/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2024-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_DICTIONARY_HPP #define ZT_DICTIONARY_HPP #include "Constants.hpp" #include "Utils.hpp" #include "Address.hpp" #include "Buf.hpp" #include "Containers.hpp" #include "C25519.hpp" #include "ECC384.hpp" #define ZT_DICTIONARY_SIGNATURE_KEY "@S" namespace ZeroTier { class Identity; /** * A simple key-value store for short keys * * This data structure is used for network configurations, node meta-data, * and other open-definition protocol objects. * * If this seems a little odd, it is. It dates back to the very first alpha * versions of ZeroTier and if it were redesigned today we'd use some kind * of simple or standardized binary encoding. Nevertheless it is efficient * and it works so there is no need to change it and break backward * compatibility. * * Use of the append functions is faster than building and then encoding a * dictionary for creating outbound packets. */ class Dictionary { public: typedef SortedMap< String, Vector < uint8_t > > ::const_iterator const_iterator; Dictionary(); /** * Get a reference to a value * * @param k Key to look up * @return Reference to value */ Vector &operator[](const char *k); /** * Get a const reference to a value * * @param k Key to look up * @return Reference to value or to empty vector if not found */ const Vector &operator[](const char *k) const; /** * @return Start of key->value pairs */ ZT_INLINE const_iterator begin() const noexcept { return m_entries.begin(); } /** * @return End of key->value pairs */ ZT_INLINE const_iterator end() const noexcept { return m_entries.end(); } /** * Add a boolean as '1' or '0' */ void add(const char *k, bool v); /** * Add an integer as a hexadecimal string value * * @param k Key to set * @param v Integer to set, will be cast to uint64_t and stored as hex */ template< typename I > ZT_INLINE void add(const char *const k, I v) { char buf[17]; add(k, Utils::hex((uint64_t)(v), buf)); } /** * Add an address in 10-digit hex string format */ void add(const char *k, const Address &v); /** * Add a C string as a value */ void add(const char *k, const char *v); /** * Add a binary blob as a value */ void add(const char *k, const void *data, unsigned int len); /** * Get a boolean * * @param k Key to look up * @param dfl Default value (default: false) * @return Value of key or default if not found */ bool getB(const char *k, bool dfl = false) const; /** * Get an integer * * @param k Key to look up * @param dfl Default value (default: 0) * @return Value of key or default if not found */ uint64_t getUI(const char *k, uint64_t dfl = 0) const; /** * Get a C string * * If the buffer is too small the string will be truncated, but the * buffer will always end in a terminating null no matter what. * * @param k Key to look up * @param v Buffer to hold string * @param cap Maximum size of string (including terminating null) */ char *getS(const char *k, char *v, unsigned int cap) const; /** * Get an object supporting the marshal/unmarshal interface pattern * * @param k Key to look up * @param obj Object to unmarshal() into * @return True if unmarshal was successful */ template< typename T > ZT_INLINE bool getO(const char *k, T &obj) const { const Vector< uint8_t > &d = (*this)[k]; if (d.empty()) return false; return (obj.unmarshal(d.data(), (unsigned int)d.size()) > 0); } /** * Erase all entries in dictionary */ void clear(); /** * @return Number of entries */ ZT_INLINE unsigned int size() const noexcept { return m_entries.size(); } /** * @return True if dictionary is not empty */ ZT_INLINE bool empty() const noexcept { return m_entries.empty(); } /** * Encode to a string in the supplied vector * * @param out String encoded dictionary * @param omitSignatureFields If true omit the signature fields from encoding (default: false) */ void encode(Vector &out, bool omitSignatureFields = false) const; /** * Decode a string encoded dictionary * * This will decode up to 'len' but will also abort if it finds a * null/zero as this could be a C string. * * @param data Data to decode * @param len Length of data * @return True if dictionary was formatted correctly and valid, false on error */ bool decode(const void *data, unsigned int len); /** * Sign this dictionary with both an Ed25519 key and a NIST P-384 key. * * This is currently used just for signing root sets for the root subscribe * feature. It uses both key types for more crypto cowbell. * * @param c25519PrivateKey Curve25519 combined key (C25519 and ed25519), though only ed25519 part is used * @param c25519PublicKey Public part of Curve25519 combined key * @param p384PrivateKey NIST P-384 private key * @param p384PublicKey NIST P-384 public key */ void sign( const uint8_t c25519PrivateKey[ZT_C25519_COMBINED_PRIVATE_KEY_SIZE], const uint8_t c25519PublicKey[ZT_C25519_COMBINED_PUBLIC_KEY_SIZE], const uint8_t p384PrivateKey[ZT_ECC384_PRIVATE_KEY_SIZE], const uint8_t p384PublicKey[ZT_ECC384_PUBLIC_KEY_SIZE]); /** * Verify this dictionary's signature * * @param c25519PublicKey Curve25519 public key * @param p384PublicKey P-384 public key * @return True if signatures are valid */ bool verify( const uint8_t c25519PublicKey[ZT_C25519_COMBINED_PUBLIC_KEY_SIZE], const uint8_t p384PublicKey[ZT_ECC384_PUBLIC_KEY_SIZE]) const; /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template< typename V > ZT_INLINE static void append(V &out, const char *const k, const bool v) { s_appendKey(out, k); out.push_back((uint8_t)(v ? '1' : '0')); out.push_back((uint8_t)'\n'); } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template< typename V > ZT_INLINE static void append(V &out, const char *const k, const Address v) { s_appendKey(out, k); const uint64_t a = v.toInt(); static_assert(ZT_ADDRESS_LENGTH_HEX == 10, "this must be rewritten for any change in address length"); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 36U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 32U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 28U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 24U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 20U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 16U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 12U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 8U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[(a >> 4U) & 0xfU]); out.push_back((uint8_t)Utils::HEXCHARS[a & 0xfU]); out.push_back((uint8_t)'\n'); } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template< typename V > ZT_INLINE static void append(V &out, const char *const k, const uint64_t v) { char buf[17]; Utils::hex(v, buf); unsigned int i = 0; while (buf[i]) out.push_back((uint8_t)buf[i++]); out.push_back((uint8_t)'\n'); } template< typename V > ZT_INLINE static void append(V &out, const char *const k, const int64_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_INLINE static void append(V &out, const char *const k, const uint32_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_INLINE static void append(V &out, const char *const k, const int32_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_INLINE static void append(V &out, const char *const k, const uint16_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_INLINE static void append(V &out, const char *const k, const int16_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_INLINE static void append(V &out, const char *const k, const uint8_t v) { append(out, k, (uint64_t)v); } template< typename V > ZT_INLINE static void append(V &out, const char *const k, const int8_t v) { append(out, k, (uint64_t)v); } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value */ template< typename V > ZT_INLINE static void append(V &out, const char *const k, const char *v) { if ((v) && (*v)) { s_appendKey(out, k); while (*v) s_appendValueByte(out, (uint8_t)*(v++)); out.push_back((uint8_t)'\n'); } } /** * Append a key=value pair to a buffer (vector or FCV) * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Value * @param vlen Value length in bytes */ template< typename V > ZT_INLINE static void append(V &out, const char *const k, const void *const v, const unsigned int vlen) { s_appendKey(out, k); for (unsigned int i = 0; i < vlen; ++i) s_appendValueByte(out, reinterpret_cast(v)[i]); out.push_back((uint8_t)'\n'); } /** * Append a packet ID as raw bytes in the provided byte order * * @param out Buffer * @param k Key (must be <= 8 characters) * @param pid Packet ID */ template< typename V > static ZT_INLINE void appendPacketId(V &out, const char *const k, const uint64_t pid) { append(out, k, &pid, 8); } /** * Append key=value with any object implementing the correct marshal interface * * @param out Buffer * @param k Key (must be <= 8 characters) * @param v Marshal-able object * @return Bytes appended or negative on error (return value of marshal()) */ template< typename V, typename T > static ZT_INLINE int appendObject(V &out, const char *const k, const T &v) { uint8_t tmp[4096]; // large enough for any current object if (T::marshalSizeMax() > sizeof(tmp)) return -1; const int mlen = v.marshal(tmp); if (mlen > 0) append(out, k, tmp, (unsigned int)mlen); return mlen; } private: template< typename V > ZT_INLINE static void s_appendValueByte(V &out, const uint8_t c) { switch (c) { case 0: out.push_back(92); // backslash out.push_back(48); break; case 10: out.push_back(92); out.push_back(110); break; case 13: out.push_back(92); out.push_back(114); break; case 61: out.push_back(92); out.push_back(101); break; case 92: out.push_back(92); out.push_back(92); break; default: out.push_back(c); break; } } template< typename V > ZT_INLINE static void s_appendKey(V &out, const char *const k) { for (unsigned int i = 0; i < 7; ++i) { const char kc = k[i]; if (kc == 0) break; if ((kc >= 33) && (kc <= 126) && (kc != 61) && (kc != 92)) // printable ASCII with no spaces, equals, or backslash out.push_back((uint8_t)kc); } out.push_back((uint8_t)'='); } ZT_INLINE static String s_key(const char *k) noexcept { String buf; buf.clear(); for (unsigned int i = 0; i < 7; ++i) { const char kc = k[i]; if (kc == 0) break; if ((kc >= 33) && (kc <= 126) && (kc != 61) && (kc != 92)) // printable ASCII with no spaces, equals, or backslash buf.push_back(kc); } buf.push_back(0); return buf; } SortedMap > m_entries; }; } // namespace ZeroTier #endif