/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2025-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "Constants.hpp" #include "RuntimeEnvironment.hpp" #include "Trace.hpp" #include "Peer.hpp" #include "Topology.hpp" #include "SelfAwareness.hpp" #include "InetAddress.hpp" #include "Protocol.hpp" #include "Endpoint.hpp" #include "Expect.hpp" namespace ZeroTier { Peer::Peer(const RuntimeEnvironment *renv) : RR(renv), m_ephemeralPairTimestamp(0), m_lastReceive(0), m_lastSend(0), m_lastSentHello(0), m_lastWhoisRequestReceived(0), m_lastEchoRequestReceived(0), m_lastPrioritizedPaths(0), m_lastProbeReceived(0), m_alivePathCount(0), m_tryQueue(), m_vProto(0), m_vMajor(0), m_vMinor(0), m_vRevision(0) {} Peer::~Peer() { Utils::burn(m_helloMacKey, sizeof(m_helloMacKey)); } bool Peer::init(const Identity &peerIdentity) { RWMutex::Lock l(m_lock); if (m_id) // already initialized sanity check return false; m_id = peerIdentity; uint8_t k[ZT_SYMMETRIC_KEY_SIZE]; if (!RR->identity.agree(peerIdentity, k)) return false; m_identityKey.set(new SymmetricKey(RR->node->now(), k)); Utils::burn(k, sizeof(k)); m_deriveSecondaryIdentityKeys(); return true; } void Peer::received( void *tPtr, const SharedPtr< Path > &path, const unsigned int hops, const uint64_t packetId, const unsigned int payloadLength, const Protocol::Verb verb, const Protocol::Verb inReVerb) { const int64_t now = RR->node->now(); m_lastReceive = now; m_inMeter.log(now, payloadLength); if (hops == 0) { RWMutex::RMaybeWLock l(m_lock); // If this matches an existing path, skip path learning stuff. For the small number // of paths a peer will have linear scan is the fastest way to do lookup. for (unsigned int i = 0; i < m_alivePathCount; ++i) { if (m_paths[i] == path) return; } // If we made it here, we don't already know this path. if (RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, path->localSocket(), path->address())) { // SECURITY: note that if we've made it here we expected this OK, see Expect.hpp. // There is replay protection in effect for OK responses. if (verb == Protocol::VERB_OK) { // If we're learning a new path convert the lock to an exclusive write lock. l.writing(); // If the path list is full, replace the least recently active path. Otherwise append new path. unsigned int newPathIdx = 0; if (m_alivePathCount == ZT_MAX_PEER_NETWORK_PATHS) { int64_t lastReceiveTimeMax = 0; for (unsigned int i = 0; i < m_alivePathCount; ++i) { if ((m_paths[i]->address().family() == path->address().family()) && (m_paths[i]->localSocket() == path->localSocket()) && // TODO: should be localInterface when multipath is integrated (m_paths[i]->address().ipsEqual2(path->address()))) { // Replace older path if everything is the same except the port number, since NAT/firewall reboots // and other wacky stuff can change port number assignments. m_paths[i] = path; return; } else if (m_paths[i]->lastIn() >= lastReceiveTimeMax) { lastReceiveTimeMax = m_paths[i]->lastIn(); newPathIdx = i; } } } else { newPathIdx = m_alivePathCount++; } InetAddress old; if (m_paths[newPathIdx]) old = m_paths[newPathIdx]->address(); m_paths[newPathIdx] = path; // Re-prioritize paths to include the new one. m_prioritizePaths(now); // Add or update entry in the endpoint cache. If this endpoint // is already present, its timesSeen count is incremented. Otherwise // it replaces the lowest ranked entry. std::sort(m_endpointCache, m_endpointCache + ZT_PEER_ENDPOINT_CACHE_SIZE); Endpoint thisEndpoint(path->address()); for (unsigned int i = 0;; ++i) { if (i == (ZT_PEER_ENDPOINT_CACHE_SIZE - 1)) { m_endpointCache[i].target = thisEndpoint; m_endpointCache[i].lastSeen = now; break; } else if (m_endpointCache[i].target == thisEndpoint) { m_endpointCache[i].lastSeen = now; break; } } RR->t->learnedNewPath(tPtr, 0x582fabdd, packetId, m_id, path->address(), old); } else { path->sent(now, hello(tPtr, path->localSocket(), path->address(), now)); RR->t->tryingNewPath(tPtr, 0xb7747ddd, m_id, path->address(), path->address(), packetId, (uint8_t)verb, m_id); } } } } void Peer::send(void *tPtr, int64_t now, const void *data, unsigned int len) noexcept { SharedPtr< Path > via(this->path(now)); if (via) { via->send(RR, tPtr, data, len, now); } else { const SharedPtr< Peer > root(RR->topology->root(now)); if ((root) && (root.ptr() != this)) { via = root->path(now); if (via) { via->send(RR, tPtr, data, len, now); root->relayed(now, len); } else { return; } } else { return; } } sent(now, len); } unsigned int Peer::hello(void *tPtr, int64_t localSocket, const InetAddress &atAddress, const int64_t now) { Buf outp; const uint64_t packetId = m_identityKey->nextMessage(RR->identity.address(), m_id.address()); int ii = Protocol::newPacket(outp, packetId, m_id.address(), RR->identity.address(), Protocol::VERB_HELLO); outp.wI8(ii, ZT_PROTO_VERSION); outp.wI8(ii, ZEROTIER_VERSION_MAJOR); outp.wI8(ii, ZEROTIER_VERSION_MINOR); outp.wI16(ii, ZEROTIER_VERSION_REVISION); outp.wI64(ii, (uint64_t)now); outp.wO(ii, RR->identity); outp.wO(ii, atAddress); const int ivStart = ii; outp.wR(ii, 12); // LEGACY: the six reserved bytes after the IV exist for legacy compatibility with v1.x nodes. // Once those are dead they'll become just reserved bytes for future use as flags etc. outp.wI32(ii, 0); // reserved bytes void *const legacyMoonCountStart = outp.unsafeData + ii; outp.wI16(ii, 0); const uint64_t legacySalsaIv = packetId & ZT_CONST_TO_BE_UINT64(0xfffffffffffffff8ULL); Salsa20(m_identityKey->secret, &legacySalsaIv).crypt12(legacyMoonCountStart, legacyMoonCountStart, 2); const int cryptSectionStart = ii; FCV< uint8_t, 4096 > md; Dictionary::append(md, ZT_PROTO_HELLO_NODE_META_INSTANCE_ID, RR->instanceId); outp.wI16(ii, (uint16_t)md.size()); outp.wB(ii, md.data(), (unsigned int)md.size()); if (unlikely((ii + ZT_HMACSHA384_LEN) > ZT_BUF_SIZE)) // sanity check: should be impossible return 0; AES::CTR ctr(m_helloCipher); void *const cryptSection = outp.unsafeData + ii; ctr.init(outp.unsafeData + ivStart, 0, cryptSection); ctr.crypt(cryptSection, ii - cryptSectionStart); ctr.finish(); HMACSHA384(m_helloMacKey, outp.unsafeData, ii, outp.unsafeData + ii); ii += ZT_HMACSHA384_LEN; // LEGACY: we also need Poly1305 for v1.x peers. uint8_t polyKey[ZT_POLY1305_KEY_SIZE], perPacketKey[ZT_SALSA20_KEY_SIZE]; Protocol::salsa2012DeriveKey(m_identityKey->secret, perPacketKey, outp, ii); Salsa20(perPacketKey, &packetId).crypt12(Utils::ZERO256, polyKey, sizeof(polyKey)); Poly1305 p1305(polyKey); p1305.update(outp.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START, ii - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START); uint64_t polyMac[2]; p1305.finish(polyMac); Utils::storeMachineEndian< uint64_t >(outp.unsafeData + ZT_PROTO_PACKET_MAC_INDEX, polyMac[0]); return (likely(RR->node->putPacket(tPtr, localSocket, atAddress, outp.unsafeData, ii))) ? ii : 0; } void Peer::pulse(void *const tPtr, const int64_t now, const bool isRoot) { RWMutex::Lock l(m_lock); // Determine if we need a new ephemeral key pair and if a new HELLO needs // to be sent. The latter happens every ZT_PEER_HELLO_INTERVAL or if a new // ephemeral key pair is generated. bool needHello = false; if ((m_vProto >= 11) && (((now - m_ephemeralPairTimestamp) >= (ZT_SYMMETRIC_KEY_TTL / 2)) || ((m_ephemeralKeys[0]) && (m_ephemeralKeys[0]->odometer() >= (ZT_SYMMETRIC_KEY_TTL_MESSAGES / 2))))) { m_ephemeralPair.generate(); needHello = true; } else if ((now - m_lastSentHello) >= ZT_PEER_HELLO_INTERVAL) { needHello = true; } // Prioritize paths and more importantly for here forget dead ones. m_prioritizePaths(now); if (m_tryQueue.empty()) { if (m_alivePathCount == 0) { // If there are no living paths and nothing in the try queue, try addresses // from any locator we have on file or that are fetched via the external API // callback (if one was supplied). if (m_locator) { for (Vector< std::pair > >::const_iterator ep(m_locator->endpoints().begin()); ep != m_locator->endpoints().end(); ++ep) { if (ep->first.type == ZT_ENDPOINT_TYPE_IP_UDP) { if (RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, -1, ep->first.ip())) { int64_t < = m_lastTried[ep->first]; if ((now - lt) > ZT_PATH_MIN_TRY_INTERVAL) { lt = now; RR->t->tryingNewPath(tPtr, 0x84b22322, m_id, ep->first.ip(), InetAddress::NIL, 0, 0, Identity::NIL); sent(now, m_sendProbe(tPtr, -1, ep->first.ip(), nullptr, 0, now)); } } } } } for (unsigned int i = 0; i < ZT_PEER_ENDPOINT_CACHE_SIZE; ++i) { if ((m_endpointCache[i].lastSeen > 0) && (m_endpointCache[i].target.type == ZT_ENDPOINT_TYPE_IP_UDP)) { if (RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, -1, m_endpointCache[i].target.ip())) { int64_t < = m_lastTried[m_endpointCache[i].target]; if ((now - lt) > ZT_PATH_MIN_TRY_INTERVAL) { lt = now; RR->t->tryingNewPath(tPtr, 0x84b22343, m_id, m_endpointCache[i].target.ip(), InetAddress::NIL, 0, 0, Identity::NIL); sent(now, m_sendProbe(tPtr, -1, m_endpointCache[i].target.ip(), nullptr, 0, now)); } } } } InetAddress addr; if (RR->node->externalPathLookup(tPtr, m_id, -1, addr)) { if ((addr) && RR->node->shouldUsePathForZeroTierTraffic(tPtr, m_id, -1, addr)) { int64_t < = m_lastTried[Endpoint(addr)]; if ((now - lt) > ZT_PATH_MIN_TRY_INTERVAL) { lt = now; RR->t->tryingNewPath(tPtr, 0x84a10000, m_id, addr, InetAddress::NIL, 0, 0, Identity::NIL); sent(now, m_sendProbe(tPtr, -1, addr, nullptr, 0, now)); } } } } } else { // Attempt up to ZT_NAT_T_MAX_QUEUED_ATTEMPTS_PER_PULSE queued addresses. // Note that m_lastTried is checked when contact() is called and something // is added to the try queue, not here. unsigned int attempts = 0; for (;;) { p_TryQueueItem &qi = m_tryQueue.front(); if (qi.target.isInetAddr()) { // Skip entry if it overlaps with any currently active IP. for (unsigned int i = 0; i < m_alivePathCount; ++i) { if (m_paths[i]->address().ipsEqual(qi.target.ip())) goto discard_queue_item; } } if (qi.target.type == ZT_ENDPOINT_TYPE_IP_UDP) { ++attempts; if (qi.iteration < 0) { // If iteration is less than zero, try to contact the original address. // It may be set to a larger negative value to try multiple times such // as e.g. -3 to try 3 times. sent(now, m_sendProbe(tPtr, -1, qi.target.ip(), nullptr, 0, now)); ++qi.iteration; goto requeue_item; } else if (qi.target.ip().isV4() && (m_alivePathCount == 0)) { // When iteration reaches zero the queue item is dropped unless it's // IPv4 and we have no direct paths. In that case some heavier NAT-t // strategies are attempted. if (qi.target.ip().port() < 1024) { // If the source port is privileged, we actually scan every possible // privileged port in random order slowly over multiple iterations // of pulse(). This is done in batches of ZT_NAT_T_PORT_SCAN_MAX. uint16_t ports[ZT_NAT_T_PORT_SCAN_MAX]; unsigned int pn = 0; while ((pn < ZT_NAT_T_PORT_SCAN_MAX) && (qi.iteration < 1023)) { const uint16_t p = RR->randomPrivilegedPortOrder[qi.iteration++]; if ((unsigned int)p != qi.target.ip().port()) ports[pn++] = p; } if (pn > 0) sent(now, m_sendProbe(tPtr, -1, qi.target.ip(), ports, pn, now)); if (qi.iteration < 1023) goto requeue_item; } else { // For un-privileged ports we'll try ZT_NAT_T_PORT_SCAN_MAX ports // beyond the one we were sent to catch some sequentially assigning // symmetric NATs. InetAddress tmp(qi.target.ip()); unsigned int p = tmp.port() + 1 + (unsigned int)qi.iteration++; if (p > 65535) p -= 64512; // wrap back to 1024 tmp.setPort(p); sent(now, m_sendProbe(tPtr, -1, tmp, nullptr, 0, now)); if (qi.iteration < ZT_NAT_T_PORT_SCAN_MAX) goto requeue_item; } } } // Discard front item unless the code skips to requeue_item. discard_queue_item: m_tryQueue.pop_front(); if (attempts >= std::min((unsigned int)m_tryQueue.size(), (unsigned int)ZT_NAT_T_PORT_SCAN_MAX)) break; else continue; // If the code skips here the front item is instead moved to the back. requeue_item: if (m_tryQueue.size() > 1) // no point in doing this splice if there's only one item m_tryQueue.splice(m_tryQueue.end(), m_tryQueue, m_tryQueue.begin()); if (attempts >= std::min((unsigned int)m_tryQueue.size(), (unsigned int)ZT_NAT_T_PORT_SCAN_MAX)) break; else continue; } } // Do keepalive on all currently active paths, sending HELLO to the first // if needHello is true and sending small keepalives to others. uint64_t randomJunk = Utils::random(); for (unsigned int i = 0; i < m_alivePathCount; ++i) { if (needHello) { needHello = false; const unsigned int bytes = hello(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), now); m_paths[i]->sent(now, bytes); sent(now, bytes); m_lastSentHello = now; } else if ((now - m_paths[i]->lastOut()) >= ZT_PATH_KEEPALIVE_PERIOD) { m_paths[i]->send(RR, tPtr, reinterpret_cast(&randomJunk) + (i & 7U), 1, now); sent(now, 1); } } // Send a HELLO indirectly if we were not able to send one via any direct path. if (needHello) { const SharedPtr< Peer > root(RR->topology->root(now)); if (root) { const SharedPtr< Path > via(root->path(now)); if (via) { const unsigned int bytes = hello(tPtr, via->localSocket(), via->address(), now); via->sent(now, bytes); root->relayed(now, bytes); sent(now, bytes); m_lastSentHello = now; } } } // Clean m_lastTried for (Map< Endpoint, int64_t >::iterator i(m_lastTried.begin()); i != m_lastTried.end();) { if ((now - i->second) > (ZT_PATH_MIN_TRY_INTERVAL * 4)) m_lastTried.erase(i++); else ++i; } } void Peer::contact(void *tPtr, const int64_t now, const Endpoint &ep, int tries) { static uint8_t foo = 0; RWMutex::Lock l(m_lock); // See if there's already a path to this endpoint and if so ignore it. if (ep.isInetAddr()) { if ((now - m_lastPrioritizedPaths) > ZT_PEER_PRIORITIZE_PATHS_INTERVAL) m_prioritizePaths(now); for (unsigned int i = 0; i < m_alivePathCount; ++i) { if (m_paths[i]->address().ipsEqual(ep.ip())) return; } } // Check underlying path attempt rate limit. int64_t < = m_lastTried[ep]; if ((now - lt) < ZT_PATH_MIN_TRY_INTERVAL) return; lt = now; // For IPv4 addresses we send a tiny packet with a low TTL, which helps to // traverse some NAT types. It has no effect otherwise. if (ep.isInetAddr() && ep.ip().isV4()) { ++foo; RR->node->putPacket(tPtr, -1, ep.ip(), &foo, 1, 2); } // Make sure address is not already in the try queue. If so just update it. for (List< p_TryQueueItem >::iterator i(m_tryQueue.begin()); i != m_tryQueue.end(); ++i) { if (i->target.isSameAddress(ep)) { i->target = ep; i->iteration = -tries; return; } } m_tryQueue.push_back(p_TryQueueItem(ep, -tries)); } void Peer::resetWithinScope(void *tPtr, InetAddress::IpScope scope, int inetAddressFamily, int64_t now) { RWMutex::Lock l(m_lock); unsigned int pc = 0; for (unsigned int i = 0; i < m_alivePathCount; ++i) { if ((m_paths[i]) && ((m_paths[i]->address().family() == inetAddressFamily) && (m_paths[i]->address().ipScope() == scope))) { const unsigned int bytes = m_sendProbe(tPtr, m_paths[i]->localSocket(), m_paths[i]->address(), nullptr, 0, now); m_paths[i]->sent(now, bytes); sent(now, bytes); } else if (pc != i) { m_paths[pc++] = m_paths[i]; } } m_alivePathCount = pc; while (pc < ZT_MAX_PEER_NETWORK_PATHS) m_paths[pc++].zero(); } bool Peer::directlyConnected(int64_t now) { if ((now - m_lastPrioritizedPaths) > ZT_PEER_PRIORITIZE_PATHS_INTERVAL) { RWMutex::Lock l(m_lock); m_prioritizePaths(now); return m_alivePathCount > 0; } else { RWMutex::RLock l(m_lock); return m_alivePathCount > 0; } } void Peer::getAllPaths(Vector< SharedPtr< Path > > &paths) { RWMutex::RLock l(m_lock); paths.clear(); paths.reserve(m_alivePathCount); paths.assign(m_paths, m_paths + m_alivePathCount); } void Peer::save(void *tPtr) const { uint8_t buf[8 + ZT_PEER_MARSHAL_SIZE_MAX]; // Prefix each saved peer with the current timestamp. Utils::storeBigEndian< uint64_t >(buf, (uint64_t)RR->node->now()); const int len = marshal(buf + 8); if (len > 0) { uint64_t id[2]; id[0] = m_id.address().toInt(); id[1] = 0; RR->node->stateObjectPut(tPtr, ZT_STATE_OBJECT_PEER, id, buf, (unsigned int)len + 8); } } int Peer::marshal(uint8_t data[ZT_PEER_MARSHAL_SIZE_MAX]) const noexcept { RWMutex::RLock l(m_lock); if (!m_identityKey) return -1; data[0] = 16; // serialized peer version // Include our identity's address to detect if this changes and require // recomputation of m_identityKey. RR->identity.address().copyTo(data + 1); // SECURITY: encryption in place is only to protect secrets if they are // cached to local storage. It's not used over the wire. Dumb ECB is fine // because secret keys are random and have no structure to reveal. RR->localCacheSymmetric.encrypt(m_identityKey->secret, data + 1 + ZT_ADDRESS_LENGTH); RR->localCacheSymmetric.encrypt(m_identityKey->secret + 16, data + 1 + ZT_ADDRESS_LENGTH + 16); RR->localCacheSymmetric.encrypt(m_identityKey->secret + 32, data + 1 + ZT_ADDRESS_LENGTH + 32); int p = 1 + ZT_ADDRESS_LENGTH + 48; int s = m_id.marshal(data + p, false); if (s < 0) return -1; p += s; if (m_locator) { data[p++] = 1; s = m_locator->marshal(data + p); if (s <= 0) return s; p += s; } else { data[p++] = 0; } unsigned int cachedEndpointCount = 0; for (unsigned int i = 0; i < ZT_PEER_ENDPOINT_CACHE_SIZE; ++i) { if (m_endpointCache[i].lastSeen > 0) ++cachedEndpointCount; } Utils::storeBigEndian(data + p, (uint16_t)cachedEndpointCount); p += 2; for (unsigned int i = 0; i < ZT_PEER_ENDPOINT_CACHE_SIZE; ++i) { Utils::storeBigEndian(data + p, (uint64_t)m_endpointCache[i].lastSeen); s = m_endpointCache[i].target.marshal(data + p); if (s <= 0) return -1; p += s; } Utils::storeBigEndian(data + p, (uint16_t)m_vProto); p += 2; Utils::storeBigEndian(data + p, (uint16_t)m_vMajor); p += 2; Utils::storeBigEndian(data + p, (uint16_t)m_vMinor); p += 2; Utils::storeBigEndian(data + p, (uint16_t)m_vRevision); p += 2; data[p++] = 0; data[p++] = 0; return p; } int Peer::unmarshal(const uint8_t *restrict data, const int len) noexcept { RWMutex::Lock l(m_lock); if ((len <= (1 + ZT_ADDRESS_LENGTH + 48)) || (data[0] != 16)) return -1; m_identityKey.zero(); m_ephemeralKeys[0].zero(); m_ephemeralKeys[1].zero(); if (Address(data + 1) == RR->identity.address()) { uint8_t k[ZT_SYMMETRIC_KEY_SIZE]; static_assert(ZT_SYMMETRIC_KEY_SIZE == 48, "marshal() and unmarshal() must be revisited if ZT_SYMMETRIC_KEY_SIZE is changed"); RR->localCacheSymmetric.decrypt(data + 1 + ZT_ADDRESS_LENGTH, k); RR->localCacheSymmetric.decrypt(data + 1 + ZT_ADDRESS_LENGTH + 16, k + 16); RR->localCacheSymmetric.decrypt(data + 1 + ZT_ADDRESS_LENGTH + 32, k + 32); m_identityKey.set(new SymmetricKey(RR->node->now(), k)); Utils::burn(k, sizeof(k)); } int p = 1 + ZT_ADDRESS_LENGTH + 48; int s = m_id.unmarshal(data + p, len - p); if (s < 0) return s; p += s; if (!m_identityKey) { uint8_t k[ZT_SYMMETRIC_KEY_SIZE]; if (!RR->identity.agree(m_id, k)) return -1; m_identityKey.set(new SymmetricKey(RR->node->now(), k)); Utils::burn(k, sizeof(k)); } if (p >= len) return -1; if (data[p] == 0) { ++p; m_locator.zero(); } else if (data[p] == 1) { ++p; Locator *const loc = new Locator(); s = loc->unmarshal(data + p, len - p); m_locator.set(loc); if (s < 0) return s; p += s; } else { return -1; } const unsigned int cachedEndpointCount = Utils::loadBigEndian< uint16_t >(data + p); p += 2; for (unsigned int i = 0; i < cachedEndpointCount; ++i) { if (i < ZT_PEER_ENDPOINT_CACHE_SIZE) { if ((p + 8) >= len) return -1; m_endpointCache[i].lastSeen = (int64_t)Utils::loadBigEndian< uint64_t >(data + p); p += 8; s = m_endpointCache[i].target.unmarshal(data + p, len - p); if (s <= 0) return -1; p += s; } } if ((p + 10) > len) return -1; m_vProto = Utils::loadBigEndian< uint16_t >(data + p); p += 2; m_vMajor = Utils::loadBigEndian< uint16_t >(data + p); p += 2; m_vMinor = Utils::loadBigEndian< uint16_t >(data + p); p += 2; m_vRevision = Utils::loadBigEndian< uint16_t >(data + p); p += 2; p += 2 + (int)Utils::loadBigEndian< uint16_t >(data + p); m_deriveSecondaryIdentityKeys(); return (p > len) ? -1 : p; } struct _PathPriorityComparisonOperator { ZT_INLINE bool operator()(const SharedPtr< Path > &a, const SharedPtr< Path > &b) const noexcept { // Sort in descending order of most recent receive time. return (a->lastIn() > b->lastIn()); } }; void Peer::m_prioritizePaths(int64_t now) { // assumes _lock is locked for writing m_lastPrioritizedPaths = now; if (m_alivePathCount > 0) { // Sort paths in descending order of priority. std::sort(m_paths, m_paths + m_alivePathCount, _PathPriorityComparisonOperator()); // Let go of paths that have expired. for (unsigned int i = 0; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) { if ((!m_paths[i]) || (!m_paths[i]->alive(now))) { m_alivePathCount = i; for (; i < ZT_MAX_PEER_NETWORK_PATHS; ++i) m_paths[i].zero(); break; } } } } unsigned int Peer::m_sendProbe(void *tPtr, int64_t localSocket, const InetAddress &atAddress, const uint16_t *ports, const unsigned int numPorts, int64_t now) { // Assumes m_lock is locked const SharedPtr< SymmetricKey > k(m_key()); const uint64_t packetId = k->nextMessage(RR->identity.address(), m_id.address()); uint8_t p[ZT_PROTO_MIN_PACKET_LENGTH]; Utils::storeMachineEndian< uint64_t >(p + ZT_PROTO_PACKET_ID_INDEX, packetId); m_id.address().copyTo(p + ZT_PROTO_PACKET_DESTINATION_INDEX); RR->identity.address().copyTo(p + ZT_PROTO_PACKET_SOURCE_INDEX); p[ZT_PROTO_PACKET_FLAGS_INDEX] = 0; p[ZT_PROTO_PACKET_VERB_INDEX] = Protocol::VERB_ECHO; Protocol::armor(p, ZT_PROTO_MIN_PACKET_LENGTH, k, cipher()); RR->expect->sending(packetId, now); if (numPorts > 0) { InetAddress tmp(atAddress); for (unsigned int i = 0; i < numPorts; ++i) { tmp.setPort(ports[i]); RR->node->putPacket(tPtr, -1, tmp, p, ZT_PROTO_MIN_PACKET_LENGTH); } return ZT_PROTO_MIN_PACKET_LENGTH * numPorts; } else { RR->node->putPacket(tPtr, -1, atAddress, p, ZT_PROTO_MIN_PACKET_LENGTH); return ZT_PROTO_MIN_PACKET_LENGTH; } } void Peer::m_deriveSecondaryIdentityKeys() noexcept { uint8_t hk[ZT_SYMMETRIC_KEY_SIZE]; KBKDFHMACSHA384(m_identityKey->secret, ZT_KBKDF_LABEL_HELLO_DICTIONARY_ENCRYPT, 0, 0, hk); m_helloCipher.init(hk); Utils::burn(hk, sizeof(hk)); KBKDFHMACSHA384(m_identityKey->secret, ZT_KBKDF_LABEL_PACKET_HMAC, 0, 0, m_helloMacKey); } } // namespace ZeroTier