/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2024-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "Constants.hpp" #include "RuntimeEnvironment.hpp" #include "Trace.hpp" #include "Peer.hpp" #include "Topology.hpp" #include "Node.hpp" #include "SelfAwareness.hpp" #include "InetAddress.hpp" #include "Protocol.hpp" #include "Endpoint.hpp" namespace ZeroTier { Peer::Peer(const RuntimeEnvironment *renv) : // NOLINT(cppcoreguidelines-pro-type-member-init,hicpp-member-init) RR(renv), m_lastReceive(0), m_lastSend(0), m_lastSentHello(), m_lastWhoisRequestReceived(0), m_lastEchoRequestReceived(0), m_lastPrioritizedPaths(0), m_alivePathCount(0), m_tryQueue(), m_tryQueuePtr(m_tryQueue.end()), m_probe(0), m_vProto(0), m_vMajor(0), m_vMinor(0), m_vRevision(0) { } Peer::~Peer() // NOLINT(hicpp-use-equals-default,modernize-use-equals-default) { } bool Peer::init(const Identity &peerIdentity) { RWMutex::Lock l(m_lock); if (m_id) // already initialized sanity check return false; m_id = peerIdentity; uint8_t ktmp[ZT_SYMMETRIC_KEY_SIZE]; if (!RR->identity.agree(peerIdentity,ktmp)) return false; m_identityKey.init(RR->node->now(), ktmp); Utils::burn(ktmp,sizeof(ktmp)); return true; } void Peer::received( void *tPtr, const SharedPtr &path, const unsigned int hops, const uint64_t packetId, const unsigned int payloadLength, const Protocol::Verb verb, const Protocol::Verb inReVerb) { const int64_t now = RR->node->now(); m_lastReceive = now; m_inMeter.log(now, payloadLength); if (hops == 0) { RWMutex::RMaybeWLock l(m_lock); // If this matches an existing path, skip path learning stuff. For the small number // of paths a peer will have linear scan is the fastest way to do lookup. for (unsigned int i=0;i < m_alivePathCount;++i) { if (m_paths[i] == path) return; } // If we made it here, we don't already know this path. if (RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, path->localSocket(), path->address())) { // SECURITY: note that if we've made it here we expected this OK, see Expect.hpp. // There is replay protection in effect for OK responses. if (verb == Protocol::VERB_OK) { // If we're learning a new path convert the lock to an exclusive write lock. l.writing(); // If the path list is full, replace the least recently active path. Otherwise append new path. unsigned int newPathIdx = 0; if (m_alivePathCount >= ZT_MAX_PEER_NETWORK_PATHS) { int64_t lastReceiveTimeMax = 0; for (unsigned int i=0;i < m_alivePathCount;++i) { if ((m_paths[i]->address().family() == path->address().family()) && (m_paths[i]->localSocket() == path->localSocket()) && // TODO: should be localInterface when multipath is integrated (m_paths[i]->address().ipsEqual2(path->address()))) { // Replace older path if everything is the same except the port number, since NAT/firewall reboots // and other wacky stuff can change port number assignments. m_paths[i] = path; return; } else if (m_paths[i]->lastIn() > lastReceiveTimeMax) { lastReceiveTimeMax = m_paths[i]->lastIn(); newPathIdx = i; } } } else { newPathIdx = m_alivePathCount++; } InetAddress old; if (m_paths[newPathIdx]) old = m_paths[newPathIdx]->address(); m_paths[newPathIdx] = path; // Re-prioritize paths to include the new one. m_prioritizePaths(now); // Remember most recently learned paths for future bootstrap attempts on restart. Endpoint pathEndpoint(path->address()); m_bootstrap[pathEndpoint.type()] = pathEndpoint; RR->t->learnedNewPath(tPtr, 0x582fabdd, packetId, m_id, path->address(), old); } else { path->sent(now,hello(tPtr,path->localSocket(),path->address(),now)); RR->t->tryingNewPath(tPtr, 0xb7747ddd, m_id, path->address(), path->address(), packetId, (uint8_t)verb, m_id, ZT_TRACE_TRYING_NEW_PATH_REASON_PACKET_RECEIVED_FROM_UNKNOWN_PATH); } } } } void Peer::send(void *const tPtr,const int64_t now,const void *const data,const unsigned int len,const SharedPtr &via) noexcept { via->send(RR,tPtr,data,len,now); sent(now,len); } void Peer::send(void *const tPtr,const int64_t now,const void *const data,const unsigned int len) noexcept { SharedPtr via(this->path(now)); if (via) { via->send(RR,tPtr,data,len,now); } else { const SharedPtr root(RR->topology->root()); if ((root)&&(root.ptr() != this)) { via = root->path(now); if (via) { via->send(RR,tPtr,data,len,now); root->relayed(now,len); } else { return; } } else { return; } } sent(now,len); } unsigned int Peer::hello(void *tPtr,int64_t localSocket,const InetAddress &atAddress,int64_t now) { #if 0 Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_VERSION_REVISION); outp.append(now); RR->identity.serialize(outp,false); atAddress.serialize(outp); RR->node->expectReplyTo(outp.packetId()); if (atAddress) { outp.armor(_key,false); // false == don't encrypt full payload, but add MAC RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size()); } else { RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC } #endif } unsigned int Peer::probe(void *tPtr,int64_t localSocket,const InetAddress &atAddress,int64_t now) { if (m_vProto < 11) { Buf outp; Protocol::Header &ph = outp.as(); // NOLINT(hicpp-use-auto,modernize-use-auto) //ph.packetId = Protocol::getPacketId(); m_id.address().copyTo(ph.destination); RR->identity.address().copyTo(ph.source); ph.flags = 0; ph.verb = Protocol::VERB_NOP; Protocol::armor(outp, sizeof(Protocol::Header), m_identityKey.key(), this->cipher()); RR->node->putPacket(tPtr,localSocket,atAddress,outp.unsafeData,sizeof(Protocol::Header)); return sizeof(Protocol::Header); } else { RR->node->putPacket(tPtr, -1, atAddress, &m_probe, 4); return 4; } } void Peer::pulse(void *const tPtr,const int64_t now,const bool isRoot) { RWMutex::Lock l(m_lock); bool needHello = false; if ((now - m_lastSentHello) >= ZT_PEER_HELLO_INTERVAL) { m_lastSentHello = now; needHello = true; } m_prioritizePaths(now); if (m_alivePathCount == 0) { // If there are no direct paths, attempt to make one. If there are queued addresses // to try, attempt one of those. Otherwise try a path we can fetch via API callbacks // and/or a remembered bootstrap path. if (m_tryQueue.empty()) { InetAddress addr; if (RR->node->externalPathLookup(tPtr, m_id, -1, addr)) { if ((addr)&&(RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, -1, addr))) { RR->t->tryingNewPath(tPtr, 0x84a10000, m_id, addr, InetAddress::NIL, 0, 0, Identity::NIL, ZT_TRACE_TRYING_NEW_PATH_REASON_EXPLICITLY_SUGGESTED_ADDRESS); sent(now,probe(tPtr,-1,addr,now)); } } if (!m_bootstrap.empty()) { unsigned int tryAtIndex = (unsigned int)Utils::random() % (unsigned int)m_bootstrap.size(); for(SortedMap< Endpoint::Type,Endpoint >::const_iterator i(m_bootstrap.begin());i != m_bootstrap.end();++i) { if (tryAtIndex > 0) { --tryAtIndex; } else { if ((i->second.isInetAddr())&&(!i->second.inetAddr().ipsEqual(addr))) { RR->t->tryingNewPath(tPtr, 0x0a009444, m_id, i->second.inetAddr(), InetAddress::NIL, 0, 0, Identity::NIL, ZT_TRACE_TRYING_NEW_PATH_REASON_BOOTSTRAP_ADDRESS); sent(now,probe(tPtr,-1,i->second.inetAddr(),now)); break; } } } } } else { for(int k=0;(kts) > ZT_PATH_ALIVE_TIMEOUT) { m_tryQueue.erase(m_tryQueuePtr++); continue; } if (m_tryQueuePtr->target.isInetAddr()) { if ((m_tryQueuePtr->breakSymmetricBFG1024) && (RR->node->natMustDie())) { // Attempt aggressive NAT traversal if both requested and enabled. uint16_t ports[1023]; for (unsigned int i=0;i<1023;++i) ports[i] = (uint64_t)(i + 1); for (unsigned int i=0;i<512;++i) { const uint64_t rn = Utils::random(); const unsigned int a = (unsigned int)rn % 1023; const unsigned int b = (unsigned int)(rn >> 32U) % 1023; if (a != b) { uint16_t tmp = ports[a]; ports[a] = ports[b]; ports[b] = tmp; } } InetAddress addr(m_tryQueuePtr->target.inetAddr()); for (unsigned int i = 0;i < ZT_NAT_T_BFG1024_PORTS_PER_ATTEMPT;++i) { addr.setPort(ports[i]); sent(now,probe(tPtr,-1,addr,now)); } } else { // Otherwise send a normal probe. sent(now,probe(tPtr, -1, m_tryQueuePtr->target.inetAddr(), now)); } } ++m_tryQueuePtr; } } } else { // Keep direct paths alive, sending a HELLO if we need one or else just a simple byte. for(unsigned int i=0;i < m_alivePathCount;++i) { if (needHello) { needHello = false; const unsigned int bytes = hello(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), now); m_paths[i]->sent(now, bytes); sent(now,bytes); } else if ((now - m_paths[i]->lastOut()) >= ZT_PATH_KEEPALIVE_PERIOD) { m_paths[i]->send(RR, tPtr, &now, 1, now); sent(now,1); } } } // If we could not reliably send a HELLO via a direct path, send it by way of a root. if (needHello) { const SharedPtr root(RR->topology->root()); if (root) { const SharedPtr via(root->path(now)); if (via) { const unsigned int bytes = hello(tPtr,via->localSocket(),via->address(),now); via->sent(now,bytes); root->relayed(now,bytes); sent(now,bytes); } } } } void Peer::tryDirectPath(const int64_t now,const Endpoint &ep,const bool breakSymmetricBFG1024) { RWMutex::Lock l(m_lock); for(List::iterator i(m_tryQueue.begin());i != m_tryQueue.end();++i) { // NOLINT(modernize-loop-convert,hicpp-use-auto,modernize-use-auto) if (i->target == ep) { i->ts = now; i->breakSymmetricBFG1024 = breakSymmetricBFG1024; return; } } #ifdef __CPP11__ m_tryQueue.emplace_back(now, ep, breakSymmetricBFG1024); #else _tryQueue.push_back(_TryQueueItem(now,ep,breakSymmetricBFG1024)); #endif } void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now) { RWMutex::RLock l(m_lock); for(unsigned int i=0;i < m_alivePathCount;++i) { if ((m_paths[i]) && ((m_paths[i]->address().family() == inetAddressFamily) && (m_paths[i]->address().ipScope() == scope))) { const unsigned int bytes = probe(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), now); m_paths[i]->sent(now, bytes); sent(now,bytes); } } } bool Peer::directlyConnected(int64_t now) { if ((now - m_lastPrioritizedPaths) > ZT_PEER_PRIORITIZE_PATHS_INTERVAL) { RWMutex::Lock l(m_lock); m_prioritizePaths(now); return m_alivePathCount > 0; } else { RWMutex::RLock l(m_lock); return m_alivePathCount > 0; } } void Peer::getAllPaths(std::vector< SharedPtr > &paths) { RWMutex::RLock l(m_lock); paths.clear(); paths.assign(m_paths, m_paths + m_alivePathCount); } void Peer::save(void *tPtr) const { uint8_t buf[8 + ZT_PEER_MARSHAL_SIZE_MAX]; // Prefix each saved peer with the current timestamp. Utils::storeBigEndian(buf,(uint64_t)RR->node->now()); const int len = marshal(buf + 8); if (len > 0) { uint64_t id[2]; id[0] = m_id.address().toInt(); id[1] = 0; RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_PEER,id,buf,(unsigned int)len + 8); } } int Peer::marshal(uint8_t data[ZT_PEER_MARSHAL_SIZE_MAX]) const noexcept { data[0] = 0; // serialized peer version RWMutex::RLock l(m_lock); int s = m_identityKey.marshal(RR->localCacheSymmetric, data + 1); if (s < 0) return -1; int p = 1 + s; s = m_id.marshal(data + p, false); if (s < 0) return -1; p += s; s = m_locator.marshal(data + p); if (s <= 0) return s; p += s; data[p++] = (uint8_t)m_bootstrap.size(); for(std::map< Endpoint::Type,Endpoint >::const_iterator i(m_bootstrap.begin());i != m_bootstrap.end();++i) { // NOLINT(modernize-loop-convert,hicpp-use-auto,modernize-use-auto) s = i->second.marshal(data + p); if (s <= 0) return -1; p += s; } Utils::storeBigEndian(data + p,(uint16_t)m_vProto); p += 2; Utils::storeBigEndian(data + p,(uint16_t)m_vMajor); p += 2; Utils::storeBigEndian(data + p,(uint16_t)m_vMinor); p += 2; Utils::storeBigEndian(data + p,(uint16_t)m_vRevision); p += 2; data[p++] = 0; data[p++] = 0; return p; } int Peer::unmarshal(const uint8_t *restrict data,const int len) noexcept { RWMutex::Lock l(m_lock); if ((len <= 1) || (data[0] != 0)) return -1; int s = m_identityKey.unmarshal(RR->localCacheSymmetric, data + 1, len); if (s < 0) return -1; int p = 1 + s; // If the identity key did not pass verification, it may mean that our local // identity has changed. In this case we do not have to forget everything about // the peer but we must generate a new identity key by key agreement with our // new identity. if (!m_identityKey) { uint8_t tmp[ZT_SYMMETRIC_KEY_SIZE]; if (!RR->identity.agree(m_id, tmp)) return -1; m_identityKey.init(RR->node->now(), tmp); Utils::burn(tmp,sizeof(tmp)); } // These are ephemeral and start out as NIL after unmarshal. m_ephemeralKeys[0].clear(); m_ephemeralKeys[1].clear(); s = m_id.unmarshal(data + 38, len - 38); if (s < 0) return s; p += s; s = m_locator.unmarshal(data + p, len - p); if (s < 0) return s; p += s; if (p >= len) return -1; const unsigned int bootstrapCount = data[p++]; if (bootstrapCount > ZT_MAX_PEER_NETWORK_PATHS) return -1; m_bootstrap.clear(); for(unsigned int i=0;i len) return -1; m_vProto = Utils::loadBigEndian(data + p); p += 2; m_vMajor = Utils::loadBigEndian(data + p); p += 2; m_vMinor = Utils::loadBigEndian(data + p); p += 2; m_vRevision = Utils::loadBigEndian(data + p); p += 2; p += 2 + (int)Utils::loadBigEndian(data + p); return (p > len) ? -1 : p; } struct _PathPriorityComparisonOperator { ZT_INLINE bool operator()(const SharedPtr &a,const SharedPtr &b) const noexcept { // Sort in descending order of most recent receive time. return (a->lastIn() > b->lastIn()); } }; void Peer::m_prioritizePaths(int64_t now) { // assumes _lock is locked for writing m_lastPrioritizedPaths = now; if (m_alivePathCount > 0) { // Sort paths in descending order of priority. std::sort(m_paths, m_paths + m_alivePathCount, _PathPriorityComparisonOperator()); // Let go of paths that have expired. for (unsigned int i = 0;ialive(now))) { m_alivePathCount = i; for (;i < ZT_MAX_PEER_NETWORK_PATHS;++i) m_paths[i].zero(); break; } } } } } // namespace ZeroTier