/* * Copyright (c)2013-2021 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "Constants.hpp" #include "Identity.hpp" #include "SHA512.hpp" #include "Salsa20.hpp" #include "Utils.hpp" #include "Endpoint.hpp" #include "MIMC52.hpp" #include #include namespace ZeroTier { namespace { // This is the memory-intensive hash function used to compute v0 identities from v0 public keys. #define ZT_V0_IDENTITY_GEN_MEMORY 2097152 void identityV0ProofOfWorkFrankenhash(const void *const restrict publicKey, unsigned int publicKeyBytes, void *const restrict digest, void *const restrict genmem) noexcept { // Digest publicKey[] to obtain initial digest SHA512(digest, publicKey, publicKeyBytes); // Initialize genmem[] using Salsa20 in a CBC-like configuration since // ordinary Salsa20 is randomly seek-able. This is good for a cipher // but is not what we want for sequential memory-hardness. Utils::zero< ZT_V0_IDENTITY_GEN_MEMORY >(genmem); Salsa20 s20(digest, (char *)digest + 32); s20.crypt20((char *)genmem, (char *)genmem, 64); for (unsigned long i = 64; i < ZT_V0_IDENTITY_GEN_MEMORY; i += 64) { unsigned long k = i - 64; *((uint64_t *)((char *)genmem + i)) = *((uint64_t *)((char *)genmem + k)); *((uint64_t *)((char *)genmem + i + 8)) = *((uint64_t *)((char *)genmem + k + 8)); *((uint64_t *)((char *)genmem + i + 16)) = *((uint64_t *)((char *)genmem + k + 16)); *((uint64_t *)((char *)genmem + i + 24)) = *((uint64_t *)((char *)genmem + k + 24)); *((uint64_t *)((char *)genmem + i + 32)) = *((uint64_t *)((char *)genmem + k + 32)); *((uint64_t *)((char *)genmem + i + 40)) = *((uint64_t *)((char *)genmem + k + 40)); *((uint64_t *)((char *)genmem + i + 48)) = *((uint64_t *)((char *)genmem + k + 48)); *((uint64_t *)((char *)genmem + i + 56)) = *((uint64_t *)((char *)genmem + k + 56)); s20.crypt20((char *)genmem + i, (char *)genmem + i, 64); } // Render final digest using genmem as a lookup table for (unsigned long i = 0; i < (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) { unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (64 / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto) unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto) uint64_t tmp = ((uint64_t *)genmem)[idx2]; ((uint64_t *)genmem)[idx2] = ((uint64_t *)digest)[idx1]; ((uint64_t *)digest)[idx1] = tmp; s20.crypt20(digest, digest, 64); } } struct identityV0ProofOfWorkCriteria { ZT_INLINE identityV0ProofOfWorkCriteria(unsigned char *restrict sb, char *restrict gm) noexcept: digest(sb), genmem(gm) {} ZT_INLINE bool operator()(const uint8_t pub[ZT_C25519_COMBINED_PUBLIC_KEY_SIZE]) const noexcept { identityV0ProofOfWorkFrankenhash(pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, digest, genmem); return (digest[0] < 17); } unsigned char *digest; char *genmem; }; void v1ChallengeFromPub(const uint8_t pub[ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE], uint64_t challenge[4]) { // This builds a 256-bit challenge by XORing the two public keys together. This doesn't need to be // a hash, just different for different public keys. Public keys are basically kind of hashes of // private keys, so that's good enough. This is only used to seed a PRNG in MIMC52 for a proof of // sequential work. It's not used for authentication beyond checking PoW. Utils::copy< 32 >(challenge, pub + 7); challenge[0] ^= Utils::loadMachineEndian< uint64_t >(pub + 40); challenge[1] ^= Utils::loadMachineEndian< uint64_t >(pub + 48); challenge[2] ^= Utils::loadMachineEndian< uint64_t >(pub + 56); challenge[3] ^= Utils::loadMachineEndian< uint64_t >(pub + 64); challenge[0] ^= Utils::loadMachineEndian< uint64_t >(pub + 72); challenge[1] ^= Utils::loadMachineEndian< uint64_t >(pub + 80); challenge[2] ^= Utils::loadMachineEndian< uint64_t >(pub + 88); challenge[3] ^= Utils::loadMachineEndian< uint64_t >(pub + 96); challenge[0] ^= Utils::loadMachineEndian< uint64_t >(pub + 104); challenge[1] ^= Utils::loadMachineEndian< uint64_t >(pub + 112); } } // anonymous namespace const Identity Identity::NIL; bool Identity::generate(const Type t) { m_type = t; m_hasPrivate = true; switch (t) { case C25519: { // Generate C25519/Ed25519 key pair whose hash satisfies a "hashcash" criterion and generate the // address from the last 40 bits of this hash. This is different from the fingerprint hash for V0. uint8_t digest[64]; char *const genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY]; Address address; do { C25519::generateSatisfying(identityV0ProofOfWorkCriteria(digest, genmem), m_pub, m_priv); address.setTo(digest + 59); } while (address.isReserved()); delete[] genmem; m_fp.address = address; // address comes from PoW hash for type 0 identities m_computeHash(); } break; case P384: for (;;) { C25519::generateCombined(m_pub + 7, m_priv); ECC384GenerateKey(m_pub + 7 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE); uint64_t challenge[4]; v1ChallengeFromPub(m_pub, challenge); const uint64_t proof = MIMC52::delay(reinterpret_cast(challenge), ZT_IDENTITY_TYPE1_MIMC52_ROUNDS); m_pub[0] = (uint8_t)(proof >> 48U); m_pub[1] = (uint8_t)(proof >> 40U); m_pub[2] = (uint8_t)(proof >> 32U); m_pub[3] = (uint8_t)(proof >> 24U); m_pub[4] = (uint8_t)(proof >> 16U); m_pub[5] = (uint8_t)(proof >> 8U); m_pub[6] = (uint8_t)proof; m_computeHash(); const Address addr(m_fp.hash); if (!addr.isReserved()) { m_fp.address = addr; break; } } break; default: return false; } return true; } bool Identity::locallyValidate() const noexcept { try { if ((m_fp) && ((!Address(m_fp.address).isReserved()))) { switch (m_type) { case C25519: { uint8_t digest[64]; char *const genmem = (char *)malloc(ZT_V0_IDENTITY_GEN_MEMORY); if (!genmem) return false; identityV0ProofOfWorkFrankenhash(m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, digest, genmem); free(genmem); return ((Address(digest + 59) == m_fp.address) && (digest[0] < 17)); } case P384: if (Address(m_fp.hash) == m_fp.address) { uint64_t challenge[4]; v1ChallengeFromPub(m_pub, challenge); return MIMC52::verify(reinterpret_cast(challenge), ZT_IDENTITY_TYPE1_MIMC52_ROUNDS, ((uint64_t)m_pub[0] << 48U) | ((uint64_t)m_pub[1] << 40U) | ((uint64_t)m_pub[2] << 32U) | ((uint64_t)m_pub[3] << 24U) | ((uint64_t)m_pub[4] << 16U) | ((uint64_t)m_pub[5] << 8U) | (uint64_t)m_pub[6]); } return false; } } } catch (...) {} return false; } void Identity::hashWithPrivate(uint8_t h[ZT_FINGERPRINT_HASH_SIZE]) const { if (m_hasPrivate) { switch (m_type) { case C25519: SHA384(h, m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE); return; case P384: SHA384(h, m_pub, sizeof(m_pub), m_priv, sizeof(m_priv)); return; } } Utils::zero< ZT_FINGERPRINT_HASH_SIZE >(h); } unsigned int Identity::sign(const void *data, unsigned int len, void *sig, unsigned int siglen) const { if (m_hasPrivate) { switch (m_type) { case C25519: if (siglen >= ZT_C25519_SIGNATURE_LEN) { C25519::sign(m_priv, m_pub, data, len, sig); return ZT_C25519_SIGNATURE_LEN; } break; case P384: if (siglen >= ZT_ECC384_SIGNATURE_SIZE) { static_assert(ZT_ECC384_SIGNATURE_HASH_SIZE == ZT_SHA384_DIGEST_SIZE, "weird!"); uint8_t h[ZT_ECC384_SIGNATURE_HASH_SIZE]; SHA384(h, data, len, m_pub, ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE); ECC384ECDSASign(m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE, h, (uint8_t *)sig); return ZT_ECC384_SIGNATURE_SIZE; } break; } } return 0; } bool Identity::verify(const void *data, unsigned int len, const void *sig, unsigned int siglen) const { switch (m_type) { case C25519: return C25519::verify(m_pub, data, len, sig, siglen); case P384: if (siglen == ZT_ECC384_SIGNATURE_SIZE) { uint8_t h[ZT_ECC384_SIGNATURE_HASH_SIZE]; SHA384(h, data, len, m_pub, ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE); return ECC384ECDSAVerify(m_pub + 7 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, h, (const uint8_t *)sig); } break; } return false; } bool Identity::agree(const Identity &id, uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) const { uint8_t rawkey[128], h[64]; if (likely(m_hasPrivate)) { if ((m_type == C25519) || (id.m_type == C25519)) { // If we are a C25519 key we can agree with another C25519 key or with only the // C25519 portion of a type 1 P-384 key. C25519::agree(m_priv, id.m_pub, rawkey); SHA512(h, rawkey, ZT_C25519_ECDH_SHARED_SECRET_SIZE); Utils::copy< ZT_SYMMETRIC_KEY_SIZE >(key, h); return true; } else if ((m_type == P384) && (id.m_type == P384)) { // For another P384 identity we execute DH agreement with BOTH keys and then // hash the results together. For those (cough FIPS cough) who only consider // P384 to be kosher, the C25519 secret can be considered a "salt" // or something. For those who don't trust P384 this means the privacy of // your traffic is also protected by C25519. C25519::agree(m_priv, id.m_pub, rawkey); ECC384ECDH(id.m_pub + 7 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE, rawkey + ZT_C25519_ECDH_SHARED_SECRET_SIZE); SHA384(key, rawkey, ZT_C25519_ECDH_SHARED_SECRET_SIZE + ZT_ECC384_SHARED_SECRET_SIZE); return true; } } return false; } char *Identity::toString(bool includePrivate, char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const { char *p = buf; Address(m_fp.address).toString(p); p += 10; *(p++) = ':'; switch (m_type) { case C25519: { *(p++) = '0'; *(p++) = ':'; Utils::hex(m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, p); p += ZT_C25519_COMBINED_PUBLIC_KEY_SIZE * 2; if ((m_hasPrivate) && (includePrivate)) { *(p++) = ':'; Utils::hex(m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE, p); p += ZT_C25519_COMBINED_PRIVATE_KEY_SIZE * 2; } *p = (char)0; return buf; } case P384: { *(p++) = '1'; *(p++) = ':'; int el = Utils::b32e(m_pub, sizeof(m_pub), p, (int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf))); if (el <= 0) return nullptr; p += el; if ((m_hasPrivate) && (includePrivate)) { *(p++) = ':'; el = Utils::b32e(m_priv, sizeof(m_priv), p, (int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf))); if (el <= 0) return nullptr; p += el; } *p = (char)0; return buf; } default: buf[0] = 0; } return nullptr; } bool Identity::fromString(const char *str) { char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH]; memoryZero(this); if ((!str) || (!Utils::scopy(tmp, sizeof(tmp), str))) return false; int fno = 0; char *saveptr = nullptr; for (char *f = Utils::stok(tmp, ":", &saveptr); ((f) && (fno < 4)); f = Utils::stok(nullptr, ":", &saveptr)) { switch (fno++) { case 0: m_fp.address = Utils::hexStrToU64(f) & ZT_ADDRESS_MASK; if (Address(m_fp.address).isReserved()) return false; break; case 1: if ((f[0] == '0') && (!f[1])) { m_type = C25519; } else if ((f[0] == '1') && (!f[1])) { m_type = P384; } else { return false; } break; case 2: switch (m_type) { case C25519: if (Utils::unhex(f, strlen(f), m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) != ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) return false; break; case P384: if (Utils::b32d(f, m_pub, sizeof(m_pub)) != sizeof(m_pub)) return false; break; } break; case 3: if (strlen(f) > 1) { switch (m_type) { case C25519: if (Utils::unhex(f, strlen(f), m_priv, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) != ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) { return false; } else { m_hasPrivate = true; } break; case P384: if (Utils::b32d(f, m_priv, sizeof(m_priv)) != sizeof(m_priv)) { return false; } else { m_hasPrivate = true; } break; } break; } } } if (fno < 3) return false; m_computeHash(); return !((m_type == P384) && (Address(m_fp.hash) != m_fp.address)); } int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX], const bool includePrivate) const noexcept { Address(m_fp.address).copyTo(data); switch (m_type) { case C25519: data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519; Utils::copy< ZT_C25519_COMBINED_PUBLIC_KEY_SIZE >(data + ZT_ADDRESS_LENGTH + 1, m_pub); if ((includePrivate) && (m_hasPrivate)) { data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE] = ZT_C25519_COMBINED_PRIVATE_KEY_SIZE; Utils::copy< ZT_C25519_COMBINED_PRIVATE_KEY_SIZE >(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1, m_priv); return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE; } data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE] = 0; return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1; case P384: data[ZT_ADDRESS_LENGTH] = (uint8_t)P384; Utils::copy< ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE >(data + ZT_ADDRESS_LENGTH + 1, m_pub); if ((includePrivate) && (m_hasPrivate)) { data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE; Utils::copy< ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE >(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1, m_priv); return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE; } data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0; return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1; } return -1; } int Identity::unmarshal(const uint8_t *data, const int len) noexcept { memoryZero(this); if (len < (1 + ZT_ADDRESS_LENGTH)) return -1; m_fp.address = Address(data); unsigned int privlen; switch ((m_type = (Type)data[ZT_ADDRESS_LENGTH])) { case C25519: if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1)) return -1; Utils::copy< ZT_C25519_COMBINED_PUBLIC_KEY_SIZE >(m_pub, data + ZT_ADDRESS_LENGTH + 1); m_computeHash(); privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE]; if (privlen == ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) { if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE)) return -1; m_hasPrivate = true; Utils::copy< ZT_C25519_COMBINED_PRIVATE_KEY_SIZE >(m_priv, data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1); return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE; } else if (privlen == 0) { m_hasPrivate = false; return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1; } break; case P384: if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1)) return -1; Utils::copy< ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE >(m_pub, data + ZT_ADDRESS_LENGTH + 1); m_computeHash(); // this sets the address for P384 if (Address(m_fp.hash) != m_fp.address) // this sanity check is possible with V1 identities return -1; privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE]; if (privlen == 0) { m_hasPrivate = false; return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1; } else if (privlen == ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE) { if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE)) return -1; m_hasPrivate = true; Utils::copy< ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE >(&m_priv, data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1); return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE; } break; } return -1; } void Identity::m_computeHash() { switch (m_type) { default: m_fp.zero(); break; case C25519: SHA384(m_fp.hash, m_pub, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE); break; case P384: SHA384(m_fp.hash, m_pub, ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE); break; } } } // namespace ZeroTier