/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2024-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_AES_HPP #define ZT_AES_HPP #include "Constants.hpp" #include "Utils.hpp" #include "SHA512.hpp" #include #include #ifndef ZT_AES_NO_ACCEL #ifdef ZT_ARCH_X64 #include #include #include #include #define ZT_AES_AESNI 1 #endif #endif namespace ZeroTier { /** * AES-256 and pals including GMAC, CTR, etc. * * This includes hardware acceleration for certain processors. The software * mode is fallback and is significantly slower. */ class AES { public: /** * @return True if this system has hardware AES acceleration */ static ZT_INLINE bool accelerated() { #ifdef ZT_AES_AESNI return Utils::CPUID.aes; #else return false; #endif } /** * Create an un-initialized AES instance (must call init() before use) */ ZT_INLINE AES() noexcept {} /** * Create an AES instance with the given key * * @param key 256-bit key */ explicit ZT_INLINE AES(const void *const key) noexcept { this->init(key); } ZT_INLINE ~AES() { Utils::burn(&_k,sizeof(_k)); } /** * Set (or re-set) this AES256 cipher's key * * @param key 256-bit / 32-byte key */ ZT_INLINE void init(const void *key) noexcept { #ifdef ZT_AES_AESNI if (likely(Utils::CPUID.aes)) { _init_aesni(reinterpret_cast(key)); return; } #endif _initSW(reinterpret_cast(key)); } /** * Encrypt a single AES block * * @param in Input block * @param out Output block (can be same as input) */ ZT_INLINE void encrypt(const void *const in,void *const out) const noexcept { #ifdef ZT_AES_AESNI if (likely(Utils::CPUID.aes)) { _encrypt_aesni(in,out); return; } #endif _encryptSW(reinterpret_cast(in),reinterpret_cast(out)); } /** * Decrypt a single AES block * * @param in Input block * @param out Output block (can be same as input) */ ZT_INLINE void decrypt(const void *const in,void *const out) const noexcept { #ifdef ZT_AES_AESNI if (likely(Utils::CPUID.aes)) { _decrypt_aesni(in,out); return; } #endif _decryptSW(reinterpret_cast(in),reinterpret_cast(out)); } class GMACSIVEncryptor; /** * Streaming GMAC calculator */ class GMAC { friend class GMACSIVEncryptor; public: /** * Create a new instance of GMAC (must be initialized with init() before use) * * @param aes Keyed AES instance to use */ ZT_INLINE GMAC(const AES &aes) : _aes(aes) {} /** * Reset and initialize for a new GMAC calculation * * @param iv 96-bit initialization vector (pad with zeroes if actual IV is shorter) */ ZT_INLINE void init(const uint8_t iv[12]) noexcept { _rp = 0; _len = 0; // We fill the least significant 32 bits in the _iv field with 1 since in GCM mode // this would hold the counter, but we're not doing GCM. The counter is therefore // always 1. #ifdef ZT_AES_AESNI // also implies an x64 processor *reinterpret_cast(_iv) = *reinterpret_cast(iv); *reinterpret_cast(_iv + 8) = *reinterpret_cast(iv + 8); *reinterpret_cast(_iv + 12) = 0x01000000; // 0x00000001 in big-endian byte order #else for(int i=0;i<12;++i) _iv[i] = iv[i]; _iv[12] = 0; _iv[13] = 0; _iv[14] = 0; _iv[15] = 1; #endif _y[0] = 0; _y[1] = 0; } /** * Process data through GMAC * * @param data Bytes to process * @param len Length of input */ void update(const void *data,unsigned int len) noexcept; /** * Process any remaining cached bytes and generate tag * * Don't call finish() more than once or you'll get an invalid result. * * @param tag 128-bit GMAC tag (can be truncated) */ void finish(uint8_t tag[16]) noexcept; private: const AES &_aes; unsigned int _rp; unsigned int _len; uint8_t _r[16]; // remainder uint8_t _iv[16]; uint64_t _y[2]; }; /** * Streaming AES-CTR encrypt/decrypt */ class CTR { friend class GMACSIVEncryptor; public: ZT_INLINE CTR(const AES &aes) noexcept : _aes(aes) {} /** * Initialize this CTR instance to encrypt a new stream * * @param iv Unique initialization vector * @param output Buffer to which to store output (MUST be large enough for total bytes processed!) */ ZT_INLINE void init(const uint8_t iv[16],void *const output) noexcept { _ctr[0] = Utils::loadAsIsEndian(iv); _ctr[1] = Utils::loadAsIsEndian(iv + 8); _out = reinterpret_cast(output); _len = 0; } /** * Encrypt or decrypt data, writing result to the output provided to init() * * @param input Input data * @param len Length of input */ void crypt(const void *input,unsigned int len) noexcept; /** * Finish any remaining bytes if total bytes processed wasn't a multiple of 16 * * Don't call more than once for a given stream or data may be corrupted. */ void finish() noexcept; private: const AES &_aes; uint64_t _ctr[2]; uint8_t *_out; unsigned int _len; }; /** * Encrypt with AES-GMAC-SIV */ class GMACSIVEncryptor { public: /** * Create a new AES-GMAC-SIV encryptor keyed with the provided AES instances * * @param k0 First of two AES instances keyed with K0 * @param k1 Second of two AES instances keyed with K1 */ ZT_INLINE GMACSIVEncryptor(const AES &k0,const AES &k1) noexcept : _gmac(k0), _ctr(k1) {} /** * Initialize AES-GMAC-SIV * * @param iv IV in network byte order (byte order in which it will appear on the wire) * @param output Pointer to buffer to receive ciphertext, must be large enough for all to-be-processed data! */ ZT_INLINE void init(const uint64_t iv,void *const output) noexcept { // Output buffer to receive the result of AES-CTR encryption. _output = output; // Initialize GMAC with 64-bit IV (and remaining 32 bits padded to zero). _iv[0] = iv; _iv[1] = 0; _gmac.init(reinterpret_cast(_iv)); } /** * Process AAD (additional authenticated data) that is not being encrypted * * This must be called prior to update1, finish1, etc. if there is AAD to include * in the MAC that is not included in the plaintext. * * @param aad Additional authenticated data * @param len Length of AAD in bytes */ ZT_INLINE void aad(const void *const aad,unsigned int len) noexcept { // Feed ADD into GMAC first _gmac.update(aad,len); // End of AAD is padded to a multiple of 16 bytes to ensure unique encoding vs. plaintext. // AES-GCM-SIV does this as well for the same reason. len &= 0xfU; if (len != 0) _gmac.update(Utils::ZERO256,16 - len); } /** * First pass plaintext input function * * @param input Plaintext chunk * @param len Length of plaintext chunk */ ZT_INLINE void update1(const void *const input,const unsigned int len) noexcept { _gmac.update(input,len); } /** * Finish first pass, compute CTR IV, initialize second pass. */ ZT_INLINE void finish1() noexcept { // Compute GMAC tag, then encrypt the original 64-bit IV and the first 64 bits // of the GMAC tag with AES (single block) and use this to initialize AES-CTR. uint64_t gmacTag[2]; _gmac.finish(reinterpret_cast(gmacTag)); _iv[1] = gmacTag[0]; _ctr._aes.encrypt(_iv,_iv); // Bit 31 of the CTR IV is masked to (1) allow us to optimize by forgetting // about integer overflow for less than 2^31 bytes (which is far less than // this system's max message size), and (2) ensure interoperability with any // future FIPS-compliant or other cryptographic libraries that may or may not // handle 32-bit integer overflow of the least significant 32 bits in the // counter in the expected way. uint64_t ctrIv[2]; ctrIv[0] = _iv[0]; ctrIv[1] = _iv[1] & ZT_CONST_TO_BE_UINT64(0xffffffff7fffffffULL); _ctr.init(reinterpret_cast(ctrIv),_output); } /** * Second pass plaintext input function * * The same plaintext must be fed in the second time in the same order, * though chunk boundaries do not have to be the same. * * @param input Plaintext chunk * @param len Length of plaintext chunk */ ZT_INLINE void update2(const void *const input,const unsigned int len) noexcept { _ctr.crypt(input,len); } /** * Finish second pass and return a pointer to the opaque 128-bit IV+MAC block * * @return Pointer to 128-bit opaque IV+MAC */ ZT_INLINE const uint8_t *finish2() { _ctr.finish(); return reinterpret_cast(_iv); } private: void *_output; uint64_t _iv[2]; AES::GMAC _gmac; AES::CTR _ctr; }; private: static const uint32_t Te0[256]; static const uint32_t Te1[256]; static const uint32_t Te2[256]; static const uint32_t Te3[256]; static const uint32_t Te4[256]; static const uint32_t Td0[256]; static const uint32_t Td1[256]; static const uint32_t Td2[256]; static const uint32_t Td3[256]; static const uint8_t Td4[256]; static const uint32_t rcon[10]; void _initSW(const uint8_t key[32]) noexcept; void _encryptSW(const uint8_t in[16],uint8_t out[16]) const noexcept; void _decryptSW(const uint8_t in[16],uint8_t out[16]) const noexcept; union { #ifdef ZT_AES_AESNI struct { __m128i k[28]; __m128i h,hh,hhh,hhhh; } ni; #endif struct { uint64_t h[2]; uint32_t ek[60]; uint32_t dk[60]; } sw; } _k; #ifdef ZT_AES_AESNI static const __m128i s_shuf; void _init_aesni(const uint8_t key[32]) noexcept; ZT_INLINE void _encrypt_aesni(const void *const in,void *const out) const noexcept { __m128i tmp = _mm_loadu_si128((const __m128i *)in); tmp = _mm_xor_si128(tmp,_k.ni.k[0]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]); _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14])); } ZT_INLINE void _decrypt_aesni(const void *in,void *out) const noexcept { __m128i tmp = _mm_loadu_si128((const __m128i *)in); tmp = _mm_xor_si128(tmp,_k.ni.k[14]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[15]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[16]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[17]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[18]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[19]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[20]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[21]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[22]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[23]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[24]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[25]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[26]); tmp = _mm_aesdec_si128(tmp,_k.ni.k[27]); _mm_storeu_si128((__m128i *)out,_mm_aesdeclast_si128(tmp,_k.ni.k[0])); } static ZT_INLINE __m128i _mult_block_aesni(const __m128i shuf,const __m128i h,__m128i y) noexcept { y = _mm_shuffle_epi8(y,shuf); __m128i t1 = _mm_clmulepi64_si128(h,y,0x00); __m128i t2 = _mm_clmulepi64_si128(h,y,0x01); __m128i t3 = _mm_clmulepi64_si128(h,y,0x10); __m128i t4 = _mm_clmulepi64_si128(h,y,0x11); t2 = _mm_xor_si128(t2,t3); t3 = _mm_slli_si128(t2,8); t2 = _mm_srli_si128(t2,8); t1 = _mm_xor_si128(t1,t3); t4 = _mm_xor_si128(t4,t2); __m128i t5 = _mm_srli_epi32(t1,31); t1 = _mm_slli_epi32(t1,1); __m128i t6 = _mm_srli_epi32(t4,31); t4 = _mm_slli_epi32(t4,1); t3 = _mm_srli_si128(t5,12); t6 = _mm_slli_si128(t6,4); t5 = _mm_slli_si128(t5,4); t1 = _mm_or_si128(t1,t5); t4 = _mm_or_si128(t4,t6); t4 = _mm_or_si128(t4,t3); t5 = _mm_slli_epi32(t1,31); t6 = _mm_slli_epi32(t1,30); t3 = _mm_slli_epi32(t1,25); t5 = _mm_xor_si128(t5,t6); t5 = _mm_xor_si128(t5,t3); t6 = _mm_srli_si128(t5,4); t4 = _mm_xor_si128(t4,t6); t5 = _mm_slli_si128(t5,12); t1 = _mm_xor_si128(t1,t5); t4 = _mm_xor_si128(t4,t1); t5 = _mm_srli_epi32(t1,1); t2 = _mm_srli_epi32(t1,2); t3 = _mm_srli_epi32(t1,7); t4 = _mm_xor_si128(t4,t2); t4 = _mm_xor_si128(t4,t3); t4 = _mm_xor_si128(t4,t5); return _mm_shuffle_epi8(t4,shuf); } #endif }; } // namespace ZeroTier #endif