/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2025-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include #include #include "Constants.hpp" #include "Network.hpp" #include "RuntimeEnvironment.hpp" #include "MAC.hpp" #include "Address.hpp" #include "InetAddress.hpp" #include "NetworkController.hpp" #include "Peer.hpp" #include "Trace.hpp" #include "ScopedPtr.hpp" #include "Buf.hpp" #include namespace ZeroTier { namespace { // Returns true if packet appears valid; pos and proto will be set bool _ipv6GetPayload(const uint8_t *frameData, unsigned int frameLen, unsigned int &pos, unsigned int &proto) noexcept { if (frameLen < 40) return false; pos = 40; proto = frameData[6]; while (pos <= frameLen) { switch (proto) { case 0: // hop-by-hop options case 43: // routing case 60: // destination options case 135: // mobility options if ((pos + 8) > frameLen) return false; // invalid! proto = frameData[pos]; pos += ((unsigned int)frameData[pos + 1] * 8) + 8; break; //case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway //case 50: //case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff default: return true; } } return false; // overflow == invalid } enum _doZtFilterResult { DOZTFILTER_NO_MATCH, DOZTFILTER_DROP, DOZTFILTER_REDIRECT, DOZTFILTER_ACCEPT, DOZTFILTER_SUPER_ACCEPT }; _doZtFilterResult _doZtFilter( const RuntimeEnvironment *RR, Trace::RuleResultLog &rrl, const NetworkConfig &nconf, const Member *membership, // can be NULL const bool inbound, const Address &ztSource, Address &ztDest, // MUTABLE -- is changed on REDIRECT actions const MAC &macSource, const MAC &macDest, const uint8_t *const frameData, const unsigned int frameLen, const unsigned int etherType, const unsigned int vlanId, const ZT_VirtualNetworkRule *rules, // cannot be NULL const unsigned int ruleCount, Address &cc, // MUTABLE -- set to TEE destination if TEE action is taken or left alone otherwise unsigned int &ccLength, // MUTABLE -- set to length of packet payload to TEE bool &ccWatch, // MUTABLE -- set to true for WATCH target as opposed to normal TEE uint8_t &qosBucket) noexcept // MUTABLE -- set to the value of the argument provided to PRIORITY { // Set to true if we are a TEE/REDIRECT/WATCH target bool superAccept = false; // The default match state for each set of entries starts as 'true' since an // ACTION with no MATCH entries preceding it is always taken. uint8_t thisSetMatches = 1; rrl.clear(); for (unsigned int rn = 0; rn < ruleCount; ++rn) { const ZT_VirtualNetworkRuleType rt = (ZT_VirtualNetworkRuleType)(rules[rn].t & 0x3fU); // First check if this is an ACTION if ((unsigned int)rt <= (unsigned int)ZT_NETWORK_RULE_ACTION__MAX_ID) { if (thisSetMatches) { switch (rt) { case ZT_NETWORK_RULE_ACTION_PRIORITY: qosBucket = (rules[rn].v.qosBucket >= 0 && rules[rn].v.qosBucket <= 8) ? rules[rn].v.qosBucket : 4; // 4 = default bucket (no priority) return DOZTFILTER_ACCEPT; case ZT_NETWORK_RULE_ACTION_DROP: return DOZTFILTER_DROP; case ZT_NETWORK_RULE_ACTION_ACCEPT: return (superAccept ? DOZTFILTER_SUPER_ACCEPT : DOZTFILTER_ACCEPT); // match, accept packet // These are initially handled together since preliminary logic is common case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_REDIRECT: { const Address fwdAddr(rules[rn].v.fwd.address); if (fwdAddr == ztSource) { // Skip as no-op since source is target } else if (fwdAddr == RR->identity.address()) { if (inbound) { return DOZTFILTER_SUPER_ACCEPT; } else { } } else if (fwdAddr == ztDest) { } else { if (rt == ZT_NETWORK_RULE_ACTION_REDIRECT) { ztDest = fwdAddr; return DOZTFILTER_REDIRECT; } else { cc = fwdAddr; ccLength = (rules[rn].v.fwd.length != 0) ? ((frameLen < (unsigned int)rules[rn].v.fwd.length) ? frameLen : (unsigned int)rules[rn].v.fwd.length) : frameLen; ccWatch = (rt == ZT_NETWORK_RULE_ACTION_WATCH); } } } continue; case ZT_NETWORK_RULE_ACTION_BREAK: return DOZTFILTER_NO_MATCH; // Unrecognized ACTIONs are ignored as no-ops default: continue; } } else { // If this is an incoming packet and we are a TEE or REDIRECT target, we should // super-accept if we accept at all. This will cause us to accept redirected or // tee'd packets in spite of MAC and ZT addressing checks. if (inbound) { switch (rt) { case ZT_NETWORK_RULE_ACTION_TEE: case ZT_NETWORK_RULE_ACTION_WATCH: case ZT_NETWORK_RULE_ACTION_REDIRECT: if (RR->identity.address().toInt() == rules[rn].v.fwd.address) superAccept = true; break; default: break; } } thisSetMatches = 1; // reset to default true for next batch of entries continue; } } // Circuit breaker: no need to evaluate an AND if the set's match state // is currently false since anything AND false is false. if ((!thisSetMatches) && (!(rules[rn].t & 0x40U))) { rrl.logSkipped(rn, thisSetMatches); continue; } // If this was not an ACTION evaluate next MATCH and update thisSetMatches with (AND [result]) uint8_t thisRuleMatches = 0; uint64_t ownershipVerificationMask = 1; // this magic value means it hasn't been computed yet -- this is done lazily the first time it's needed switch (rt) { case ZT_NETWORK_RULE_MATCH_SOURCE_ZEROTIER_ADDRESS: thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztSource.toInt()); break; case ZT_NETWORK_RULE_MATCH_DEST_ZEROTIER_ADDRESS: thisRuleMatches = (uint8_t)(rules[rn].v.zt == ztDest.toInt()); break; case ZT_NETWORK_RULE_MATCH_VLAN_ID: thisRuleMatches = (uint8_t)(rules[rn].v.vlanId == (uint16_t)vlanId); break; case ZT_NETWORK_RULE_MATCH_VLAN_PCP: // NOT SUPPORTED YET thisRuleMatches = (uint8_t)(rules[rn].v.vlanPcp == 0); break; case ZT_NETWORK_RULE_MATCH_VLAN_DEI: // NOT SUPPORTED YET thisRuleMatches = (uint8_t)(rules[rn].v.vlanDei == 0); break; case ZT_NETWORK_RULE_MATCH_MAC_SOURCE: thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac) == macSource); break; case ZT_NETWORK_RULE_MATCH_MAC_DEST: thisRuleMatches = (uint8_t)(MAC(rules[rn].v.mac) == macDest); break; case ZT_NETWORK_RULE_MATCH_IPV4_SOURCE: if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip), 4, rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 12), 4, 0))); } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IPV4_DEST: if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)&(rules[rn].v.ipv4.ip), 4, rules[rn].v.ipv4.mask).containsAddress(InetAddress((const void *)(frameData + 16), 4, 0))); } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IPV6_SOURCE: if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip, 16, rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 8), 16, 0))); } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IPV6_DEST: if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) { thisRuleMatches = (uint8_t)(InetAddress((const void *)rules[rn].v.ipv6.ip, 16, rules[rn].v.ipv6.mask).containsAddress(InetAddress((const void *)(frameData + 24), 16, 0))); } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IP_TOS: if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) { const uint8_t tosMasked = frameData[1] & rules[rn].v.ipTos.mask; thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0]) && (tosMasked <= rules[rn].v.ipTos.value[1])); } else if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) { const uint8_t tosMasked = (((frameData[0] << 4U) & 0xf0U) | ((frameData[1] >> 4U) & 0x0fU)) & rules[rn].v.ipTos.mask; thisRuleMatches = (uint8_t)((tosMasked >= rules[rn].v.ipTos.value[0]) && (tosMasked <= rules[rn].v.ipTos.value[1])); } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IP_PROTOCOL: if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) { thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == frameData[9]); } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0, proto = 0; if (_ipv6GetPayload(frameData, frameLen, pos, proto)) { thisRuleMatches = (uint8_t)(rules[rn].v.ipProtocol == (uint8_t)proto); } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_ETHERTYPE: thisRuleMatches = (uint8_t)(rules[rn].v.etherType == (uint16_t)etherType); break; case ZT_NETWORK_RULE_MATCH_ICMP: if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) { if (frameData[9] == 0x01) { // IP protocol == ICMP const unsigned int ihl = (frameData[0] & 0xfU) * 4; if (frameLen >= (ihl + 2)) { if (rules[rn].v.icmp.type == frameData[ihl]) { if ((rules[rn].v.icmp.flags & 0x01) != 0) { thisRuleMatches = (uint8_t)(frameData[ihl + 1] == rules[rn].v.icmp.code); } else { thisRuleMatches = 1; } } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0, proto = 0; if (_ipv6GetPayload(frameData, frameLen, pos, proto)) { if ((proto == 0x3a) && (frameLen >= (pos + 2))) { if (rules[rn].v.icmp.type == frameData[pos]) { if ((rules[rn].v.icmp.flags & 0x01) != 0) { thisRuleMatches = (uint8_t)(frameData[pos + 1] == rules[rn].v.icmp.code); } else { thisRuleMatches = 1; } } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_IP_SOURCE_PORT_RANGE: case ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE: if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) { const unsigned int headerLen = 4 * (frameData[0] & 0xfU); int p = -1; switch (frameData[9]) { // IP protocol number // All these start with 16-bit source and destination port in that order case 0x06: // TCP case 0x11: // UDP case 0x84: // SCTP case 0x88: // UDPLite if (frameLen > (headerLen + 4)) { unsigned int pos = headerLen + ((rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) ? 2 : 0); p = (int)(frameData[pos++] << 8U); p |= (int)frameData[pos]; } break; } thisRuleMatches = (p >= 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0]) && (p <= (int)rules[rn].v.port[1])) : (uint8_t)0; } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0, proto = 0; if (_ipv6GetPayload(frameData, frameLen, pos, proto)) { int p = -1; switch (proto) { // IP protocol number // All these start with 16-bit source and destination port in that order case 0x06: // TCP case 0x11: // UDP case 0x84: // SCTP case 0x88: // UDPLite if (frameLen > (pos + 4)) { if (rt == ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE) pos += 2; p = (int)(frameData[pos++] << 8U); p |= (int)frameData[pos]; } break; } thisRuleMatches = (p > 0) ? (uint8_t)((p >= (int)rules[rn].v.port[0]) && (p <= (int)rules[rn].v.port[1])) : (uint8_t)0; } else { thisRuleMatches = 0; } } else { thisRuleMatches = 0; } break; case ZT_NETWORK_RULE_MATCH_CHARACTERISTICS: { uint64_t cf = (inbound) ? ZT_RULE_PACKET_CHARACTERISTICS_INBOUND : 0ULL; if (macDest.isMulticast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_MULTICAST; if (macDest.isBroadcast()) cf |= ZT_RULE_PACKET_CHARACTERISTICS_BROADCAST; if (ownershipVerificationMask == 1) { ownershipVerificationMask = 0; InetAddress src; if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20)) { src.set((const void *)(frameData + 12), 4, 0); } else if ((etherType == ZT_ETHERTYPE_IPV6) && (frameLen >= 40)) { // IPv6 NDP requires special handling, since the src and dest IPs in the packet are empty or link-local. if ((frameLen >= (40 + 8 + 16)) && (frameData[6] == 0x3a) && ((frameData[40] == 0x87) || (frameData[40] == 0x88))) { if (frameData[40] == 0x87) { // Neighbor solicitations contain no reliable source address, so we implement a small // hack by considering them authenticated. Otherwise you would pretty much have to do // this manually in the rule set for IPv6 to work at all. ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED; } else { // Neighbor advertisements on the other hand can absolutely be authenticated. src.set((const void *)(frameData + 40 + 8), 16, 0); } } else { // Other IPv6 packets can be handled normally src.set((const void *)(frameData + 8), 16, 0); } } else if ((etherType == ZT_ETHERTYPE_ARP) && (frameLen >= 28)) { src.set((const void *)(frameData + 14), 4, 0); } if (inbound) { if (membership) { if ((src) && (membership->peerOwnsAddress< InetAddress >(nconf, src))) ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED; if (membership->peerOwnsAddress< MAC >(nconf, macSource)) ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED; } } else { for (unsigned int i = 0; i < nconf.certificateOfOwnershipCount; ++i) { if ((src) && (nconf.certificatesOfOwnership[i].owns(src))) ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_IP_AUTHENTICATED; if (nconf.certificatesOfOwnership[i].owns(macSource)) ownershipVerificationMask |= ZT_RULE_PACKET_CHARACTERISTICS_SENDER_MAC_AUTHENTICATED; } } } cf |= ownershipVerificationMask; if ((etherType == ZT_ETHERTYPE_IPV4) && (frameLen >= 20) && (frameData[9] == 0x06)) { const unsigned int headerLen = 4 * (frameData[0] & 0xfU); cf |= (uint64_t)frameData[headerLen + 13]; cf |= (((uint64_t)(frameData[headerLen + 12] & 0x0fU)) << 8U); } else if (etherType == ZT_ETHERTYPE_IPV6) { unsigned int pos = 0, proto = 0; if (_ipv6GetPayload(frameData, frameLen, pos, proto)) { if ((proto == 0x06) && (frameLen > (pos + 14))) { cf |= (uint64_t)frameData[pos + 13]; cf |= (((uint64_t)(frameData[pos + 12] & 0x0fU)) << 8U); } } } thisRuleMatches = (uint8_t)((cf & rules[rn].v.characteristics) != 0); } break; case ZT_NETWORK_RULE_MATCH_FRAME_SIZE_RANGE: thisRuleMatches = (uint8_t)((frameLen >= (unsigned int)rules[rn].v.frameSize[0]) && (frameLen <= (unsigned int)rules[rn].v.frameSize[1])); break; case ZT_NETWORK_RULE_MATCH_RANDOM: thisRuleMatches = (uint8_t)((uint32_t)(Utils::random() & 0xffffffffULL) <= rules[rn].v.randomProbability); break; case ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR: case ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR: case ZT_NETWORK_RULE_MATCH_TAGS_EQUAL: { const TagCredential *const localTag = std::lower_bound(&(nconf.tags[0]), &(nconf.tags[nconf.tagCount]), rules[rn].v.tag.id, TagCredential::IdComparePredicate()); if ((localTag != &(nconf.tags[nconf.tagCount])) && (localTag->id() == rules[rn].v.tag.id)) { const TagCredential *const remoteTag = ((membership) ? membership->getTag(nconf, rules[rn].v.tag.id) : (const TagCredential *)0); if (remoteTag) { const uint32_t ltv = localTag->value(); const uint32_t rtv = remoteTag->value(); if (rt == ZT_NETWORK_RULE_MATCH_TAGS_DIFFERENCE) { const uint32_t diff = (ltv > rtv) ? (ltv - rtv) : (rtv - ltv); thisRuleMatches = (uint8_t)(diff <= rules[rn].v.tag.value); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_AND) { thisRuleMatches = (uint8_t)((ltv & rtv) == rules[rn].v.tag.value); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_OR) { thisRuleMatches = (uint8_t)((ltv | rtv) == rules[rn].v.tag.value); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_BITWISE_XOR) { thisRuleMatches = (uint8_t)((ltv ^ rtv) == rules[rn].v.tag.value); } else if (rt == ZT_NETWORK_RULE_MATCH_TAGS_EQUAL) { thisRuleMatches = (uint8_t)((ltv == rules[rn].v.tag.value) && (rtv == rules[rn].v.tag.value)); } else { // sanity check, can't really happen thisRuleMatches = 0; } } else { if ((inbound) && (!superAccept)) { thisRuleMatches = 0; } else { // Outbound side is not strict since if we have to match both tags and // we are sending a first packet to a recipient, we probably do not know // about their tags yet. They will filter on inbound and we will filter // once we get their tag. If we are a tee/redirect target we are also // not strict since we likely do not have these tags. thisRuleMatches = 1; } } } else { thisRuleMatches = 0; } } break; case ZT_NETWORK_RULE_MATCH_TAG_SENDER: case ZT_NETWORK_RULE_MATCH_TAG_RECEIVER: { if (superAccept) { thisRuleMatches = 1; } else if (((rt == ZT_NETWORK_RULE_MATCH_TAG_SENDER) && (inbound)) || ((rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER) && (!inbound))) { const TagCredential *const remoteTag = ((membership) ? membership->getTag(nconf, rules[rn].v.tag.id) : (const TagCredential *)0); if (remoteTag) { thisRuleMatches = (uint8_t)(remoteTag->value() == rules[rn].v.tag.value); } else { if (rt == ZT_NETWORK_RULE_MATCH_TAG_RECEIVER) { // If we are checking the receiver and this is an outbound packet, we // can't be strict since we may not yet know the receiver's tag. thisRuleMatches = 1; } else { thisRuleMatches = 0; } } } else { // sender and outbound or receiver and inbound const TagCredential *const localTag = std::lower_bound(&(nconf.tags[0]), &(nconf.tags[nconf.tagCount]), rules[rn].v.tag.id, TagCredential::IdComparePredicate()); if ((localTag != &(nconf.tags[nconf.tagCount])) && (localTag->id() == rules[rn].v.tag.id)) { thisRuleMatches = (uint8_t)(localTag->value() == rules[rn].v.tag.value); } else { thisRuleMatches = 0; } } } break; case ZT_NETWORK_RULE_MATCH_INTEGER_RANGE: { uint64_t integer = 0; const unsigned int bits = (rules[rn].v.intRange.format & 63U) + 1; const unsigned int bytes = ((bits + 8 - 1) / 8); // integer ceiling of division by 8 if ((rules[rn].v.intRange.format & 0x80U) == 0) { // Big-endian unsigned int idx = rules[rn].v.intRange.idx + (8 - bytes); const unsigned int eof = idx + bytes; if (eof <= frameLen) { while (idx < eof) { integer <<= 8U; integer |= frameData[idx++]; } } integer &= 0xffffffffffffffffULL >> (64 - bits); } else { // Little-endian unsigned int idx = rules[rn].v.intRange.idx; const unsigned int eof = idx + bytes; if (eof <= frameLen) { while (idx < eof) { integer >>= 8U; integer |= ((uint64_t)frameData[idx++]) << 56U; } } integer >>= (64 - bits); } thisRuleMatches = (uint8_t)((integer >= rules[rn].v.intRange.start) && (integer <= (rules[rn].v.intRange.start + (uint64_t)rules[rn].v.intRange.end))); } break; // The result of an unsupported MATCH is configurable at the network // level via a flag. default: thisRuleMatches = (uint8_t)((nconf.flags & ZT_NETWORKCONFIG_FLAG_RULES_RESULT_OF_UNSUPPORTED_MATCH) != 0); break; } rrl.log(rn, thisRuleMatches, thisSetMatches); if ((rules[rn].t & 0x40U)) thisSetMatches |= (thisRuleMatches ^ ((rules[rn].t >> 7U) & 1U)); else thisSetMatches &= (thisRuleMatches ^ ((rules[rn].t >> 7U) & 1U)); } return DOZTFILTER_NO_MATCH; } } // anonymous namespace const ZeroTier::MulticastGroup Network::BROADCAST(ZeroTier::MAC(0xffffffffffffULL), 0); Network::Network(const RuntimeEnvironment *renv, void *tPtr, uint64_t nwid, const Fingerprint &controllerFingerprint, void *uptr, const NetworkConfig *nconf) : RR(renv), m_uPtr(uptr), m_id(nwid), m_mac(renv->identity.address(), nwid), m_portInitialized(false), m_destroyed(false), m_lastConfigUpdate(0), _netconfFailure(NETCONF_FAILURE_NONE) { if (controllerFingerprint) m_controllerFingerprint = controllerFingerprint; if (nconf) { this->setConfiguration(tPtr, *nconf, false); m_lastConfigUpdate = 0; // still want to re-request since it's likely outdated } else { uint64_t tmp[2]; tmp[0] = nwid; tmp[1] = 0; bool got = false; try { Dictionary dict; Vector< uint8_t > nconfData(RR->node->stateObjectGet(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp)); if (nconfData.size() > 2) { nconfData.push_back(0); if (dict.decode(nconfData.data(), (unsigned int)nconfData.size())) { try { ScopedPtr< NetworkConfig > nconf2(new NetworkConfig()); if (nconf2->fromDictionary(dict)) { this->setConfiguration(tPtr, *nconf2, false); m_lastConfigUpdate = 0; // still want to re-request an update since it's likely outdated got = true; } } catch (...) {} } } } catch (...) {} if (!got) RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp, "\n", 1); } if (!m_portInitialized) { ZT_VirtualNetworkConfig ctmp; m_externalConfig(&ctmp); RR->node->configureVirtualNetworkPort(tPtr, m_id, &m_uPtr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP, &ctmp); m_portInitialized = true; } } Network::~Network() { m_memberships_l.lock(); m_config_l.lock(); m_config_l.unlock(); m_memberships_l.unlock(); ZT_VirtualNetworkConfig ctmp; m_externalConfig(&ctmp); if (m_destroyed) { // This is done in Node::leave() so we can pass tPtr properly //RR->node->configureVirtualNetworkPort((void *)0,_id,&_uPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp); } else { RR->node->configureVirtualNetworkPort(nullptr, m_id, &m_uPtr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DOWN, &ctmp); } } bool Network::filterOutgoingPacket( void *tPtr, const bool noTee, const Address &ztSource, const Address &ztDest, const MAC &macSource, const MAC &macDest, const uint8_t *frameData, const unsigned int frameLen, const unsigned int etherType, const unsigned int vlanId, uint8_t &qosBucket) { Trace::RuleResultLog rrl, crrl; Address ztFinalDest(ztDest); int localCapabilityIndex = -1; int accept = 0; Address cc; unsigned int ccLength = 0; bool ccWatch = false; Mutex::Lock l1(m_memberships_l); Mutex::Lock l2(m_config_l); Member *membership; if (ztDest) { Map::iterator mm(m_memberships.find(ztDest)); membership = (mm == m_memberships.end()) ? nullptr : &(mm->second); } else { membership = nullptr; } switch (_doZtFilter(RR, rrl, m_config, membership, false, ztSource, ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, m_config.rules, m_config.ruleCount, cc, ccLength, ccWatch, qosBucket)) { case DOZTFILTER_NO_MATCH: { for (unsigned int c = 0; c < m_config.capabilityCount; ++c) { ztFinalDest = ztDest; // sanity check, shouldn't be possible if there was no match Address cc2; unsigned int ccLength2 = 0; bool ccWatch2 = false; switch (_doZtFilter(RR, crrl, m_config, membership, false, ztSource, ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, m_config.capabilities[c].rules(), m_config.capabilities[c].ruleCount(), cc2, ccLength2, ccWatch2, qosBucket)) { case DOZTFILTER_NO_MATCH: case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern break; case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: case DOZTFILTER_SUPER_ACCEPT: // no difference in behavior on outbound side in capabilities localCapabilityIndex = (int)c; accept = 1; if ((!noTee) && (cc2)) { // TODO /* Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch2 ? 0x16 : 0x02)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength2); outp.compress(); RR->sw->send(tPtr,outp,true); */ } break; } if (accept) break; } } break; case DOZTFILTER_DROP: RR->t->networkFilter(tPtr, 0xadea5a2a, m_id, rrl.l, nullptr, 0, 0, ztSource, ztDest, macSource, macDest, (uint16_t)frameLen, frameData, (uint16_t)etherType, (uint16_t)vlanId, noTee, false, 0); return false; case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: accept = 1; break; case DOZTFILTER_SUPER_ACCEPT: accept = 2; break; } if (accept != 0) { if ((!noTee) && (cc)) { // TODO /* Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch ? 0x16 : 0x02)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength); outp.compress(); RR->sw->send(tPtr,outp,true); */ } if ((ztDest != ztFinalDest) && (ztFinalDest)) { // TODO /* Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)0x04); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,frameLen); outp.compress(); RR->sw->send(tPtr,outp,true); */ // DROP locally since we redirected accept = 0; } } if (localCapabilityIndex >= 0) { const CapabilityCredential &cap = m_config.capabilities[localCapabilityIndex]; RR->t->networkFilter(tPtr, 0x56ff1a93, m_id, rrl.l, crrl.l, cap.id(), cap.timestamp(), ztSource, ztDest, macSource, macDest, (uint16_t)frameLen, frameData, (uint16_t)etherType, (uint16_t)vlanId, noTee, false, accept); } else { RR->t->networkFilter(tPtr, 0x112fbbab, m_id, rrl.l, nullptr, 0, 0, ztSource, ztDest, macSource, macDest, (uint16_t)frameLen, frameData, (uint16_t)etherType, (uint16_t)vlanId, noTee, false, accept); } return (accept != 0); } int Network::filterIncomingPacket( void *tPtr, const SharedPtr< Peer > &sourcePeer, const Address &ztDest, const MAC &macSource, const MAC &macDest, const uint8_t *frameData, const unsigned int frameLen, const unsigned int etherType, const unsigned int vlanId) { Address ztFinalDest(ztDest); Trace::RuleResultLog rrl, crrl; int accept = 0; Address cc; unsigned int ccLength = 0; bool ccWatch = false; const CapabilityCredential *c = nullptr; uint8_t qosBucket = 255; // For incoming packets this is a dummy value Mutex::Lock l1(m_memberships_l); Mutex::Lock l2(m_config_l); Member &membership = m_memberships[sourcePeer->address()]; switch (_doZtFilter(RR, rrl, m_config, &membership, true, sourcePeer->address(), ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, m_config.rules, m_config.ruleCount, cc, ccLength, ccWatch, qosBucket)) { case DOZTFILTER_NO_MATCH: { Member::CapabilityIterator mci(membership, m_config); while ((c = mci.next())) { ztFinalDest = ztDest; // sanity check, should be unmodified if there was no match Address cc2; unsigned int ccLength2 = 0; bool ccWatch2 = false; switch (_doZtFilter(RR, crrl, m_config, &membership, true, sourcePeer->address(), ztFinalDest, macSource, macDest, frameData, frameLen, etherType, vlanId, c->rules(), c->ruleCount(), cc2, ccLength2, ccWatch2, qosBucket)) { case DOZTFILTER_NO_MATCH: case DOZTFILTER_DROP: // explicit DROP in a capability just terminates its evaluation and is an anti-pattern break; case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: accept = 1; // ACCEPT break; case DOZTFILTER_SUPER_ACCEPT: accept = 2; // super-ACCEPT break; } if (accept) { if (cc2) { // TODO /* Packet outp(cc2,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch2 ? 0x1c : 0x08)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength2); outp.compress(); RR->sw->send(tPtr,outp,true); */ } break; } } } break; case DOZTFILTER_DROP: //if (_config.remoteTraceTarget) // RR->t->networkFilter(tPtr,*this,rrl,(Trace::RuleResultLog *)0,(Capability *)0,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,0); return 0; // DROP case DOZTFILTER_REDIRECT: // interpreted as ACCEPT but ztFinalDest will have been changed in _doZtFilter() case DOZTFILTER_ACCEPT: accept = 1; // ACCEPT break; case DOZTFILTER_SUPER_ACCEPT: accept = 2; // super-ACCEPT break; } if (accept) { if (cc) { // TODO /* Packet outp(cc,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)(ccWatch ? 0x1c : 0x08)); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,ccLength); outp.compress(); RR->sw->send(tPtr,outp,true); */ } if ((ztDest != ztFinalDest) && (ztFinalDest)) { // TODO /* Packet outp(ztFinalDest,RR->identity.address(),Packet::VERB_EXT_FRAME); outp.append(_id); outp.append((uint8_t)0x0a); macDest.appendTo(outp); macSource.appendTo(outp); outp.append((uint16_t)etherType); outp.append(frameData,frameLen); outp.compress(); RR->sw->send(tPtr,outp,true); */ //if (_config.remoteTraceTarget) // RR->t->networkFilter(tPtr,*this,rrl,(c) ? &crrl : (Trace::RuleResultLog *)0,c,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,0); return 0; // DROP locally, since we redirected } } //if (_config.remoteTraceTarget) // RR->t->networkFilter(tPtr,*this,rrl,(c) ? &crrl : (Trace::RuleResultLog *)0,c,sourcePeer->address(),ztDest,macSource,macDest,frameData,frameLen,etherType,vlanId,false,true,accept); return accept; } void Network::multicastSubscribe(void *tPtr, const MulticastGroup &mg) { Mutex::Lock l(m_myMulticastGroups_l); if (!std::binary_search(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg)) { m_myMulticastGroups.insert(std::upper_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg), mg); Mutex::Lock l2(m_memberships_l); m_announceMulticastGroups(tPtr, true); } } void Network::multicastUnsubscribe(const MulticastGroup &mg) { Mutex::Lock l(m_myMulticastGroups_l); Vector< MulticastGroup >::iterator i(std::lower_bound(m_myMulticastGroups.begin(), m_myMulticastGroups.end(), mg)); if ((i != m_myMulticastGroups.end()) && (*i == mg)) m_myMulticastGroups.erase(i); } uint64_t Network::handleConfigChunk(void *tPtr, uint64_t packetId, const SharedPtr< Peer > &source, const Buf &chunk, int ptr, int size) { // If the controller's full fingerprint is known or was explicitly specified on join(), // require that the controller's identity match. Otherwise learn it. if (m_controllerFingerprint) { if (source->identity().fingerprint() != m_controllerFingerprint) return 0; } else { m_controllerFingerprint = source->identity().fingerprint(); } return 0; #if 0 if (_destroyed) return 0; const unsigned int chunkPayloadStart = ptr; ptr += 8; // skip network ID, which is already obviously known const unsigned int chunkLen = chunk.rI16(ptr); const uint8_t *chunkData = chunk.rBnc(ptr,chunkLen); if (Buf<>::readOverflow(ptr,size)) return 0; Mutex::Lock l1(_config_l); _IncomingConfigChunk *c = nullptr; uint64_t configUpdateId; int totalLength = 0,chunkIndex = 0; if (ptr < size) { // If there is more data after the chunk / dictionary, it means this is a new controller // that sends signed chunks. We still support really old controllers, but probably not forever. const bool fastPropagate = ((chunk.rI8(ptr) & Protocol::NETWORK_CONFIG_FLAG_FAST_PROPAGATE) != 0); configUpdateId = chunk.rI64(ptr); totalLength = chunk.rI32(ptr); chunkIndex = chunk.rI32(ptr); ++ptr; // skip unused signature type field const unsigned int signatureSize = chunk.rI16(ptr); const uint8_t *signature = chunk.rBnc(ptr,signatureSize); if ((Buf<>::readOverflow(ptr,size))||((chunkIndex + chunkLen) > totalLength)||(totalLength >= ZT_MAX_NETWORK_CONFIG_BYTES)||(signatureSize > ZT_SIGNATURE_BUFFER_SIZE)||(!signature)) return 0; const unsigned int chunkPayloadSize = (unsigned int)ptr - chunkPayloadStart; // Find existing or new slot for this update and its chunk(s). for(int i=0;ichunks.find(chunkIndex) != c->chunks.end()) return 0; // we already have this chunk! break; } else if ((!c)||(_incomingConfigChunks[i].touchCtr < c->touchCtr)) { c = &(_incomingConfigChunks[i]); } } if (!c) // sanity check; should not be possible return 0; // Verify this chunk's signature const SharedPtr controllerPeer(RR->topology->get(tPtr,controller())); if ((!controllerPeer)||(!controllerPeer->identity().verify(chunk.data.bytes + chunkPayloadStart,chunkPayloadSize,signature,signatureSize))) return 0; // New properly verified chunks can be flooded "virally" through the network via an aggressive // exponential rumor mill algorithm. if (fastPropagate) { Mutex::Lock l2(_memberships_l); Address *a = nullptr; Membership *m = nullptr; Hashtable::Iterator i(_memberships); while (i.next(a,m)) { if ((*a != source->address())&&(*a != controller())) { ZT_GET_NEW_BUF(outp,Protocol::Header); outp->data.fields.packetId = Protocol::getPacketId(); a->copyTo(outp->data.fields.destination); RR->identity.address().copyTo(outp->data.fields.source); outp->data.fields.flags = 0; outp->data.fields.verb = Protocol::VERB_NETWORK_CONFIG; int outl = sizeof(Protocol::Header); outp->wB(outl,chunk.data.bytes + chunkPayloadStart,chunkPayloadSize); if (Buf<>::writeOverflow(outl)) // sanity check... it fit before! break; RR->sw->send(tPtr,outp,true); } } } } else if ((!source)||(source->address() != this->controller())) { // Legacy support for OK(NETWORK_CONFIG_REQUEST) from older controllers that don't sign chunks and don't // support multiple chunks. Since old controllers don't sign chunks we only accept the message if it comes // directly from the controller. configUpdateId = packetId; totalLength = (int)chunkLen; if (totalLength > ZT_MAX_NETWORK_CONFIG_BYTES) return 0; for(int i=0;itouchCtr)) c = &(_incomingConfigChunks[i]); } } else { // Not signed, not from controller -> reject. return 0; } try { ++c->touchCtr; if (c->updateId != configUpdateId) { c->updateId = configUpdateId; c->chunks.clear(); } c->chunks[chunkIndex].assign(chunkData,chunkData + chunkLen); int haveLength = 0; for(std::map< int,Vector >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch) haveLength += (int)ch->second.size(); if (haveLength > ZT_MAX_NETWORK_CONFIG_BYTES) { c->touchCtr = 0; c->updateId = 0; c->chunks.clear(); return 0; } if (haveLength == totalLength) { Vector assembledConfig; for(std::map< int,Vector >::const_iterator ch(c->chunks.begin());ch!=c->chunks.end();++ch) assembledConfig.insert(assembledConfig.end(),ch->second.begin(),ch->second.end()); Dictionary dict; if (dict.decode(assembledConfig.data(),(unsigned int)assembledConfig.size())) { ScopedPtr nc(new NetworkConfig()); if (nc->fromDictionary(dict)) { this->setConfiguration(tPtr,*nc,true); return configUpdateId; } } } } catch (...) {} return 0; #endif } int Network::setConfiguration(void *tPtr, const NetworkConfig &nconf, bool saveToDisk) { if (m_destroyed) return 0; // _lock is NOT locked when this is called try { if ((nconf.issuedTo != RR->identity.address()) || (nconf.networkId != m_id)) return 0; // invalid config that is not for us or not for this network if ((!Utils::allZero(nconf.issuedToFingerprintHash, ZT_FINGERPRINT_HASH_SIZE)) && (memcmp(nconf.issuedToFingerprintHash, RR->identity.fingerprint().hash, ZT_FINGERPRINT_HASH_SIZE) != 0)) return 0; // full identity hash is present and does not match if (m_config == nconf) return 1; // OK config, but duplicate of what we already have ZT_VirtualNetworkConfig ctmp; bool oldPortInitialized; { // do things that require lock here, but unlock before calling callbacks Mutex::Lock l1(m_config_l); m_config = nconf; m_lastConfigUpdate = RR->node->now(); _netconfFailure = NETCONF_FAILURE_NONE; oldPortInitialized = m_portInitialized; m_portInitialized = true; m_externalConfig(&ctmp); } RR->node->configureVirtualNetworkPort(tPtr, m_id, &m_uPtr, (oldPortInitialized) ? ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_CONFIG_UPDATE : ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_UP, &ctmp); if (saveToDisk) { try { Dictionary d; if (nconf.toDictionary(d)) { uint64_t tmp[2]; tmp[0] = m_id; tmp[1] = 0; Vector< uint8_t > d2; d.encode(d2); RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp, d2.data(), (unsigned int)d2.size()); } } catch (...) {} } return 2; // OK and configuration has changed } catch (...) {} // ignore invalid configs return 0; } bool Network::gate(void *tPtr, const SharedPtr< Peer > &peer) noexcept { Mutex::Lock lc(m_config_l); if (!m_config) return false; if (m_config.isPublic()) return true; try { Mutex::Lock l(m_memberships_l); return m_memberships[peer->address()].certificateOfMembershipAgress(m_config.com, peer->identity()); } catch (...) {} return false; } void Network::doPeriodicTasks(void *tPtr, const int64_t now) { if (m_destroyed) return; if ((now - m_lastConfigUpdate) >= ZT_NETWORK_AUTOCONF_DELAY) m_requestConfiguration(tPtr); { Mutex::Lock l1(m_memberships_l); for (Map< Address, Member >::iterator i(m_memberships.begin()); i != m_memberships.end(); ++i) i->second.clean(m_config); { Mutex::Lock l2(m_myMulticastGroups_l); // TODO /* Hashtable< MulticastGroup,uint64_t >::Iterator i(_multicastGroupsBehindMe); MulticastGroup *mg = (MulticastGroup *)0; uint64_t *ts = (uint64_t *)0; while (i.next(mg,ts)) { if ((now - *ts) > (ZT_MULTICAST_LIKE_EXPIRE * 2)) _multicastGroupsBehindMe.erase(*mg); } _announceMulticastGroups(tPtr,false); */ } } } void Network::learnBridgeRoute(const MAC &mac, const Address &addr) { Mutex::Lock _l(m_remoteBridgeRoutes_l); m_remoteBridgeRoutes[mac] = addr; // Anti-DOS circuit breaker to prevent nodes from spamming us with absurd numbers of bridge routes while (m_remoteBridgeRoutes.size() > ZT_MAX_BRIDGE_ROUTES) { Map< Address, unsigned long > counts; Address maxAddr; unsigned long maxCount = 0; // Find the address responsible for the most entries for (Map< MAC, Address >::iterator i(m_remoteBridgeRoutes.begin()); i != m_remoteBridgeRoutes.end(); ++i) { const unsigned long c = ++counts[i->second]; if (c > maxCount) { maxCount = c; maxAddr = i->second; } } // Kill this address from our table, since it's most likely spamming us for (Map< MAC, Address >::iterator i(m_remoteBridgeRoutes.begin()); i != m_remoteBridgeRoutes.end();) { if (i->second == maxAddr) m_remoteBridgeRoutes.erase(i++); else ++i; } } } Member::AddCredentialResult Network::addCredential(void *tPtr, const Identity &sourcePeerIdentity, const MembershipCredential &com) { if (com.networkId() != m_id) return Member::ADD_REJECTED; Mutex::Lock _l(m_memberships_l); return m_memberships[com.issuedTo().address].addCredential(RR, tPtr, sourcePeerIdentity, m_config, com); } Member::AddCredentialResult Network::addCredential(void *tPtr, const Identity &sourcePeerIdentity, const CapabilityCredential &cap) { if (cap.networkId() != m_id) return Member::ADD_REJECTED; Mutex::Lock _l(m_memberships_l); return m_memberships[cap.issuedTo()].addCredential(RR, tPtr, sourcePeerIdentity, m_config, cap); } Member::AddCredentialResult Network::addCredential(void *tPtr, const Identity &sourcePeerIdentity, const TagCredential &tag) { if (tag.networkId() != m_id) return Member::ADD_REJECTED; Mutex::Lock _l(m_memberships_l); return m_memberships[tag.issuedTo()].addCredential(RR, tPtr, sourcePeerIdentity, m_config, tag); } Member::AddCredentialResult Network::addCredential(void *tPtr, const Identity &sourcePeerIdentity, const RevocationCredential &rev) { if (rev.networkId() != m_id) return Member::ADD_REJECTED; Mutex::Lock l1(m_memberships_l); Member &m = m_memberships[rev.target()]; const Member::AddCredentialResult result = m.addCredential(RR, tPtr, sourcePeerIdentity, m_config, rev); if ((result == Member::ADD_ACCEPTED_NEW) && (rev.fastPropagate())) { // TODO /* Address *a = nullptr; Membership *m = nullptr; Hashtable::Iterator i(_memberships); while (i.next(a,m)) { if ((*a != sourcePeerIdentity.address())&&(*a != rev.signer())) { Packet outp(*a,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS); outp.append((uint8_t)0x00); // no COM outp.append((uint16_t)0); // no capabilities outp.append((uint16_t)0); // no tags outp.append((uint16_t)1); // one revocation! rev.serialize(outp); outp.append((uint16_t)0); // no certificates of ownership RR->sw->send(tPtr,outp,true); } } */ } return result; } Member::AddCredentialResult Network::addCredential(void *tPtr, const Identity &sourcePeerIdentity, const OwnershipCredential &coo) { if (coo.networkId() != m_id) return Member::ADD_REJECTED; Mutex::Lock _l(m_memberships_l); return m_memberships[coo.issuedTo()].addCredential(RR, tPtr, sourcePeerIdentity, m_config, coo); } void Network::pushCredentials(void *tPtr, const SharedPtr< Peer > &to, const int64_t now) { const int64_t tout = std::min(m_config.credentialTimeMaxDelta, m_config.com.timestampMaxDelta()); Mutex::Lock _l(m_memberships_l); Member &m = m_memberships[to->address()]; if (((now - m.lastPushedCredentials()) + 5000) >= tout) { m.pushCredentials(RR, tPtr, now, to, m_config); } } void Network::destroy() { m_memberships_l.lock(); m_config_l.lock(); m_destroyed = true; m_config_l.unlock(); m_memberships_l.unlock(); } void Network::externalConfig(ZT_VirtualNetworkConfig *ec) const { Mutex::Lock _l(m_config_l); m_externalConfig(ec); } void Network::m_requestConfiguration(void *tPtr) { if (m_destroyed) return; if ((m_id >> 56U) == 0xff) { if ((m_id & 0xffffffU) == 0) { const uint16_t startPortRange = (uint16_t)((m_id >> 40U) & 0xffff); const uint16_t endPortRange = (uint16_t)((m_id >> 24U) & 0xffff); if (endPortRange >= startPortRange) { ScopedPtr< NetworkConfig > nconf(new NetworkConfig()); nconf->networkId = m_id; nconf->timestamp = RR->node->now(); nconf->credentialTimeMaxDelta = ZT_NETWORKCONFIG_DEFAULT_CREDENTIAL_TIME_MAX_MAX_DELTA; nconf->revision = 1; nconf->issuedTo = RR->identity.address(); nconf->flags = ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION; nconf->mtu = ZT_DEFAULT_MTU; nconf->multicastLimit = 0; nconf->staticIpCount = 1; nconf->ruleCount = 14; nconf->staticIps[0] = InetAddress::makeIpv66plane(m_id, RR->identity.address().toInt()); // Drop everything but IPv6 nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_MATCH_ETHERTYPE | 0x80U; // NOT nconf->rules[0].v.etherType = 0x86dd; // IPv6 nconf->rules[1].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP; // Allow ICMPv6 nconf->rules[2].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL; nconf->rules[2].v.ipProtocol = 0x3a; // ICMPv6 nconf->rules[3].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; // Allow destination ports within range nconf->rules[4].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL; nconf->rules[4].v.ipProtocol = 0x11; // UDP nconf->rules[5].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_PROTOCOL | 0x40U; // OR nconf->rules[5].v.ipProtocol = 0x06; // TCP nconf->rules[6].t = (uint8_t)ZT_NETWORK_RULE_MATCH_IP_DEST_PORT_RANGE; nconf->rules[6].v.port[0] = startPortRange; nconf->rules[6].v.port[1] = endPortRange; nconf->rules[7].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; // Allow non-SYN TCP packets to permit non-connection-initiating traffic nconf->rules[8].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS | 0x80U; // NOT nconf->rules[8].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN; nconf->rules[9].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; // Also allow SYN+ACK which are replies to SYN nconf->rules[10].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS; nconf->rules[10].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_SYN; nconf->rules[11].t = (uint8_t)ZT_NETWORK_RULE_MATCH_CHARACTERISTICS; nconf->rules[11].v.characteristics = ZT_RULE_PACKET_CHARACTERISTICS_TCP_ACK; nconf->rules[12].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; nconf->rules[13].t = (uint8_t)ZT_NETWORK_RULE_ACTION_DROP; nconf->type = ZT_NETWORK_TYPE_PUBLIC; nconf->name[0] = 'a'; nconf->name[1] = 'd'; nconf->name[2] = 'h'; nconf->name[3] = 'o'; nconf->name[4] = 'c'; nconf->name[5] = '-'; Utils::hex((uint16_t)startPortRange, nconf->name + 6); nconf->name[10] = '-'; Utils::hex((uint16_t)endPortRange, nconf->name + 11); nconf->name[15] = (char)0; this->setConfiguration(tPtr, *nconf, false); } else { this->setNotFound(); } } else if ((m_id & 0xffU) == 0x01) { // ffAAaaaaaaaaaa01 -- where AA is the IPv4 /8 to use and aaaaaaaaaa is the anchor node for multicast gather and replication const uint64_t myAddress = RR->identity.address().toInt(); const uint64_t networkHub = (m_id >> 8U) & 0xffffffffffULL; uint8_t ipv4[4]; ipv4[0] = (uint8_t)(m_id >> 48U); ipv4[1] = (uint8_t)(myAddress >> 16U); ipv4[2] = (uint8_t)(myAddress >> 8U); ipv4[3] = (uint8_t)myAddress; char v4ascii[24]; Utils::decimal(ipv4[0], v4ascii); ScopedPtr< NetworkConfig > nconf(new NetworkConfig()); nconf->networkId = m_id; nconf->timestamp = RR->node->now(); nconf->credentialTimeMaxDelta = ZT_NETWORKCONFIG_DEFAULT_CREDENTIAL_TIME_MAX_MAX_DELTA; nconf->revision = 1; nconf->issuedTo = RR->identity.address(); nconf->flags = ZT_NETWORKCONFIG_FLAG_ENABLE_IPV6_NDP_EMULATION; nconf->mtu = ZT_DEFAULT_MTU; nconf->multicastLimit = 1024; nconf->specialistCount = (networkHub == 0) ? 0 : 1; nconf->staticIpCount = 2; nconf->ruleCount = 1; if (networkHub != 0) nconf->specialists[0] = networkHub; nconf->staticIps[0] = InetAddress::makeIpv66plane(m_id, myAddress); nconf->staticIps[1].set(ipv4, 4, 8); nconf->rules[0].t = (uint8_t)ZT_NETWORK_RULE_ACTION_ACCEPT; nconf->type = ZT_NETWORK_TYPE_PUBLIC; nconf->name[0] = 'a'; nconf->name[1] = 'd'; nconf->name[2] = 'h'; nconf->name[3] = 'o'; nconf->name[4] = 'c'; nconf->name[5] = '-'; unsigned long nn = 6; while ((nconf->name[nn] = v4ascii[nn - 6])) ++nn; nconf->name[nn++] = '.'; nconf->name[nn++] = '0'; nconf->name[nn++] = '.'; nconf->name[nn++] = '0'; nconf->name[nn++] = '.'; nconf->name[nn++] = '0'; nconf->name[nn] = (char)0; this->setConfiguration(tPtr, *nconf, false); } return; } const Address ctrl(controller()); Dictionary rmd; rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_VENDOR, (uint64_t)1); // 1 == ZeroTier, no other vendors at the moment rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_PROTOCOL_VERSION, (uint64_t)ZT_PROTO_VERSION); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MAJOR_VERSION, (uint64_t)ZEROTIER_VERSION_MAJOR); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_MINOR_VERSION, (uint64_t)ZEROTIER_VERSION_MINOR); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_NODE_REVISION, (uint64_t)ZEROTIER_VERSION_REVISION); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_RULES, (uint64_t)ZT_MAX_NETWORK_RULES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_CAPABILITIES, (uint64_t)ZT_MAX_NETWORK_CAPABILITIES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_CAPABILITY_RULES, (uint64_t)ZT_MAX_CAPABILITY_RULES); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_MAX_NETWORK_TAGS, (uint64_t)ZT_MAX_NETWORK_TAGS); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_FLAGS, (uint64_t)0); rmd.add(ZT_NETWORKCONFIG_REQUEST_METADATA_KEY_RULES_ENGINE_REV, (uint64_t)ZT_RULES_ENGINE_REVISION); RR->t->networkConfigRequestSent(tPtr, 0x335bb1a2, m_id); if (ctrl == RR->identity.address()) { if (RR->localNetworkController) { RR->localNetworkController->request(m_id, InetAddress(), 0xffffffffffffffffULL, RR->identity, rmd); } else { this->setNotFound(); } return; } // TODO /* Packet outp(ctrl,RR->identity.address(),Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append((uint64_t)_id); const unsigned int rmdSize = rmd->sizeBytes(); outp.append((uint16_t)rmdSize); outp.append((const void *)rmd->data(),rmdSize); if (_config) { outp.append((uint64_t)_config.revision); outp.append((uint64_t)_config.timestamp); } else { outp.append((unsigned char)0,16); } outp.compress(); RR->node->expectReplyTo(outp.packetId()); RR->sw->send(tPtr,outp,true); */ } ZT_VirtualNetworkStatus Network::m_status() const { switch (_netconfFailure) { case NETCONF_FAILURE_ACCESS_DENIED: return ZT_NETWORK_STATUS_ACCESS_DENIED; case NETCONF_FAILURE_NOT_FOUND: return ZT_NETWORK_STATUS_NOT_FOUND; case NETCONF_FAILURE_NONE: return ((m_config) ? ZT_NETWORK_STATUS_OK : ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION); default: return ZT_NETWORK_STATUS_REQUESTING_CONFIGURATION; } } void Network::m_externalConfig(ZT_VirtualNetworkConfig *ec) const { // assumes _config_l is locked ec->nwid = m_id; ec->mac = m_mac.toInt(); if (m_config) Utils::scopy(ec->name, sizeof(ec->name), m_config.name); else ec->name[0] = (char)0; ec->status = m_status(); ec->type = (m_config) ? (m_config.isPrivate() ? ZT_NETWORK_TYPE_PRIVATE : ZT_NETWORK_TYPE_PUBLIC) : ZT_NETWORK_TYPE_PRIVATE; ec->mtu = (m_config) ? m_config.mtu : ZT_DEFAULT_MTU; Vector< Address > ab; for (unsigned int i = 0; i < m_config.specialistCount; ++i) { if ((m_config.specialists[i] & ZT_NETWORKCONFIG_SPECIALIST_TYPE_ACTIVE_BRIDGE) != 0) ab.push_back(Address(m_config.specialists[i])); } ec->bridge = (std::find(ab.begin(), ab.end(), RR->identity.address()) != ab.end()) ? 1 : 0; ec->broadcastEnabled = (m_config) ? (m_config.enableBroadcast() ? 1 : 0) : 0; ec->netconfRevision = (m_config) ? (unsigned long)m_config.revision : 0; ec->assignedAddressCount = 0; for (unsigned int i = 0; i < ZT_MAX_ZT_ASSIGNED_ADDRESSES; ++i) { if (i < m_config.staticIpCount) { Utils::copy< sizeof(struct sockaddr_storage) >(&(ec->assignedAddresses[i]), &(m_config.staticIps[i])); ++ec->assignedAddressCount; } else { Utils::zero< sizeof(struct sockaddr_storage) >(&(ec->assignedAddresses[i])); } } ec->routeCount = 0; for (unsigned int i = 0; i < ZT_MAX_NETWORK_ROUTES; ++i) { if (i < m_config.routeCount) { Utils::copy< sizeof(ZT_VirtualNetworkRoute) >(&(ec->routes[i]), &(m_config.routes[i])); ++ec->routeCount; } else { Utils::zero< sizeof(ZT_VirtualNetworkRoute) >(&(ec->routes[i])); } } } void Network::m_announceMulticastGroups(void *tPtr, bool force) { // Assumes _myMulticastGroups_l and _memberships_l are locked const Vector< MulticastGroup > groups(m_allMulticastGroups()); m_announceMulticastGroupsTo(tPtr, controller(), groups); // TODO /* Address *a = nullptr; Membership *m = nullptr; Hashtable::Iterator i(_memberships); while (i.next(a,m)) { bool announce = m->multicastLikeGate(now); // force this to be called even if 'force' is true since it updates last push time if ((!announce)&&(force)) announce = true; if ((announce)&&(m->isAllowedOnNetwork(_config))) _announceMulticastGroupsTo(tPtr,*a,groups); } */ } void Network::m_announceMulticastGroupsTo(void *tPtr, const Address &peer, const Vector< MulticastGroup > &allMulticastGroups) { #if 0 // Assumes _myMulticastGroups_l and _memberships_l are locked ScopedPtr outp(new Packet(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE)); for(Vector::const_iterator mg(allMulticastGroups.begin());mg!=allMulticastGroups.end();++mg) { if ((outp->size() + 24) >= ZT_PROTO_MAX_PACKET_LENGTH) { outp->compress(); RR->sw->send(tPtr,*outp,true); outp->reset(peer,RR->identity.address(),Packet::VERB_MULTICAST_LIKE); } // network ID, MAC, ADI outp->append((uint64_t)_id); mg->mac().appendTo(*outp); outp->append((uint32_t)mg->adi()); } if (outp->size() > ZT_PROTO_MIN_PACKET_LENGTH) { outp->compress(); RR->sw->send(tPtr,*outp,true); } #endif } Vector< MulticastGroup > Network::m_allMulticastGroups() const { // Assumes _myMulticastGroups_l is locked Vector< MulticastGroup > mgs; mgs.reserve(m_myMulticastGroups.size() + m_multicastGroupsBehindMe.size() + 1); mgs.insert(mgs.end(), m_myMulticastGroups.begin(), m_myMulticastGroups.end()); for (Map< MulticastGroup, int64_t >::const_iterator i(m_multicastGroupsBehindMe.begin()); i != m_multicastGroupsBehindMe.end(); ++i) mgs.push_back(i->first); if ((m_config) && (m_config.enableBroadcast())) mgs.push_back(Network::BROADCAST); std::sort(mgs.begin(), mgs.end()); mgs.erase(std::unique(mgs.begin(), mgs.end()), mgs.end()); return mgs; } } // namespace ZeroTier