[rn].v.tag.value);
						} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR) {
							thisRuleMatches = (uint8_t)((ltv | rtv) == rules[rn].v.tag.value);
						} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR) {
							thisRuleMatches = (uint8_t)((ltv ^ rtv) == rules[rn].v.tag.value);
						} else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_EQUAL) {
							thisRuleMatches = (uint8_t)((ltv == rules[rn].v.tag.value) && (rtv == rules[rn].v.tag.value));
						} else { // sanity check, can't really happen
							thisRuleMatches = 0;
						}
					} else {
						if ((inbound) && (!superAccept)) {
							thisRuleMatches = 0;
						} else {
							// Outbound side is not strict since if we have to match both tags and
							// we are sending a first packet to a recipient, we probably do not know
							// about their tags yet. They will filter on inbound and we will filter
							// once we get their tag. If we are a tee/redirect target we are also
							// not strict since we likely do not have these tags.
							thisRuleMatches = 1;
						}
					}
				} else {
					thisRuleMatches = 0;
				}
			}
				break;
			case ZT_NETWORK_RULE_MATCH_TAG_SENDER:
			case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: {
				if (superAccept) {
					thisRuleMatches = 1;
				} else if (((rt == ZT_NETWORK_RULE_MATCH_TAG_SENDER) && (inbound)) || ((rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER) && (!inbound))) {
					const TagCredential *const remoteTag = ((membership) ? membership->getTag(nconf, rules[rn].v.tag.id) : (const TagCredential *)0);
					if (remoteTag) {
						thisRuleMatches = (uint8_t)(remoteTag->value() == rules[rn].v.tag.value);
					} else {
						if (rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER) {
							// If we are checking the receiver and this is an outbound packet, we
							// can't be strict since we may not yet know the receiver's tag.
							thisRuleMatches = 1;
						} else {
							thisRuleMatches = 0;
						}
					}
				} else { // sender and outbound or receiver and inbound
					const TagCredential *const localTag = std::lower_bound(&(nconf.tags[0]), &(nconf.tags[nconf.tagCount]), rules[rn].v.tag.id, TagCredential::IdComparePredicate());
					if ((localTag != &(nconf.tags[nconf.tagCount])) && (localTag->id() == rules[rn].v.tag.id)) {
						thisRuleMatches = (uint8_t)(localTag->value() == rules[rn].v.tag.value);
					} else {
						thisRuleMatches = 0;
					}
				}
			}
				break;
			case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE: {
				uint64_t integer = 0;
				const unsigned int bits = (rules[rn].v.intRange.format & 63U) + 1;
				const unsigned int bytes = ((bits + 8 - 1) / 8); // integer ceiling of division by 8
				if ((rules[rn].v.intRange.format & 0x80U) == 0) {
					// Big-endian
					unsigned int idx = rules[rn].v.intRange.idx + (8 - bytes);
					const unsigned int eof = idx + bytes;
					if (eof <= frameLen) {
						while (idx < eof) {
							integer <<= 8U;
							integer |= frameData[idx++];
						}
					}
					integer &= 0xffffffffffffffffULL >> (64 - bits);
				} else {
					// Little-endian
					unsigned int idx = rules[rn].v.intRange.idx;
					const unsigned int eof = idx + bytes;
					if (eof <= frameLen) {
						while (idx < eof) {
							integer >>= 8U;
							integer |= ((uint64_t)frameData[idx++]) << 56U;
						}
					}
					integer >>= (64 - bits);
				}
				thisRuleMatches = (uint8_t)((integer >= rules[rn].v.intRange.start) && (integer <= (rules[rn].v.intRange.start + (uint64_t)rules[rn].v.intRange.end)));
			}
				break;

				// The result of an unsupported MATCH is configurable at the network
				// level via a flag.
			default:
				thisRuleMatches = (uint8_t)((nconf.flags & ZT_NETWORKCONFIG_FLAG_RULES_RESULT_OF_UNSUPPORTED_MATCH) != 0);
				break;
		}

		rrl.log(rn, thisRuleMatches, thisSetMatches);

		if ((rules[rn].t & 0x40U))
			thisSetMatches |= (thisRuleMatches ^ ((rules[rn].t >> 7U) & 1U));
		else thisSetMatches &= (thisRuleMatches ^ ((rules[rn].t >> 7U) & 1U));
	}

	return DOZTFILTER_NO_MATCH;
}

} // anonymous namespace

const ZeroTier::MulticastGroup Network::BROADCAST(ZeroTier::MAC(0xffffffffffffULL), 0);

Network::Network(const RuntimeEnvironment *renv, void *tPtr, uint64_t nwid, const Fingerprint &controllerFingerprint, void *uptr, const NetworkConfig *nconf) :
	RR(renv),
	m_uPtr(uptr),
	m_id(nwid),
	m_mac(renv->identity.address(), nwid),
	m_portInitialized(false),
	m_destroyed(false),
	m_lastConfigUpdate(0),
	_netconfFailure(NETCONF_FAILURE_NONE)
{
	if (controllerFingerprint)
		m_controllerFingerprint = controllerFingerprint;

	if (nconf) {
		this->setConfiguration(tPtr, *nconf, false);
		m_lastConfigUpdate = 0; // still want to re-request since it's likely outdated
	} else {
		uint64_t tmp[2];
		tmp[0] = nwid;
		tmp[1] = 0;

		bool got = false;
		try {
			Dictionary dict;
			Vector< uint8_t > nconfData(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp, 1));
			if (nconfData.size() > 2) {
				nconfData.push_back(0);
				if (dict.decode(nconfData.data(), (unsigned int)nconfData.size())) {
					try {
						ScopedPtr< NetworkConfig > nconf2(new NetworkConfig());
						if (nconf2->fromDictionary(dict)) {
							this->setConfiguration(tPtr, *nconf2, false);
							m_lastConfigUpdate = 0; // still want to re-request an update since it's likely outdated
							got = true;
						}
					} catch (...) {}
				}
			}
		} catch (...) {}

		if (!got)
			RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp, 1, "\n", 1);
	}

	if (!m_portInitialized) {
		ZT_VirtualNetworkConfig ctmp;
		m_externalConfig(&ctmp);
		RR->node->configureVirtualNetworkPort(tPtr, m_id, &m_uPtr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP, &ctmp);
		m_portInitialized = true;
	}
}

Network::~Network()
{
	m_memberships_l.lock();
	m_config_l.lock();
	m_config_l.unlock();
	m_memberships_l.unlock();

	ZT_VirtualNetworkConfig ctmp;
	m_externalConfig(&ctmp);

	if (m_destroyed) {
		// This is done in Node::leave() so we can pass tPtr properly
		//RR->node->configureVirtualNetworkPort((void *)0,_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp);
	} else {
		RR->node->configureVirtualNetworkPort(nullptr, m_id, &m_uPtr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN, &ctmp);
	}
}

bool Network::filterOutgoingPacket(
	void *tPtr,
	const bool noTee,
	const Address &ztSource,
	const Address &ztDest,
	const MAC &macSource,
	const MAC &macDest,
	const uint8_t *frameData,
	const unsigned int frameLen,
	const unsigned int etherType,
	const unsigned int vlanId,
	uint8_t &qosBucket)
{
	Trace::RuleResultLog rrl, crrl;
	Address ztFinalDest(ztDest);
	int localCapabilityIndex = -1;
	int accept = 0;
	Address cc;
	unsigned int ccLength = 0;
	bool ccWatch = false;

	Mutex::Lock l1(m_memberships_l);
	Mutex::Lock l2(m_config_l);

	Member *membership;
	if (ztDest) {
		Map<Address, Member>::iterator mm(m_memberships.find(ztDest));
		membership = (mm == m_memberships.end()) ? nullptr : &(mm->second);
	} else {
		membership = nullptr;
	}

	switch (_doZtFilter(RR, rrl, m_config, membership, false, ztSource, ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, m_config.rules, m_config.ruleCount, cc, ccLength, ccWatch, qosBucket)) {

		case DOZTFILTER_NO_MATCH: {
			for (unsigned int c = 0; c < m_config.capabilityCount; ++c) {
				ztFinalDest = ztDest; // sanity check, shouldn't be possible if there was no match
				Address cc2;
				unsigned int ccLength2 = 0;
				bool ccWatch2 = false;
				switch (_doZtFilter(RR, crrl, m_config, membership, false, ztSource, ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, m_config.capabilities[c].rules(), m_config.capabilities[c].ruleCount(), cc2, ccLength2, ccWatch2, qosBucket)) {
					case DOZTFILTER_NO_MATCH:
					case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern
						break;

					case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter()
					case DOZTFILTER_ACCEPT:
					case DOZTFILTER_SUPER_ACCEPT: // no difference in behavior on outbound side in capabilities
						localCapabilityIndex = (int)c;
						accept = 1;

						if ((!noTee) && (cc2)) {
							// TODO
							/*
							Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME);
							outp.append(_id);
							outp.append((uint8_t)(ccWatch2 ? 0x16 : 0x02));
							macDest.appendTo(outp);
							macSource.appendTo(outp);
							outp.append((uint16_t)etherType);
							outp.append(frameData,ccLength2);
							outp.compress();
							RR->sw->send(tPtr,outp,true);
							*/
						}

						break;
				}
				if (accept)
					break;
			}
		}
			break;

		case DOZTFILTER_DROP:
			RR->t->networkFilter(tPtr, 0xadea5a2a, m_id, rrl.l, nullptr, 0, 0, ztSource, ztDest, macSource, macDest, (uint16_t)frameLen, frameData, (uint16_t)etherType, (uint16_t)vlanId, noTee, false, 0);
			return false;

		case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter()
		case DOZTFILTER_ACCEPT:
			accept = 1;
			break;

		case DOZTFILTER_SUPER_ACCEPT:
			accept = 2;
			break;
	}

	if (accept != 0) {
		if ((!noTee) && (cc)) {
			// TODO
			/*
			Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME);
			outp.append(_id);
			outp.append((uint8_t)(ccWatch ? 0x16 : 0x02));
			macDest.appendTo(outp);
			macSource.appendTo(outp);
			outp.append((uint16_t)etherType);
			outp.append(frameData,ccLength);
			outp.compress();
			RR->sw->send(tPtr,outp,true);
			*/
		}

		if ((ztDest != ztFinalDest) && (ztFinalDest)) {
			// TODO
			/*
			Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME);
			outp.append(_id);
			outp.append((uint8_t)0x04);
			macDest.appendTo(outp);
			macSource.appendTo(outp);
			outp.append((uint16_t)etherType);
			outp.append(frameData,frameLen);
			outp.compress();
			RR->sw->send(tPtr,outp,true);
			*/

			// DROP locally since we redirected
			accept = 0;
		}
	}

	if (localCapabilityIndex >= 0) {
		const CapabilityCredential &cap = m_config.capabilities[localCapabilityIndex];
		RR->t->networkFilter(tPtr, 0x56ff1a93, m_id, rrl.l, crrl.l, cap.id(), cap.timestamp(), ztSource, ztDest, macSource, macDest, (uint16_t)frameLen, frameData, (uint16_t)etherType, (uint16_t)vlanId, noTee, false, accept);
	} else {
		RR->t->networkFilter(tPtr, 0x112fbbab, m_id, rrl.l, nullptr, 0, 0, ztSource, ztDest, macSource, macDest, (uint16_t)frameLen, frameData, (uint16_t)etherType, (uint16_t)vlanId, noTee, false, accept);
	}

	return (accept != 0);
}

int Network::filterIncomingPacket(
	void *tPtr,
	const SharedPtr< Peer > &sourcePeer,
	const Address &ztDest,
	const MAC &macSource,
	const MAC &macDest,
	const uint8_t *frameData,
	const unsigned int frameLen,
	const unsigned int etherType,
	const unsigned int vlanId)
{
	Address ztFinalDest(ztDest);
	Trace::RuleResultLog rrl, crrl;
	int accept = 0;
	Address cc;
	unsigned int ccLength = 0;
	bool ccWatch = false;
	const CapabilityCredential *c = nullptr;

	uint8_t qosBucket = 255; // For incoming packets this is a dummy value

	Mutex::Lock l1(m_memberships_l);
	Mutex::Lock l2(m_config_l);

	Member &membership = m_memberships[sourcePeer->address()];

	switch (_doZtFilter(RR, rrl, m_config, &membership, true, sourcePeer->address(), ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, m_config.rules, m_config.ruleCount, cc, ccLength, ccWatch, qosBucket)) {

		case DOZTFILTER_NO_MATCH: {
			Member::CapabilityIterator mci(membership, m_config);
			while ((c = mci.next())) {
				ztFinalDest = ztDest; // sanity check, should be unmodified if there was no match
				Address cc2;
				unsigned int ccLength2 = 0;
				bool ccWatch2 = false;
				switch (_doZtFilter(RR, crrl, m_config, &membership, true, sourcePeer->address(), ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, c->rules(), c->ruleCount(), cc2, ccLength2, ccWatch2, qosBucket)) {
					case DOZTFILTER_NO_MATCH:
					case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern
						break;
					case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztDest will have been changed in _doZtFilter()
					case DOZTFILTER_ACCEPT:
						accept = 1; // ACCEPT
						break;
					case DOZTFILTER_SUPER_ACCEPT:
						accept = 2; // super-ACCEPT
						break;
				}

				if (accept) {
					if (cc2) {
						// TODO
						/*
						Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME);
						outp.append(_id);
						outp.append((uint8_t)(ccWatch2 ? 0x1c : 0x08));
						macDest.appendTo(outp);
						macSource.appendTo(outp);
						outp.append((uint16_t)etherType);
						outp.append(frameData,ccLength2);
						outp.compress();
						RR->sw->send(tPtr,outp,true);
						*/
					}
					break;
				}
			}
		}
			break;

		case DOZTFILTER_DROP:
			//if (_config.remoteTraceTarget)
			//	RR->t->networkFilter(tPtr,*this,rrl,(Trace::RuleResultLog *)0,(Capability *)0,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,0);
			return 0; // DROP

		case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter()
		case DOZTFILTER_ACCEPT:
			accept = 1; // ACCEPT
			break;
		case DOZTFILTER_SUPER_ACCEPT:
			accept = 2; // super-ACCEPT
			break;
	}

	if (accept) {
		if (cc) {
			// TODO
			/*
			Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME);
			outp.append(_id);
			outp.append((uint8_t)(ccWatch ? 0x1c : 0x08));
			macDest.appendTo(outp);
			macSource.appendTo(outp);
			outp.append((uint16_t)etherType);
			outp.append(frameData,ccLength);
			outp.compress();
			RR->sw->send(tPtr,outp,true);
			*/
		}

		if ((ztDest != ztFinalDest) && (ztFinalDest)) {
			// TODO
			/*
			Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME);
			outp.append(_id);
			outp.append((uint8_t)0x0a);
			macDest.appendTo(outp);
			macSource.appendTo(outp);
			outp.append((uint16_t)etherType);
			outp.append(frameData,frameLen);
			outp.compress();
			RR->sw->send(tPtr,outp,true);
			*/

			//if (_config.remoteTraceTarget)
			//	RR->t->networkFilter(tPtr,*this,rrl,(c) ? &crrl : (Trace::RuleResultLog *)0,c,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,0);
			return 0; // DROP locally, since we redirected
		}
	}

	//if (_config.remoteTraceTarget)
	//	RR->t->networkFilter(tPtr,*this,rrl,(c) ? &crrl : (Trace::RuleResultLog *)0,c,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,accept);
	return accept;
}

void Network::multicastSubscribe(void *tPtr, const MulticastGroup &mg)
{
	Mutex::Lock l(m_myMulticastGroups_l);
	if (!std::binary_search(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg)) {
		m_myMulticastGroups.insert(std::upper_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg), mg);
		Mutex::Lock l2(m_memberships_l);
		m_announceMulticastGroups(tPtr, true);
	}
}

void Network::multicastUnsubscribe(const MulticastGroup &mg)
{
	Mutex::Lock l(m_myMulticastGroups_l);
	Vector< MulticastGroup >::iterator i(std::lower_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg));
	if ((i != m_myMulticastGroups.end()) && (*i == mg))
		m_myMulticastGroups.erase(i);
}

uint64_t Network::handleConfigChunk(void *tPtr, uint64_t packetId, const SharedPtr< Peer > &source, const Buf &chunk, int ptr, int size)
{
	// If the controller's full fingerprint is known or was explicitly specified on join(),
	// require that the controller's identity match. Otherwise learn it.
	if (m_controllerFingerprint) {
		if (source->identity().fingerprint() != m_controllerFingerprint)
			return 0;
	} else {
		m_controllerFingerprint = source->identity().fingerprint();
	}

	return 0;
#if 0
	if (_destroyed)
		return 0;

	const unsigned int chunkPayloadStart = ptr;
	ptr += 8; // skip network ID, which is already obviously known
	const unsigned int chunkLen = chunk.rI16(ptr);
	const uint8_t *chunkData = chunk.rBnc(ptr,chunkLen);
	if (Buf<>::readOverflow(ptr,size))
		return 0;

	Mutex::Lock l1(_config_l);

	_IncomingConfigChunk *c = nullptr;
	uint64_t configUpdateId;
	int totalLength = 0,chunkIndex = 0;
	if (ptr < size) {
		// If there is more data after the chunk / dictionary, it means this is a new controller
		// that sends signed chunks. We still support really old controllers, but probably not forever.
		const bool fastPropagate = ((chunk.rI8(ptr) & Protocol::NETWORK_CONFIG_FLAG_FAST_PROPAGATE) != 0);
		configUpdateId = chunk.rI64(ptr);
		totalLength = chunk.rI32(ptr);
		chunkIndex = chunk.rI32(ptr);
		++ptr; // skip unused signature type field
		const unsigned int signatureSize = chunk.rI16(ptr);
		const uint8_t *signature = chunk.rBnc(ptr,signatureSize);
		if ((Buf<>::readOverflow(ptr,size))||((chunkIndex + chunkLen) > totalLength)||(totalLength >= ZT_MAX_NETWORK_CONFIG_BYTES)||(signatureSize > ZT_SIGNATURE_BUFFER_SIZE)||(!signature))
			return 0;
		const unsigned int chunkPayloadSize = (unsigned int)ptr - chunkPayloadStart;

		// Find existing or new slot for this update and its chunk(s).
		for(int i=0;i<ZT_NETWORK_MAX_INCOMING_UPDATES;++i) {
			if (_incomingConfigChunks[i].updateId == configUpdateId) {
				c = &(_incomingConfigChunks[i]);
				if (c->chunks.find(chunkIndex) != c->chunks.end())
					return 0; // we already have this chunk!
				break;
			} else if ((!c)||(_incomingConfigChunks[i].touchCtr < c->touchCtr)) {
				c = &(_incomingConfigChunks[i]);
			}
		}
		if (!c) // sanity check; should not be possible
			return 0;

		// Verify this chunk's signature
		const SharedPtr<Peer> controllerPeer(RR->topology->get(tPtr,controller()));
		if ((!controllerPeer)||(!controllerPeer->identity().verify(chunk.data.bytes + chunkPayloadStart,chunkPayloadSize,signature,signatureSize)))
			return 0;

		// New properly verified chunks can be flooded "virally" through the network via an aggressive
		// exponential rumor mill algorithm.
		if (fastPropagate) {
			Mutex::Lock l2(_memberships_l);
			Address *a = nullptr;
			Membership *m = nullptr;
			Hashtable<Address,Membership>::Iterator i(_memberships);
			while (i.next(a,m)) {
				if ((*a != source->address())&&(*a != controller())) {
					ZT_GET_NEW_BUF(outp,Protocol::Header);

					outp->data.fields.packetId = Protocol::getPacketId();
					a->copyTo(outp->data.fields.destination);
					RR->identity.address().copyTo(outp->data.fields.source);
					outp->data.fields.flags = 0;
					outp->data.fields.verb = Protocol::VERB_NETWORK_CONFIG;

					int outl = sizeof(Protocol::Header);
					outp->wB(outl,chunk.data.bytes + chunkPayloadStart,chunkPayloadSize);

					if (Buf<>::writeOverflow(outl)) // sanity check... it fit before!
						break;

					RR->sw->send(tPtr,outp,true);
				}
			}
		}
	} else if ((!source)||(source->address() != this->controller())) {
		// Legacy support for OK(NETWORK_CONFIG_REQUEST) from older controllers that don't sign chunks and don't
		// support multiple chunks. Since old controllers don't sign chunks we only accept the message if it comes
		// directly from the controller.
		configUpdateId = packetId;
		totalLength = (int)chunkLen;
		if (totalLength > ZT_MAX_NETWORK_CONFIG_BYTES)
			return 0;

		for(int i=0;i<ZT_NETWORK_MAX_INCOMING_UPDATES;++i) {
			if ((!c)||(_incomingConfigChunks[i].touchCtr < c->touchCtr))
				c = &(_incomingConfigChunks[i]);
		}
	} else {
		// Not signed, not from controller -> reject.
		return 0;
	}

	try {
		++c->touchCtr;
		if (c->updateId != configUpdateId) {
			c->updateId = configUpdateId;
			c->chunks.clear();
		}
		c->chunks[chunkIndex].assign(chunkData,chunkData + chunkLen);

		int haveLength = 0;
		for(std::map< int,Vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
			haveLength += (int)ch->second.size();
		if (haveLength > ZT_MAX_NETWORK_CONFIG_BYTES) {
			c->touchCtr = 0;
			c->updateId = 0;
			c->chunks.clear();
			return 0;
		}

		if (haveLength == totalLength) {
			Vector<uint8_t> assembledConfig;
			for(std::map< int,Vector<uint8_t> >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch)
				assembledConfig.insert(assembledConfig.end(),ch->second.begin(),ch->second.end());

			Dictionary dict;
			if (dict.decode(assembledConfig.data(),(unsigned int)assembledConfig.size())) {
				ScopedPtr<NetworkConfig> nc(new NetworkConfig());
				if (nc->fromDictionary(dict)) {
					this->setConfiguration(tPtr,*nc,true);
					return configUpdateId;
				}
			}
		}
	} catch (...) {}

	return 0;
#endif
}

int Network::setConfiguration(void *tPtr, const NetworkConfig &nconf, bool saveToDisk)
{
	if (m_destroyed)
		return 0;

	// _lock is NOT locked when this is called
	try {
		if ((nconf.issuedTo != RR->identity.address()) || (nconf.networkId != m_id))
			return 0; // invalid config that is not for us or not for this network
		if ((!Utils::allZero(nconf.issuedToFingerprintHash, ZT_FINGERPRINT_HASH_SIZE)) && (memcmp(nconf.issuedToFingerprintHash, RR->identity.fingerprint().hash, ZT_FINGERPRINT_HASH_SIZE) != 0))
			return 0; // full identity hash is present and does not match

		if (m_config == nconf)
			return 1; // OK config, but duplicate of what we already have

		ZT_VirtualNetworkConfig ctmp;
		bool oldPortInitialized;
		{  // do things that require lock here, but unlock before calling callbacks
			Mutex::Lock l1(m_config_l);

			m_config = nconf;
			m_lastConfigUpdate = RR->node->now();
			_netconfFailure = NETCONF_FAILURE_NONE;

			oldPortInitialized = m_portInitialized;
			m_portInitialized = true;

			m_externalConfig(&ctmp);
		}

		RR->node->configureVirtualNetworkPort(tPtr, m_id, &m_uPtr, (oldPortInitialized) ? ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE : ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP, &ctmp);

		if (saveToDisk) {
			try {
				Dictionary d;
				if (nconf.toDictionary(d)) {
					uint64_t tmp[2];
					tmp[0] = m_id;
					tmp[1] = 0;
					Vector< uint8_t > d2;
					d.encode(d2);
					RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp, 1, d2.data(), (unsigned int)d2.size());
				}
			} catch (...) {}
		}

		return 2; // OK and configuration has changed
	} catch (...) {} // ignore invalid configs
	return 0;
}

bool Network::gate(void *tPtr, const SharedPtr< Peer > &peer) noexcept
{
	Mutex::Lock lc(m_config_l);

	if (!m_config)
		return false;
	if (m_config.isPublic())
		return true;

	try {
		Mutex::Lock l(m_memberships_l);
		return m_memberships[peer->address()].certificateOfMembershipAgress(m_config.com, peer->identity());
	} catch (...) {}

	return false;
}

void Network::doPeriodicTasks(void *tPtr, const int64_t now)
{
	if (m_destroyed)
		return;

	if ((now - m_lastConfigUpdate) >= ZT_NETWORK_AUTOCONF_DELAY)
		m_requestConfiguration(tPtr);

	{
		Mutex::Lock l1(m_memberships_l);

		for (Map< Address, Member >::iterator i(m_memberships.begin()); i != m_memberships.end(); ++i)
			i->second.clean(m_config);

		{
			Mutex::Lock l2(m_myMulticastGroups_l);

			// TODO
			/*
			Hashtable< MulticastGroup,uint64_t >::Iterator i(_multicastGroupsBehindMe);
			MulticastGroup *mg = (MulticastGroup *)0;
			uint64_t *ts = (uint64_t *)0;
			while (i.next(mg,ts)) {
				if ((now - *ts) > (ZT_MULTICAST_LIKE_EXPIRE * 2))
					_multicastGroupsBehindMe.erase(*mg);
			}

			_announceMulticastGroups(tPtr,false);
			*/
		}
	}
}

void Network::learnBridgeRoute(const MAC &mac, const Address &addr)
{
	Mutex::Lock _l(m_remoteBridgeRoutes_l);
	m_remoteBridgeRoutes[mac] = addr;

	// Anti-DOS circuit breaker to prevent nodes from spamming us with absurd numbers of bridge routes
	while (m_remoteBridgeRoutes.size() > ZT_MAX_BRIDGE_ROUTES) {
		Map< Address, unsigned long > counts;
		Address maxAddr;
		unsigned long maxCount = 0;

		// Find the address responsible for the most entries
		for (Map< MAC, Address >::iterator i(m_remoteBridgeRoutes.begin()); i != m_remoteBridgeRoutes.end(); ++i) {
			const unsigned long c = ++counts[i->second];
			if (c > maxCount) {
				maxCount = c;
				maxAddr = i->second;
			}
		}

		// Kill this address from our table, since it's most likely spamming us
		for (Map< MAC, Address >::iterator i(m_remoteBridgeRoutes.begin()); i != m_remoteBridgeRoutes.end();) {
			if (i->second == maxAddr)
				m_remoteBridgeRoutes.erase(i++);
			else ++i;
		}
	}
}

Member::AddCredentialResult Network::addCredential(void *tPtr, const Identity &sourcePeerIdentity, const MembershipCredential &com)
{
	if (com.networkId() != m_id)
		return Member::ADD_REJECTED;
	Mutex::Lock _l(m_memberships_l);
	return m_memberships[com.issuedTo().address].addCredential(RR, tPtr, sourcePeerIdentity, m_config, com);
}

Member::AddCredentialResult Network::addCredential(void *tPtr, const Identity &sourcePeerIdentity, const CapabilityCredential &cap)
{
	if (cap.networkId() != m_id)
		return Member::ADD_REJECTED;
	Mutex::Lock _l(m_memberships_l);
	return m_memberships[cap.issuedTo()].addCredential(RR, tPtr, sourcePeerIdentity, m_config, cap);
}

Member::AddCredentialResult Network::addCredential(void *tPtr, const Identity &sourcePeerIdentity, const TagCredential &tag)
{
	if (tag.networkId() != m_id)
		return Member::ADD_REJECTED;
	Mutex::Lock _l(m_memberships_l);
	return m_memberships[tag.issuedTo()].addCredential(RR, tPtr, sourcePeerIdentity, m_config, tag);
}

Member::AddCredentialResult Network::addCredential(void *tPtr, const Identity &sourcePeerIdentity, const RevocationCredential &rev)
{
	if (rev.networkId() != m_id)
		return Member::ADD_REJECTED;

	Mutex::Lock l1(m_memberships_l);
	Member &m = m_memberships[rev.target()];

	const Member::AddCredentialResult result = m.addCredential(RR, tPtr, sourcePeerIdentity, m_config, rev);

	if ((result == Member::ADD_ACCEPTED_NEW) && (rev.fastPropagate())) {
		// TODO
		/*
			Address *a = nullptr;
			Membership *m = nullptr;
			Hashtable<Address,Membership>::Iterator i(_memberships);
			while (i.next(a,m)) {
				if ((*a != sourcePeerIdentity.address())&&(*a != rev.signer())) {
					Packet outp(*a,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS);
					outp.append((uint8_t)0x00); // no COM
					outp.append((uint16_t)0); // no capabilities
					outp.append((uint16_t)0); // no tags
					outp.append((uint16_t)1); // one revocation!
					rev.serialize(outp);
					outp.append((uint16_t)0); // no certificates of ownership
					RR->sw->send(tPtr,outp,true);
						}
					}
		*/
	}

	return result;
}

Member::AddCredentialResult Network::addCredential(void *tPtr, const Identity &sourcePeerIdentity, const OwnershipCredential &coo)
{
	if (coo.networkId() != m_id)
		return Member::ADD_REJECTED;
	Mutex::Lock _l(m_memberships_l);
	return m_memberships[coo.issuedTo()].addCredential(RR, tPtr, sourcePeerIdentity, m_config, coo);
}

void Network::pushCredentials(void *tPtr, const SharedPtr< Peer > &to, const int64_t now)
{
	const int64_t tout = std::min(m_config.credentialTimeMaxDelta, m_config.com.timestampMaxDelta());
	Mutex::Lock _l(m_memberships_l);
	Member &m = m_memberships[to->address()];
	if (((now - m.lastPushedCredentials()) + 5000) >= tout) {
		m.pushCredentials(RR, tPtr, now, to, m_config);
	}
}

void Network::destroy()
{
	m_memberships_l.lock();
	m_config_l.lock();
	m_destroyed = true;
	m_config_l.unlock();
	m_memberships_l.unlock();
}

void Network::externalConfig(ZT_VirtualNetworkConfig *ec) const
{
	Mutex::Lock _l(m_config_l);
	m_externalConfig(ec);
}

void Network::m_requestConfiguration(void *tPtr)
{
	if (m_destroyed)
		return;

	if ((m_id >> 56U) == 0xff) {
		if ((m_id & 0xffffffU) == 0) {
			const uint16_t startPortRange = (uint16_t)((m_id >> 40U) & 0xffff);
			const uint16_t endPortRange = (uint16_t)((m_id >> 24U) & 0xffff);
			if (endPortRange >= startPortRange) {
				ScopedPtr< NetworkConfig > nconf(new NetworkConfig());

				nconf->networkId = m_id;
				nconf->timestamp = RR->node->now();
				nconf->credentialTimeMaxDelta = ZT_NETWORKCONFIG_DEFAULT_CREDENTIAL_TIME_MAX_MAX_DELTA;
				nconf->revision = 1;
				nconf->issuedTo = RR->identity.address();
				nconf->flags = ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION;
				nconf->mtu = ZT_DEFAULT_MTU;
				nconf->multicastLimit = 0;
				nconf->staticIpCount = 1;
				nconf->ruleCount = 14;
				nconf->staticIps[0] = InetAddress::makeIpv66plane(m_id, RR->identity.address().toInt());

				// Drop everything but IPv6
				nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_MATCH_ETHERTYPE | 0x80U; // NOT
				nconf->rules[0].v.etherType = 0x86dd; // IPv6
				nconf->rules[1].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP;

				// Allow ICMPv6
				nconf->rules[2].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL;
				nconf->rules[2].v.ipProtocol = 0x3a; // ICMPv6
				nconf->rules[3].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;

				// Allow destination ports within range
				nconf->rules[4].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL;
				nconf->rules[4].v.ipProtocol = 0x11; // UDP
				nconf->rules[5].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL | 0x40U; // OR
				nconf->rules[5].v.ipProtocol = 0x06; // TCP
				nconf->rules[6].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE;
				nconf->rules[6].v.port[0] = startPortRange;
				nconf->rules[6].v.port[1] = endPortRange;
				nconf->rules[7].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;

				// Allow non-SYN TCP packets to permit non-connection-initiating traffic
				nconf->rules[8].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS | 0x80U; // NOT
				nconf->rules[8].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN;
				nconf->rules[9].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;

				// Also allow SYN+ACK which are replies to SYN
				nconf->rules[10].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS;
				nconf->rules[10].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN;
				nconf->rules[11].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS;
				nconf->rules[11].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_ACK;
				nconf->rules[12].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;

				nconf->rules[13].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP;

				nconf->type = ZT_NETWORK_TYPE_PUBLIC;

				nconf->name[0] = 'a';
				nconf->name[1] = 'd';
				nconf->name[2] = 'h';
				nconf->name[3] = 'o';
				nconf->name[4] = 'c';
				nconf->name[5] = '-';
				Utils::hex((uint16_t)startPortRange, nconf->name + 6);
				nconf->name[10] = '-';
				Utils::hex((uint16_t)endPortRange, nconf->name + 11);
				nconf->name[15] = (char)0;

				this->setConfiguration(tPtr, *nconf, false);
			} else {
				this->setNotFound();
			}
		} else if ((m_id & 0xffU) == 0x01) {
			// ffAAaaaaaaaaaa01 -- where AA is the IPv4 /8 to use and aaaaaaaaaa is the anchor node for multicast gather and replication
			const uint64_t myAddress = RR->identity.address().toInt();
			const uint64_t networkHub = (m_id >> 8U) & 0xffffffffffULL;

			uint8_t ipv4[4];
			ipv4[0] = (uint8_t)(m_id >> 48U);
			ipv4[1] = (uint8_t)(myAddress >> 16U);
			ipv4[2] = (uint8_t)(myAddress >> 8U);
			ipv4[3] = (uint8_t)myAddress;

			char v4ascii[24];
			Utils::decimal(ipv4[0], v4ascii);

			ScopedPtr< NetworkConfig > nconf(new NetworkConfig());

			nconf->networkId = m_id;
			nconf->timestamp = RR->node->now();
			nconf->credentialTimeMaxDelta = ZT_NETWORKCONFIG_DEFAULT_CREDENTIAL_TIME_MAX_MAX_DELTA;
			nconf->revision = 1;
			nconf->issuedTo = RR->identity.address();
			nconf->flags = ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION;
			nconf->mtu = ZT_DEFAULT_MTU;
			nconf->multicastLimit = 1024;
			nconf->specialistCount = (networkHub == 0) ? 0 : 1;
			nconf->staticIpCount = 2;
			nconf->ruleCount = 1;

			if (networkHub != 0)
				nconf->specialists[0] = networkHub;

			nconf->staticIps[0] = InetAddress::makeIpv66plane(m_id, myAddress);
			nconf->staticIps[1].set(ipv4, 4, 8);

			nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT;

			nconf->type = ZT_NETWORK_TYPE_PUBLIC;

			nconf->name[0] = 'a';
			nconf->name[1] = 'd';
			nconf->name[2] = 'h';
			nconf->name[3] = 'o';
			nconf->name[4] = 'c';
			nconf->name[5] = '-';
			unsigned long nn = 6;
			while ((nconf->name[nn] = v4ascii[nn - 6])) ++nn;
			nconf->name[nn++] = '.';
			nconf->name[nn++] = '0';
			nconf->name[nn++] = '.';
			nconf->name[nn++] = '0';
			nconf->name[nn++] = '.';
			nconf->name[nn++] = '0';
			nconf->name[nn] = (char)0;

			this->setConfiguration(tPtr, *nconf, false);
		}
		return;
	}

	const Address ctrl(controller());

	Dictionary rmd;
	rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_VENDOR, (uint64_t)1); // 1 == ZeroTier, no other vendors at the moment
	rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION, (uint64_t)ZT_PROTO_VERSION);
	rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION, (uint64_t)ZEROTIER_VERSION_MAJOR);
	rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION, (uint64_t)ZEROTIER_VERSION_MINOR);
	rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION, (uint64_t)ZEROTIER_VERSION_REVISION);
	rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_RULES, (uint64_t)ZT_MAX_NETWORK_RULES);
	rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_CAPABILITIES, (uint64_t)ZT_MAX_NETWORK_CAPABILITIES);
	rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_CAPABILITY_RULES, (uint64_t)ZT_MAX_CAPABILITY_RULES);
	rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_TAGS, (uint64_t)ZT_MAX_NETWORK_TAGS);
	rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_FLAGS, (uint64_t)0);
	rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_RULES_ENGINE_REV, (uint64_t)ZT_RULES_ENGINE_REVISION);

	RR->t->networkConfigRequestSent(tPtr, 0x335bb1a2, m_id);

	if (ctrl == RR->identity.address()) {
		if (RR->localNetworkController) {
			RR->localNetworkController->request(m_id, InetAddress(), 0xffffffffffffffffULL, RR->identity, rmd);
		} else {
			this->setNotFound();
		}
		return;
	}

	// TODO
	/*
	Packet outp(ctrl,RR->identity.address(),Packet::VERB_NETWORK_CONFIG_REQUEST);
	outp.append((uint64_t)_id);
	const unsigned int rmdSize = rmd->sizeBytes();
	outp.append((uint16_t)rmdSize);
	outp.append((const void *)rmd->data(),rmdSize);
	if (_config) {
		outp.append((uint64_t)_config.revision);
		outp.append((uint64_t)_config.timestamp);
	} else {
		outp.append((unsigned char)0,16);
	}
	outp.compress();
	RR->node->expectReplyTo(outp.packetId());
	RR->sw->send(tPtr,outp,true);
	*/
}

ZT_VirtualNetworkStatus Network::m_status() const
{
	switch (_netconfFailure) {
		case NETCONF_FAILURE_ACCESS_DENIED:
			return ZT_NETWORK_STATUS_ACCESS_DENIED;
		case NETCONF_FAILURE_NOT_FOUND:
			return ZT_NETWORK_STATUS_NOT_FOUND;
		case NETCONF_FAILURE_NONE:
			return ((m_config) ? ZT_NETWORK_STATUS_OK : ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION);
		default:
			return ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION;
	}
}

void Network::m_externalConfig(ZT_VirtualNetworkConfig *ec) const
{
	// assumes _config_l is locked
	ec->nwid = m_id;
	ec->mac = m_mac.toInt();
	if (m_config)
		Utils::scopy(ec->name, sizeof(ec->name), m_config.name);
	else ec->name[0] = (char)0;
	ec->status = m_status();
	ec->type = (m_config) ? (m_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE;
	ec->mtu = (m_config) ? m_config.mtu : ZT_DEFAULT_MTU;
	Vector< Address > ab;
	for (unsigned int i = 0; i < m_config.specialistCount; ++i) {
		if ((m_config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0)
			ab.push_back(Address(m_config.specialists[i]));
	}
	ec->bridge = (std::find(ab.begin(), ab.end(), RR->identity.address()) != ab.end()) ? 1 : 0;
	ec->broadcastEnabled = (m_config) ? (m_config.enableBroadcast() ? 1 : 0) : 0;
	ec->netconfRevision = (m_config) ? (unsigned long)m_config.revision : 0;

	ec->assignedAddressCount = 0;
	for (unsigned int i = 0; i < ZT_MAX_ZT_ASSIGNED_ADDRESSES; ++i) {
		if (i < m_config.staticIpCount) {
			Utils::copy< sizeof(struct sockaddr_storage) >(&(ec->assignedAddresses[i]), &(m_config.staticIps[i]));
			++ec->assignedAddressCount;
		} else {
			Utils::zero< sizeof(struct sockaddr_storage) >(&(ec->assignedAddresses[i]));
		}
	}

	ec->routeCount = 0;
	for (unsigned int i = 0; i < ZT_MAX_NETWORK_ROUTES; ++i) {
		if (i < m_config.routeCount) {
			Utils::copy< sizeof(ZT_VirtualNetworkRoute) >(&(ec->routes[i]), &(m_config.routes[i]));
			++ec->routeCount;
		} else {
			Utils::zero< sizeof(ZT_VirtualNetworkRoute) >(&(ec->routes[i]));
		}
	}
}

void Network::m_announceMulticastGroups(void *tPtr, bool force)
{
	// Assumes _myMulticastGroups_l and _memberships_l are locked
	const Vector< MulticastGroup > groups(m_allMulticastGroups());
	m_announceMulticastGroupsTo(tPtr, controller(), groups);

	// TODO
	/*
Address *a = nullptr;
Membership *m = nullptr;
Hashtable<Address,Membership>::Iterator i(_memberships);
while (i.next(a,m)) {
	bool announce = m->multicastLikeGate(now); // force this to be called even if 'force' is true since it updates last push time
	if ((!announce)&&(force))
		announce = true;
	if ((announce)&&(m->isAllowedOnNetwork(_config)))
		_announceMulticastGroupsTo(tPtr,*a,groups);
	}
	*/

}

void Network::m_announceMulticastGroupsTo(void *tPtr, const Address &peer, const Vector< MulticastGroup > &allMulticastGroups)
{
#if 0
	// Assumes _myMulticastGroups_l and _memberships_l are locked
	ScopedPtr<Packet> outp(new Packet(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE));

	for(Vector<MulticastGroup>::const_iterator mg(allMulticastGroups.begin());mg!=allMulticastGroups.end();++mg) {
		if ((outp->size() + 24) >= ZT_PROTO_MAX_PACKET_LENGTH) {
			outp->compress();
			RR->sw->send(tPtr,*outp,true);
			outp->reset(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE);
		}

		// network ID, MAC, ADI
		outp->append((uint64_t)_id);
		mg->mac().appendTo(*outp);
		outp->append((uint32_t)mg->adi());
	}

	if (outp->size() > ZT_PROTO_MIN_PACKET_LENGTH) {
		outp->compress();
		RR->sw->send(tPtr,*outp,true);
	}
#endif
}

Vector< MulticastGroup > Network::m_allMulticastGroups() const
{
	// Assumes _myMulticastGroups_l is locked
	Vector< MulticastGroup > mgs;
	mgs.reserve(m_myMulticastGroups.size() + m_multicastGroupsBehindMe.size() + 1);
	mgs.insert(mgs.end(), m_myMulticastGroups.begin(), m_myMulticastGroups.end());
	for (Map< MulticastGroup, int64_t >::const_iterator i(m_multicastGroupsBehindMe.begin()); i != m_multicastGroupsBehindMe.end(); ++i)
		mgs.push_back(i->first);
	if ((m_config) && (m_config.enableBroadcast()))
		mgs.push_back(Network::BROADCAST);
	std::sort(mgs.begin(), mgs.end());
	mgs.erase(std::unique(mgs.begin(), mgs.end()), mgs.end());
	return mgs;
}

} // namespace ZeroTier