/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2024-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_DICTIONARY_HPP #define ZT_DICTIONARY_HPP #include "Constants.hpp" #include "Utils.hpp" #include "Address.hpp" #include "Buf.hpp" #include "FCV.hpp" #include "SHA512.hpp" #include "Fingerprint.hpp" #include "Containers.hpp" namespace ZeroTier { class Identity; /** * A simple key-value store for short keys * * This data structure is used for network configurations, node meta-data, * and other open-definition protocol objects. It consists of a key-value * store with short (max: 7 characters) keys that map to strings, blobs, * or integers with the latter being by convention in hex format. * * If this seems a little odd, it is. It dates back to the very first alpha * versions of ZeroTier and if it were redesigned today we'd use some kind * of simple or standardized binary encoding. Nevertheless it is efficient * and it works so there is no need to change it and break backward * compatibility. * * Use of the append functions is faster than building and then encoding a * dictionary for creating outbound packets. */ class Dictionary { public: Dictionary(); /** * Get a reference to a value * * @param k Key to look up * @return Reference to value */ Vector &operator[](const char *k); /** * Get a const reference to a value * * @param k Key to look up * @return Reference to value or to empty vector if not found */ const Vector &operator[](const char *k) const; /** * Add a boolean as '1' or '0' */ void add(const char *k,bool v); /** * Add an integer as a hexadecimal string value */ ZT_INLINE void add(const char *const k,const uint64_t v) { char buf[17]; add(k,Utils::hex(v,buf)); } ZT_INLINE void add(const char *const k,const int64_t v) { char buf[17]; add(k,Utils::hex((uint64_t)v,buf)); } ZT_INLINE void add(const char *const k,const uint32_t v) { char buf[17]; add(k,Utils::hex((uint64_t)v,buf)); } ZT_INLINE void add(const char *const k,const int32_t v) { char buf[17]; add(k,Utils::hex((uint64_t)v,buf)); } ZT_INLINE void add(const char *const k,const uint16_t v) { char buf[17]; add(k,Utils::hex((uint64_t)v,buf)); } ZT_INLINE void add(const char *const k,const int16_t v) { char buf[17]; add(k,Utils::hex((uint64_t)v,buf)); } /** * Add an address in 10-digit hex string format */ void add(const char *k,const Address &v); /** * Add a C string as a value */ void add(const char *k,const char *v); /** * Add a binary blob as a value */ void add(const char *k,const void *data,unsigned int len); /** * Get a boolean * * @param k Key to look up * @param dfl Default value (default: false) * @return Value of key or default if not found */ bool getB(const char *k,bool dfl = false) const; /** * Get an integer * * @param k Key to look up * @param dfl Default value (default: 0) * @return Value of key or default if not found */ uint64_t getUI(const char *k,uint64_t dfl = 0) const; /** * Get a C string * * If the buffer is too small the string will be truncated, but the * buffer will always end in a terminating null no matter what. * * @param k Key to look up * @param v Buffer to hold string * @param cap Maximum size of string (including terminating null) */ char *getS(const char *k,char *v,unsigned int cap) const; /** * Get an object supporting the marshal/unmarshal interface pattern * * @param k Key to look up * @param obj Object to unmarshal() into * @return True if unmarshal was successful */ template ZT_INLINE bool getO(const char *k,T &obj) const { const Vector &d = (*this)[k]; if (d.empty()) return false; return (obj.unmarshal(d.data(),(unsigned int)d.size()) > 0); } /** * Sign this identity * * This adds two fields: * "@Si" contains the fingerprint (address followed by hash) of the signer * "@Ss" contains the signature * * @param signer Signing identity (must contain secret) * @return True if signature was successful */ bool sign(const Identity &signer); /** * Get the signer's fingerprint for this dictionary or a NIL fingerprint if not signed. * * @return Signer */ Fingerprint signer() const; /** * Verify this identity's signature * * @param signer * @return */ bool verify(const Identity &signer) const; /** * Erase all entries in dictionary */ void clear(); /** * @return Number of entries */ ZT_INLINE unsigned int size() const noexcept { return m_entries.size(); } /** * @return True if dictionary is not empty */ ZT_INLINE bool empty() const noexcept { return m_entries.empty(); } /** * Encode to a string in the supplied vector * * @param out String encoded dictionary * @param omitSignatureFields If true omit the signature fields from encoding (default: false) */ void encode(Vector &out,bool omitSignatureFields = false) const; /** * Decode a string encoded dictionary * * This will decode up to 'len' but will also abort if it finds a * null/zero as this could be a C string. * * @param data Data to decode * @param len Length of data * @return True if dictionary was formatted correctly and valid, false on error */ bool decode(const void *data,unsigned int len); /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template ZT_INLINE static void append(V &out,const char *const k,const bool v) { s_appendKey(out,k); out.push_back((uint8_t)(v ? '1' : '0')); out.push_back((uint8_t)'\n'); } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template ZT_INLINE static void append(V &out,const char *const k,const Address v) { s_appendKey(out,k); const uint64_t a = v.toInt(); static_assert(ZT_ADDRESS_LENGTH_HEX == 10,"this must be rewritten for any change in address length"); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 36U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 32U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 28U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 24U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 20U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 16U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 12U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 8U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 4U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[a & 0xfU]); out.push_back((uint8_t)'\n'); } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template ZT_INLINE static void append(V &out,const char *const k,const uint64_t v) { char buf[17]; Utils::hex(v,buf); unsigned int i = 0; while (buf[i]) out.push_back((uint8_t)buf[i++]); out.push_back((uint8_t)'\n'); } template ZT_INLINE static void append(V &out,const char *const k,const int64_t v) { append(out,k,(uint64_t)v); } template ZT_INLINE static void append(V &out,const char *const k,const uint32_t v) { append(out,k,(uint64_t)v); } template ZT_INLINE static void append(V &out,const char *const k,const int32_t v) { append(out,k,(uint64_t)v); } template ZT_INLINE static void append(V &out,const char *const k,const uint16_t v) { append(out,k,(uint64_t)v); } template ZT_INLINE static void append(V &out,const char *const k,const int16_t v) { append(out,k,(uint64_t)v); } template ZT_INLINE static void append(V &out,const char *const k,const uint8_t v) { append(out,k,(uint64_t)v); } template ZT_INLINE static void append(V &out,const char *const k,const int8_t v) { append(out,k,(uint64_t)v); } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template ZT_INLINE static void append(V &out,const char *const k,const char *v) { if ((v)&&(*v)) { s_appendKey(out,k); while (*v) s_appendValueByte(out,(uint8_t)*(v++)); out.push_back((uint8_t)'\n'); } } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value * @param vlen Value length in bytes */ template ZT_INLINE static void append(V &out,const char *const k,const void *const v,const unsigned int vlen) { s_appendKey(out,k); for(unsigned int i=0;i(v)[i]); out.push_back((uint8_t)'\n'); } /** * Append a packet ID as raw bytes in the provided byte order * * @param out Buffer * @param k Key (must be <= 8 characters) * @param pid Packet ID */ template static ZT_INLINE void appendPacketId(V &out,const char *const k,const uint64_t pid) { append(out,k,&pid,8); } /** * Append key=value with any object implementing the correct marshal interface * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Marshal-able object * @return Bytes appended or negative on error (return value of marshal()) */ template static ZT_INLINE int appendObject(V &out,const char *const k,const T &v) { uint8_t tmp[4096]; // large enough for any current object if (T::marshalSizeMax() > sizeof(tmp)) return -1; const int mlen = v.marshal(tmp); if (mlen > 0) append(out,k,tmp,(unsigned int)mlen); return mlen; } private: template ZT_INLINE static void s_appendValueByte(V &out,const uint8_t c) { switch(c) { case 0: out.push_back(92); // backslash out.push_back(48); break; case 10: out.push_back(92); out.push_back(110); break; case 13: out.push_back(92); out.push_back(114); break; case 61: out.push_back(92); out.push_back(101); break; case 92: out.push_back(92); out.push_back(92); break; default: out.push_back(c); break; } } template ZT_INLINE static void s_appendKey(V &out,const char *const k) { for(unsigned int i=0;i<7;++i) { const char kc = k[i]; if (kc == 0) break; if ((kc >= 33)&&(kc <= 126)&&(kc != 61)&&(kc != 92)) // printable ASCII with no spaces, equals, or backslash out.push_back((uint8_t)kc); } out.push_back((uint8_t)'='); } ZT_INLINE static FCV &s_key(FCV &buf,const char *k) noexcept { buf.clear(); for(unsigned int i=0;i<7;++i) { const char kc = k[i]; if (kc == 0) break; if ((kc >= 33)&&(kc <= 126)&&(kc != 61)&&(kc != 92)) // printable ASCII with no spaces, equals, or backslash buf.push_back(kc); } buf.push_back(0); return buf; } SortedMap< FCV,Vector > m_entries; }; } // namespace ZeroTier #endif