/* * Copyright (c)2013-2021 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_DICTIONARY_HPP #define ZT_DICTIONARY_HPP #include "Constants.hpp" #include "Utils.hpp" #include "Address.hpp" #include "Buf.hpp" #include "Containers.hpp" namespace ZeroTier { class Identity; /** * A simple key-value store for short keys * * This data structure is used for network configurations, node meta-data, * and other open-definition protocol objects. * * This is technically a binary encoding, but with delimiters chosen so that * it looks like a series of key=value lines of the keys and values are * human-readable strings. * * The fastest way to build a dictionary to send is to use the append * static functions, not to populate and then encode a Dictionary. */ class Dictionary { public: typedef SortedMap< String, Vector< uint8_t > >::const_iterator const_iterator; ZT_INLINE Dictionary() {} ZT_INLINE ~Dictionary() {} /* ZT_INLINE void dump() const { printf("\n--\n"); for (const_iterator e(begin()); e != end(); ++e) { printf("%.8x %s=", Utils::fnv1a32(e->second.data(), (unsigned int)e->second.size()), e->first.c_str()); bool binary = false; for (Vector< uint8_t >::const_iterator c(e->second.begin()); c != e->second.end(); ++c) { if ((*c < 33) || (*c > 126)) { binary = true; break; } } if (binary) { for (Vector< uint8_t >::const_iterator c(e->second.begin()); c != e->second.end(); ++c) printf("%.2x", (unsigned int)*c); } else { Vector< uint8_t > s(e->second); s.push_back(0); printf("%s", s.data()); } printf("\n"); } printf("--\n"); } */ /** * Get a reference to a value * * @param k Key to look up * @return Reference to value */ ZT_MAYBE_UNUSED Vector< uint8_t > &operator[](const char *k); /** * Get a const reference to a value * * @param k Key to look up * @return Reference to value or to empty vector if not found */ ZT_MAYBE_UNUSED const Vector< uint8_t > &operator[](const char *k) const; /** * @return Start of key->value pairs */ ZT_MAYBE_UNUSED ZT_INLINE const_iterator begin() const noexcept { return m_entries.begin(); } /** * @return End of key->value pairs */ ZT_MAYBE_UNUSED ZT_INLINE const_iterator end() const noexcept { return m_entries.end(); } /** * Add an integer as a hexadecimal string value * * @param k Key to set * @param v Integer to set, will be cast to uint64_t and stored as hex */ ZT_MAYBE_UNUSED ZT_INLINE void add(const char *const k, const uint64_t v) { char buf[24]; add(k, Utils::hex((uint64_t)(v), buf)); } /** * Add an integer as a hexadecimal string value * * @param k Key to set * @param v Integer to set, will be cast to uint64_t and stored as hex */ ZT_MAYBE_UNUSED ZT_INLINE void add(const char *const k, const int64_t v) { char buf[24]; add(k, Utils::hex((uint64_t)(v), buf)); } /** * Add an address in 10-digit hex string format */ ZT_MAYBE_UNUSED void add(const char *k, const Address &v); /** * Add a C string as a value */ ZT_MAYBE_UNUSED void add(const char *k, const char *v); /** * Add a binary blob as a value */ ZT_MAYBE_UNUSED void add(const char *k, const void *data, unsigned int len); /** * Get an integer * * @param k Key to look up * @param dfl Default value (default: 0) * @return Value of key or default if not found */ ZT_MAYBE_UNUSED uint64_t getUI(const char *k, uint64_t dfl = 0) const; /** * Get a C string * * If the buffer is too small the string will be truncated, but the * buffer will always end in a terminating null no matter what. * * @param k Key to look up * @param v Buffer to hold string * @param cap Maximum size of string (including terminating null) */ ZT_MAYBE_UNUSED char *getS(const char *k, char *v, unsigned int cap) const; /** * Get an object supporting the marshal/unmarshal interface pattern * * @tparam T Object type (inferred) * @param k Key to look up * @param obj Object to unmarshal() into * @return True if unmarshal was successful */ template< typename T > ZT_MAYBE_UNUSED ZT_INLINE bool getO(const char *k, T &obj) const { const Vector< uint8_t > &d = (*this)[k]; if (d.empty()) return false; return (obj.unmarshal(d.data(), (unsigned int)d.size()) > 0); } /** * Add an object supporting the marshal/unmarshal interface pattern * * @tparam T Object type (inferred) * @param k Key to add * @param obj Object to marshal() into vector * @return True if successful */ template< typename T > ZT_MAYBE_UNUSED ZT_INLINE bool addO(const char *k, T &obj) { Vector< uint8_t > &d = (*this)[k]; d.resize(T::marshalSizeMax()); const int l = obj.marshal(d.data()); if (l > 0) { d.resize(l); return true; } d.clear(); return false; } /** * Erase all entries in dictionary */ ZT_MAYBE_UNUSED void clear(); /** * @return Number of entries */ ZT_MAYBE_UNUSED ZT_INLINE unsigned int size() const noexcept { return (unsigned int)m_entries.size(); } /** * @return True if dictionary is not empty */ ZT_MAYBE_UNUSED ZT_INLINE bool empty() const noexcept { return m_entries.empty(); } /** * Encode to a string in the supplied vector * * @param out String encoded dictionary */ ZT_MAYBE_UNUSED void encode(Vector< uint8_t > &out) const; /** * Decode a string encoded dictionary * * This will decode up to 'len' but will also abort if it finds a * null/zero as this could be a C string. * * @param data Data to decode * @param len Length of data * @return True if dictionary was formatted correctly and valid, false on error */ ZT_MAYBE_UNUSED bool decode(const void *data, unsigned int len); /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const bool v) { s_appendKey(out, k); out.push_back((uint8_t)(v ? '1' : '0')); out.push_back((uint8_t)'\n'); } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const Address v) { s_appendKey(out, k); const uint64_t a = v.toInt(); static_assert(ZT_ADDRESS_LENGTH_HEX == 10, "this must be rewritten for any change in address length"); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 36U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 32U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 28U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 24U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 20U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 16U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 12U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 8U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 4U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[a & 0xfU]); out.push_back((uint8_t)'\n'); } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const uint64_t v) { s_appendKey(out, k); char buf[17]; Utils::hex(v, buf); unsigned int i = 0; while (buf[i]) out.push_back((uint8_t)buf[i++]); out.push_back((uint8_t)'\n'); } template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const int64_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const uint32_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const int32_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const uint16_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const int16_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const uint8_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const int8_t v) { append(out, k, (uint64_t)v); } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const char *v) { if ((v) && (*v)) { s_appendKey(out, k); while (*v) s_appendValueByte(out, (uint8_t)*(v++)); out.push_back((uint8_t)'\n'); } } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value * @param vlen Value length in bytes */ template< typename V > ZT_MAYBE_UNUSED ZT_INLINE static void append(V &out, const char *const k, const void *const v, const unsigned int vlen) { s_appendKey(out, k); for (unsigned int i = 0; i < vlen; ++i) s_appendValueByte(out, reinterpret_cast(v)[i]); out.push_back((uint8_t)'\n'); } /** * Append a packet ID as raw bytes in the provided byte order * * @param out Buffer * @param k Key (must be <= 8 characters) * @param pid Packet ID */ template< typename V > ZT_MAYBE_UNUSED static ZT_INLINE void appendPacketId(V &out, const char *const k, const uint64_t pid) { append(out, k, &pid, 8); } /** * Append key=value with any object implementing the correct marshal interface * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Marshal-able object * @return Bytes appended or negative on error (return value of marshal()) */ template< typename V, typename T > ZT_MAYBE_UNUSED static ZT_INLINE int appendObject(V &out, const char *const k, const T &v) { uint8_t tmp[2048]; // large enough for any current object if (T::marshalSizeMax() > sizeof(tmp)) return -1; const int mlen = v.marshal(tmp); if (mlen > 0) append(out, k, tmp, (unsigned int)mlen); return mlen; } /** * Append #sub where sub is a hexadecimal string to 'name' and store in 'buf' * * @param buf Buffer to store subscript key * @param name Root name * @param sub Subscript index * @return Pointer to 'buf' */ ZT_MAYBE_UNUSED static char *arraySubscript(char *buf, unsigned int bufSize, const char *name, const unsigned long sub) noexcept; private: template< typename V > ZT_INLINE static void s_appendValueByte(V &out, const uint8_t c) { switch (c) { case 0: out.push_back(92); out.push_back(48); break; case 10: out.push_back(92); out.push_back(110); break; case 13: out.push_back(92); out.push_back(114); break; case 61: out.push_back(92); out.push_back(101); break; case 92: out.push_back(92); out.push_back(92); break; default: out.push_back(c); break; } } template< typename V > ZT_INLINE static void s_appendKey(V &out, const char *k) { for (;;) { const char c = *(k++); if (c == 0) break; out.push_back((uint8_t)c); } out.push_back((uint8_t)'='); } // Dictionary maps need to be sorted so that they always encode in the same order // to yield blobs that can be hashed and signed reproducibly. Other than for areas // where dictionaries are signed and verified the order doesn't matter. SortedMap< String, Vector< uint8_t > > m_entries; }; } // namespace ZeroTier #endif