/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_MULTICASTGROUP_HPP #define ZT_MULTICASTGROUP_HPP #include #include "Constants.hpp" #include "MAC.hpp" #include "InetAddress.hpp" #include "Utils.hpp" namespace ZeroTier { /** * A multicast group composed of a multicast MAC and a 32-bit ADI field * * ADI stands for additional distinguishing information. ADI is primarily for * adding additional information to broadcast (ff:ff:ff:ff:ff:ff) memberships, * since straight-up broadcast won't scale. Right now it's zero except for * IPv4 ARP, where it holds the IPv4 address itself to make ARP into a * selective multicast query that can scale. * * In the future we might add some kind of plugin architecture that can add * ADI for things like mDNS (multicast DNS) to improve the selectivity of * those protocols. * * MulticastGroup behaves as an immutable value object. */ class MulticastGroup { public: ZT_ALWAYS_INLINE MulticastGroup() : _mac(),_adi(0) {} ZT_ALWAYS_INLINE MulticastGroup(const MAC &m,uint32_t a) : _mac(m),_adi(a) {} /** * Derive the multicast group used for address resolution (ARP/NDP) for an IP * * @param ip IP address (port field is ignored) * @return Multicast group for ARP/NDP */ static ZT_ALWAYS_INLINE MulticastGroup deriveMulticastGroupForAddressResolution(const InetAddress &ip) { if (ip.isV4()) { // IPv4 wants broadcast MACs, so we shove the V4 address itself into // the Multicast Group ADI field. Making V4 ARP work is basically why // ADI was added, as well as handling other things that want mindless // Ethernet broadcast to all. return MulticastGroup(MAC(0xffffffffffffULL),Utils::ntoh(*((const uint32_t *)ip.rawIpData()))); } else if (ip.isV6()) { // IPv6 is better designed in this respect. We can compute the IPv6 // multicast address directly from the IP address, and it gives us // 24 bits of uniqueness. Collisions aren't likely to be common enough // to care about. const unsigned char *a = (const unsigned char *)ip.rawIpData(); return MulticastGroup(MAC(0x33,0x33,0xff,a[13],a[14],a[15]),0); } return MulticastGroup(); } /** * @return Ethernet MAC portion of multicast group */ ZT_ALWAYS_INLINE const MAC &mac() const { return _mac; } /** * @return Additional distinguishing information, which is normally zero except for IPv4 ARP where it's the IPv4 address */ ZT_ALWAYS_INLINE uint32_t adi() const { return _adi; } /** * @return 32-bit non-cryptographic hash ID of this multicast group */ ZT_ALWAYS_INLINE uint32_t id() const { uint64_t m = _mac.toInt(); uint32_t x1 = _adi; uint32_t x2 = (uint32_t)(m >> 32); uint32_t x3 = (uint32_t)m; x1 = ((x1 >> 16) ^ x1) * 0x45d9f3b; x2 = ((x2 >> 16) ^ x2) * 0x45d9f3b; x3 = ((x3 >> 16) ^ x3) * 0x45d9f3b; x1 = ((x1 >> 16) ^ x1) * 0x45d9f3b; x2 = ((x2 >> 16) ^ x2) * 0x45d9f3b; x3 = ((x3 >> 16) ^ x3) * 0x45d9f3b; x1 = (x1 >> 16) ^ x1; x2 = (x2 >> 16) ^ x2; x3 = (x3 >> 16) ^ x3; return (x1 ^ x2 ^ x3); } ZT_ALWAYS_INLINE bool operator==(const MulticastGroup &g) const { return ((_mac == g._mac)&&(_adi == g._adi)); } ZT_ALWAYS_INLINE bool operator!=(const MulticastGroup &g) const { return ((_mac != g._mac)||(_adi != g._adi)); } ZT_ALWAYS_INLINE bool operator<(const MulticastGroup &g) const { if (_mac < g._mac) return true; else if (_mac == g._mac) return (_adi < g._adi); return false; } ZT_ALWAYS_INLINE bool operator>(const MulticastGroup &g) const { return (g < *this); } ZT_ALWAYS_INLINE bool operator<=(const MulticastGroup &g) const { return !(g < *this); } ZT_ALWAYS_INLINE bool operator>=(const MulticastGroup &g) const { return !(*this < g); } ZT_ALWAYS_INLINE unsigned long hashCode() const { return (_mac.hashCode() ^ (unsigned long)_adi); } private: MAC _mac; uint32_t _adi; }; } // namespace ZeroTier #endif