/* * ZeroTier One - Network Virtualization Everywhere * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/ * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "../version.h" #include "Constants.hpp" #include "Peer.hpp" #include "Node.hpp" #include "Switch.hpp" #include "Network.hpp" #include "SelfAwareness.hpp" #include "Cluster.hpp" #include "Packet.hpp" namespace ZeroTier { // Used to send varying values for NAT keepalive static uint32_t _natKeepaliveBuf = 0; Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity) : RR(renv), _lastUsed(0), _lastReceive(0), _lastUnicastFrame(0), _lastMulticastFrame(0), _lastAnnouncedTo(0), _lastDirectPathPushSent(0), _lastDirectPathPushReceive(0), _vProto(0), _vMajor(0), _vMinor(0), _vRevision(0), _id(peerIdentity), _numPaths(0), _latency(0), _directPathPushCutoffCount(0) { if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH)) throw std::runtime_error("new peer identity key agreement failed"); } void Peer::received( const SharedPtr &path, unsigned int hops, uint64_t packetId, Packet::Verb verb, uint64_t inRePacketId, Packet::Verb inReVerb, const bool trustEstablished) { const uint64_t now = RR->node->now(); #ifdef ZT_ENABLE_CLUSTER bool suboptimalPath = false; if ((RR->cluster)&&(hops == 0)) { // Note: findBetterEndpoint() is first since we still want to check // for a better endpoint even if we don't actually send a redirect. InetAddress redirectTo; if ( (verb != Packet::VERB_OK) && (verb != Packet::VERB_ERROR) && (verb != Packet::VERB_RENDEZVOUS) && (verb != Packet::VERB_PUSH_DIRECT_PATHS) && (RR->cluster->findBetterEndpoint(redirectTo,_id.address(),path->address(),false)) ) { if (_vProto >= 5) { // For newer peers we can send a more idiomatic verb: PUSH_DIRECT_PATHS. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS); outp.append((uint16_t)1); // count == 1 outp.append((uint8_t)ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT); // flags: cluster redirect outp.append((uint16_t)0); // no extensions if (redirectTo.ss_family == AF_INET) { outp.append((uint8_t)4); outp.append((uint8_t)6); outp.append(redirectTo.rawIpData(),4); } else { outp.append((uint8_t)6); outp.append((uint8_t)18); outp.append(redirectTo.rawIpData(),16); } outp.append((uint16_t)redirectTo.port()); outp.armor(_key,true); path->send(RR,outp.data(),outp.size(),now); } else { // For older peers we use RENDEZVOUS to coax them into contacting us elsewhere. Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS); outp.append((uint8_t)0); // no flags RR->identity.address().appendTo(outp); outp.append((uint16_t)redirectTo.port()); if (redirectTo.ss_family == AF_INET) { outp.append((uint8_t)4); outp.append(redirectTo.rawIpData(),4); } else { outp.append((uint8_t)16); outp.append(redirectTo.rawIpData(),16); } outp.armor(_key,true); path->send(RR,outp.data(),outp.size(),now); } suboptimalPath = true; } } #endif _lastReceive = now; if ((verb == Packet::VERB_FRAME)||(verb == Packet::VERB_EXT_FRAME)) _lastUnicastFrame = now; else if (verb == Packet::VERB_MULTICAST_FRAME) _lastMulticastFrame = now; if (hops == 0) { bool pathIsConfirmed = false; { Mutex::Lock _l(_paths_m); for(unsigned int p=0;p<_numPaths;++p) { if (_paths[p].path == path) { // paths are canonicalized so pointer compare is good here _paths[p].lastReceive = now; #ifdef ZT_ENABLE_CLUSTER _paths[p].clusterSuboptimal = suboptimalPath; #endif pathIsConfirmed = true; break; } } } if ((!pathIsConfirmed)&&(RR->node->shouldUsePathForZeroTierTraffic(path->localAddress(),path->address()))) { if (verb == Packet::VERB_OK) { Mutex::Lock _l(_paths_m); unsigned int slot = 0; if (_numPaths < ZT_MAX_PEER_NETWORK_PATHS) { slot = _numPaths++; } else { uint64_t oldest = 0ULL; unsigned int oldestPath = 0; for(unsigned int p=0;p<_numPaths;++p) { if (_paths[p].lastReceive < oldest) { oldest = _paths[p].lastReceive; oldestPath = p; } } slot = oldestPath; } _paths[slot].path = path; _paths[slot].lastReceive = now; #ifdef ZT_ENABLE_CLUSTER _paths[slot].clusterSuboptimal = suboptimalPath; if (RR->cluster) RR->cluster->broadcastHavePeer(_id); #else _paths[slot].clusterSuboptimal = false; #endif } else { TRACE("got %s via unknown path %s(%s), confirming...",Packet::verbString(verb),_id.address().toString().c_str(),remoteAddr.toString().c_str()); if ( (_vProto >= 5) && ( !((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0)) ) ) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO); outp.armor(_key,true); path->send(RR,outp.data(),outp.size(),now); } else { sendHELLO(path->localAddress(),path->address(),now); } } } } else if (trustEstablished) { _pushDirectPaths(path,now); } if ((now - _lastAnnouncedTo) >= ((ZT_MULTICAST_LIKE_EXPIRE / 2) - 1000)) { _lastAnnouncedTo = now; const std::vector< SharedPtr > networks(RR->node->allNetworks()); for(std::vector< SharedPtr >::const_iterator n(networks.begin());n!=networks.end();++n) (*n)->tryAnnounceMulticastGroupsTo(SharedPtr(this)); } } bool Peer::hasActivePathTo(uint64_t now,const InetAddress &addr) const { Mutex::Lock _l(_paths_m); for(unsigned int p=0;p<_numPaths;++p) { if ( (_paths[p].path->address() == addr) && (_paths[p].path->alive(now)) ) return true; } return false; } void Peer::setClusterOptimal(const InetAddress &addr) { Mutex::Lock _l(_paths_m); int have = -1; for(unsigned int p=0;p<_numPaths;++p) { if (_paths[p].path->address() == addr) { have = (int)p; break; } } if (have >= 0) { for(unsigned int p=0;p<_numPaths;++p) _paths[p].clusterSuboptimal = (p != have); } } bool Peer::sendDirect(const void *data,unsigned int len,uint64_t now,bool forceEvenIfDead) { Mutex::Lock _l(_paths_m); int bestp = -1; uint64_t best = 0ULL; for(unsigned int p=0;p<_numPaths;++p) { if (_paths[p].path->alive(now)||(forceEvenIfDead)) { const uint64_t s = _pathScore(p); if (s >= best) { best = s; bestp = (int)p; } } } if (bestp >= 0) { return _paths[bestp].path->send(RR,data,len,now); } else { return false; } } SharedPtr Peer::getBestPath(uint64_t now) { Mutex::Lock _l(_paths_m); int bestp = -1; uint64_t best = 0ULL; for(unsigned int p=0;p<_numPaths;++p) { const uint64_t s = _pathScore(p); if (s >= best) { best = s; bestp = (int)p; } } if (bestp >= 0) { return _paths[bestp].path; } else { return SharedPtr(); } } void Peer::sendHELLO(const InetAddress &localAddr,const InetAddress &atAddress,uint64_t now) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); outp.append(now); RR->identity.serialize(outp,false); atAddress.serialize(outp); outp.append((uint64_t)RR->topology->worldId()); outp.append((uint64_t)RR->topology->worldTimestamp()); outp.armor(_key,false); // HELLO is sent in the clear RR->node->putPacket(localAddr,atAddress,outp.data(),outp.size()); } bool Peer::doPingAndKeepalive(uint64_t now,int inetAddressFamily) { Mutex::Lock _l(_paths_m); int bestp = -1; uint64_t best = 0ULL; for(unsigned int p=0;p<_numPaths;++p) { const uint64_t s = _pathScore(p); if (s >= best) { best = s; bestp = (int)p; } } if (bestp >= 0) { if ((now - _paths[bestp].lastReceive) >= ZT_PEER_PING_PERIOD) { sendHELLO(_paths[bestp].path->localAddress(),_paths[bestp].path->address(),now); } else if (_paths[bestp].path->needsHeartbeat(now)) { _natKeepaliveBuf += (uint32_t)((now * 0x9e3779b1) >> 1); // tumble this around to send constantly varying (meaningless) payloads _paths[bestp].path->send(RR,&_natKeepaliveBuf,sizeof(_natKeepaliveBuf),now); } return true; } else { return false; } } bool Peer::hasActiveDirectPath(uint64_t now) const { Mutex::Lock _l(_paths_m); for(unsigned int p=0;p<_numPaths;++p) { if (_paths[p].path->alive(now)) return true; } return false; } bool Peer::resetWithinScope(InetAddress::IpScope scope,uint64_t now) { Mutex::Lock _l(_paths_m); unsigned int np = _numPaths; unsigned int x = 0; unsigned int y = 0; while (x < np) { if (_paths[x].path->address().ipScope() == scope) { // Resetting a path means sending a HELLO and then forgetting it. If we // get OK(HELLO) then it will be re-learned. sendHELLO(_paths[x].path->localAddress(),_paths[x].path->address(),now); } else { if (x != y) { _paths[y].path = _paths[x].path; _paths[y].lastReceive = _paths[x].lastReceive; #ifdef ZT_ENABLE_CLUSTER _paths[y].clusterSuboptimal = _paths[x].clusterSuboptimal; #endif } ++y; } ++x; } _numPaths = y; return (y < np); } void Peer::getBestActiveAddresses(uint64_t now,InetAddress &v4,InetAddress &v6) const { Mutex::Lock _l(_paths_m); int bestp4 = -1,bestp6 = -1; uint64_t best4 = 0ULL,best6 = 0ULL; for(unsigned int p=0;p<_numPaths;++p) { if (_paths[p].path->address().ss_family == AF_INET) { const uint64_t s = _pathScore(p); if (s >= best4) { best4 = s; bestp4 = (int)p; } } else if (_paths[p].path->address().ss_family == AF_INET6) { const uint64_t s = _pathScore(p); if (s >= best6) { best6 = s; bestp6 = (int)p; } } } if (bestp4 >= 0) v4 = _paths[bestp4].path->address(); if (bestp6 >= 0) v6 = _paths[bestp6].path->address(); } void Peer::clean(uint64_t now) { Mutex::Lock _l(_paths_m); unsigned int np = _numPaths; unsigned int x = 0; unsigned int y = 0; while (x < np) { if ((now - _paths[x].lastReceive) <= ZT_PEER_PATH_EXPIRATION) { if (y != x) { _paths[y].path = _paths[x].path; _paths[y].lastReceive = _paths[x].lastReceive; #ifdef ZT_ENABLE_CLUSTER _paths[y].clusterSuboptimal = _paths[x].clusterSuboptimal; #endif } ++y; } ++x; } _numPaths = y; } bool Peer::_pushDirectPaths(const SharedPtr &path,uint64_t now) { #ifdef ZT_ENABLE_CLUSTER // Cluster mode disables normal PUSH_DIRECT_PATHS in favor of cluster-based peer redirection if (RR->cluster) return false; #endif if ((now - _lastDirectPathPushSent) < ZT_DIRECT_PATH_PUSH_INTERVAL) return false; else _lastDirectPathPushSent = now; std::vector pathsToPush; std::vector dps(RR->node->directPaths()); for(std::vector::const_iterator i(dps.begin());i!=dps.end();++i) pathsToPush.push_back(*i); std::vector sym(RR->sa->getSymmetricNatPredictions()); for(unsigned long i=0,added=0;inode->prng() % sym.size()]); if (std::find(pathsToPush.begin(),pathsToPush.end(),tmp) == pathsToPush.end()) { pathsToPush.push_back(tmp); if (++added >= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) break; } } if (pathsToPush.empty()) return false; #ifdef ZT_TRACE { std::string ps; for(std::vector::const_iterator p(pathsToPush.begin());p!=pathsToPush.end();++p) { if (ps.length() > 0) ps.push_back(','); ps.append(p->toString()); } TRACE("pushing %u direct paths to %s: %s",(unsigned int)pathsToPush.size(),_id.address().toString().c_str(),ps.c_str()); } #endif std::vector::const_iterator p(pathsToPush.begin()); while (p != pathsToPush.end()) { Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS); outp.addSize(2); // leave room for count unsigned int count = 0; while ((p != pathsToPush.end())&&((outp.size() + 24) < 1200)) { uint8_t addressType = 4; switch(p->ss_family) { case AF_INET: break; case AF_INET6: addressType = 6; break; default: // we currently only push IP addresses ++p; continue; } outp.append((uint8_t)0); // no flags outp.append((uint16_t)0); // no extensions outp.append(addressType); outp.append((uint8_t)((addressType == 4) ? 6 : 18)); outp.append(p->rawIpData(),((addressType == 4) ? 4 : 16)); outp.append((uint16_t)p->port()); ++count; ++p; } if (count) { outp.setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count); outp.armor(_key,true); path->send(RR,outp.data(),outp.size(),now); } } return true; } } // namespace ZeroTier