/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2024-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_UTILS_HPP #define ZT_UTILS_HPP #include #include #include #include #include #include #include #include #include "Constants.hpp" #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64)) #include #include #include #endif namespace ZeroTier { namespace Utils { #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64)) struct CPUIDRegisters { uint32_t eax,ebx,ecx,edx; bool rdrand; bool aes; CPUIDRegisters(); }; extern CPUIDRegisters CPUID; #endif /** * Hexadecimal characters 0-f */ extern const char HEXCHARS[16]; /** * Perform a time-invariant binary comparison * * @param a First binary string * @param b Second binary string * @param len Length of strings * @return True if strings are equal */ bool secureEq(const void *a,const void *b,unsigned int len); /** * Be absolutely sure to zero memory * * This uses some hacks to be totally sure the compiler does not optimize it out. * * @param ptr Memory to zero * @param len Length of memory in bytes */ void burn(void *ptr,unsigned int len); /** * @param n Number to convert * @param s Buffer, at least 24 bytes in size * @return String containing 'n' in base 10 form */ char *decimal(unsigned long n,char s[24]); /** * Convert an unsigned integer into hex * * @param i Any unsigned integer * @param s Buffer to receive hex, must be at least (2*sizeof(i))+1 in size or overflow will occur. * @return Pointer to s containing hex string with trailing zero byte */ template static ZT_ALWAYS_INLINE char *hex(I x,char *s) { char *const r = s; for(unsigned int i=0,b=(sizeof(x)*8);i> (b -= 4)) & 0xf]; *(s++) = HEXCHARS[(x >> (b -= 4)) & 0xf]; } *s = (char)0; return r; } /** * Convert the least significant 40 bits of a uint64_t to hex * * @param i Unsigned 64-bit int * @param s Buffer of size [11] to receive 10 hex characters * @return Pointer to buffer */ char *hex10(uint64_t i,char s[11]); /** * Convert a byte array into hex * * @param d Bytes * @param l Length of bytes * @param s String buffer, must be at least (l*2)+1 in size or overflow will occur * @return Pointer to filled string buffer */ char *hex(const void *d,unsigned int l,char *s); /** * Decode a hex string * * @param h Hex C-string (non hex chars are ignored) * @param hlen Maximum length of string (will stop at terminating zero) * @param buf Output buffer * @param buflen Length of output buffer * @return Number of written bytes */ unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen); /** * Generate secure random bytes * * This will try to use whatever OS sources of entropy are available. It's * guarded by an internal mutex so it's thread-safe. * * @param buf Buffer to fill * @param bytes Number of random bytes to generate */ void getSecureRandom(void *buf,unsigned int bytes); /** * Encode string to base32 * * @param data Binary data to encode * @param length Length of data in bytes * @param result Result buffer * @param bufSize Size of result buffer * @return Number of bytes written */ int b32e(const uint8_t *data,int length,char *result,int bufSize); /** * Decode base32 string * * @param encoded C-string in base32 format (non-base32 characters are ignored) * @param result Result buffer * @param bufSize Size of result buffer * @return Number of bytes written or -1 on error */ int b32d(const char *encoded, uint8_t *result, int bufSize); /** * Get a non-cryptographic random integer */ uint64_t random(); /** * Perform a safe C string copy, ALWAYS null-terminating the result * * This will never ever EVER result in dest[] not being null-terminated * regardless of any input parameter (other than len==0 which is invalid). * * @param dest Destination buffer (must not be NULL) * @param len Length of dest[] (if zero, false is returned and nothing happens) * @param src Source string (if NULL, dest will receive a zero-length string and true is returned) * @return True on success, false on overflow (buffer will still be 0-terminated) */ bool scopy(char *dest,unsigned int len,const char *src); /** * Wrapper around reentrant strtok functions, which differ in name by platform * * @param str String to tokenize or NULL for subsequent calls * @param delim Delimiter * @param saveptr Pointer to pointer where function can save state * @return Next token or NULL if none */ static ZT_ALWAYS_INLINE char *stok(char *str,const char *delim,char **saveptr) { #ifdef __WINDOWS__ return strtok_s(str,delim,saveptr); #else return strtok_r(str,delim,saveptr); #endif } #if 0 static ZT_ALWAYS_INLINE int strToInt(const char *s) { return (int)strtol(s,(char **)0,10); } static ZT_ALWAYS_INLINE unsigned long strToULong(const char *s) { return strtoul(s,(char **)0,10); } static ZT_ALWAYS_INLINE long strToLong(const char *s) { return strtol(s,(char **)0,10); } static ZT_ALWAYS_INLINE long long strTo64(const char *s) { #ifdef __WINDOWS__ return (long long)_strtoi64(s,(char **)0,10); #else return strtoll(s,(char **)0,10); #endif } static ZT_ALWAYS_INLINE unsigned int hexStrToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,16); } static ZT_ALWAYS_INLINE int hexStrToInt(const char *s) { return (int)strtol(s,(char **)0,16); } static ZT_ALWAYS_INLINE unsigned long hexStrToULong(const char *s) { return strtoul(s,(char **)0,16); } static ZT_ALWAYS_INLINE long hexStrToLong(const char *s) { return strtol(s,(char **)0,16); } #endif static ZT_ALWAYS_INLINE unsigned int strToUInt(const char *s) { return (unsigned int)strtoul(s,nullptr,10); } static ZT_ALWAYS_INLINE unsigned long long strToU64(const char *s) { #ifdef __WINDOWS__ return (unsigned long long)_strtoui64(s,(char **)0,10); #else return strtoull(s,nullptr,10); #endif } static ZT_ALWAYS_INLINE long long hexStrTo64(const char *s) { #ifdef __WINDOWS__ return (long long)_strtoi64(s,(char **)0,16); #else return strtoll(s,nullptr,16); #endif } static ZT_ALWAYS_INLINE unsigned long long hexStrToU64(const char *s) { #ifdef __WINDOWS__ return (unsigned long long)_strtoui64(s,nullptr,16); #else return strtoull(s,nullptr,16); #endif } /** * Calculate a non-cryptographic hash of a byte string * * @param key Key to hash * @param len Length in bytes * @return Non-cryptographic hash suitable for use in a hash table */ static ZT_ALWAYS_INLINE unsigned long hashString(const void *restrict key,const unsigned int len) { const uint8_t *p = reinterpret_cast(key); unsigned long h = 0; for (unsigned int i=0;i> 6U); } h += (h << 3U); h ^= (h >> 11U); h += (h << 15U); return h; } #ifdef __GNUC__ static ZT_ALWAYS_INLINE unsigned int countBits(const uint8_t v) { return (unsigned int)__builtin_popcount((unsigned int)v); } static ZT_ALWAYS_INLINE unsigned int countBits(const uint16_t v) { return (unsigned int)__builtin_popcount((unsigned int)v); } static ZT_ALWAYS_INLINE unsigned int countBits(const uint32_t v) { return (unsigned int)__builtin_popcountl((unsigned long)v); } static ZT_ALWAYS_INLINE unsigned int countBits(const uint64_t v) { return (unsigned int)__builtin_popcountll((unsigned long long)v); } #else template static ZT_ALWAYS_INLINE unsigned int countBits(T v) { v = v - ((v >> 1) & (T)~(T)0/3); v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); v = (v + (v >> 4)) & (T)~(T)0/255*15; return (unsigned int)((v * ((~((T)0))/((T)255))) >> ((sizeof(T) - 1) * 8)); } #endif #if __BYTE_ORDER == __LITTLE_ENDIAN static ZT_ALWAYS_INLINE uint8_t hton(uint8_t n) { return n; } static ZT_ALWAYS_INLINE int8_t hton(int8_t n) { return n; } static ZT_ALWAYS_INLINE uint16_t hton(uint16_t n) { #if defined(__GNUC__) #if defined(__FreeBSD__) return htons(n); #elif (!defined(__OpenBSD__)) return __builtin_bswap16(n); #endif #else return htons(n); #endif } static ZT_ALWAYS_INLINE int16_t hton(int16_t n) { return (int16_t)Utils::hton((uint16_t)n); } static ZT_ALWAYS_INLINE uint32_t hton(uint32_t n) { #if defined(__GNUC__) #if defined(__FreeBSD__) return htonl(n); #elif (!defined(__OpenBSD__)) return __builtin_bswap32(n); #endif #else return htonl(n); #endif } static ZT_ALWAYS_INLINE int32_t hton(int32_t n) { return (int32_t)Utils::hton((uint32_t)n); } static ZT_ALWAYS_INLINE uint64_t hton(uint64_t n) { #if defined(__GNUC__) #if defined(__FreeBSD__) return bswap64(n); #elif (!defined(__OpenBSD__)) return __builtin_bswap64(n); #endif #else return ( ((n & 0x00000000000000FFULL) << 56) | ((n & 0x000000000000FF00ULL) << 40) | ((n & 0x0000000000FF0000ULL) << 24) | ((n & 0x00000000FF000000ULL) << 8) | ((n & 0x000000FF00000000ULL) >> 8) | ((n & 0x0000FF0000000000ULL) >> 24) | ((n & 0x00FF000000000000ULL) >> 40) | ((n & 0xFF00000000000000ULL) >> 56) ); #endif } static ZT_ALWAYS_INLINE int64_t hton(int64_t n) { return (int64_t)hton((uint64_t)n); } #else template static ZT_ALWAYS_INLINE T hton(T n) { return n; } #endif #if __BYTE_ORDER == __LITTLE_ENDIAN static ZT_ALWAYS_INLINE uint8_t ntoh(uint8_t n) { return n; } static ZT_ALWAYS_INLINE int8_t ntoh(int8_t n) { return n; } static ZT_ALWAYS_INLINE uint16_t ntoh(uint16_t n) { #if defined(__GNUC__) #if defined(__FreeBSD__) return htons(n); #elif (!defined(__OpenBSD__)) return __builtin_bswap16(n); #endif #else return htons(n); #endif } static ZT_ALWAYS_INLINE int16_t ntoh(int16_t n) { return (int16_t)Utils::ntoh((uint16_t)n); } static ZT_ALWAYS_INLINE uint32_t ntoh(uint32_t n) { #if defined(__GNUC__) #if defined(__FreeBSD__) return ntohl(n); #elif (!defined(__OpenBSD__)) return __builtin_bswap32(n); #endif #else return ntohl(n); #endif } static ZT_ALWAYS_INLINE int32_t ntoh(int32_t n) { return (int32_t)Utils::ntoh((uint32_t)n); } static ZT_ALWAYS_INLINE uint64_t ntoh(uint64_t n) { #if defined(__GNUC__) #if defined(__FreeBSD__) return bswap64(n); #elif (!defined(__OpenBSD__)) return __builtin_bswap64(n); #endif #else return ( ((n & 0x00000000000000FFULL) << 56) | ((n & 0x000000000000FF00ULL) << 40) | ((n & 0x0000000000FF0000ULL) << 24) | ((n & 0x00000000FF000000ULL) << 8) | ((n & 0x000000FF00000000ULL) >> 8) | ((n & 0x0000FF0000000000ULL) >> 24) | ((n & 0x00FF000000000000ULL) >> 40) | ((n & 0xFF00000000000000ULL) >> 56) ); #endif } static ZT_ALWAYS_INLINE int64_t ntoh(int64_t n) { return (int64_t)ntoh((uint64_t)n); } #else template static ZT_ALWAYS_INLINE T ntoh(T n) { return n; } #endif template static ZT_ALWAYS_INLINE I loadBigEndian(const void *const p) { #ifdef ZT_NO_UNALIGNED_ACCESS I x = (I)0; for(unsigned int k=0;k(&x)[k] = reinterpret_cast(p)[(sizeof(I)-1)-k]; #else reinterpret_cast(&x)[k] = reinterpret_cast(p)[k]; #endif } return x; #else return ntoh(*reinterpret_cast(p)); #endif } template static ZT_ALWAYS_INLINE void storeBigEndian(void *const p,const I i) { #ifdef ZT_NO_UNALIGNED_ACCESS for(unsigned int k=0;k(p)[k] = reinterpret_cast(&i)[(sizeof(I)-1)-k]; #else reinterpret_cast(p)[k] = reinterpret_cast(&i)[k]; #endif } #else *reinterpret_cast(p) = hton(i); #endif } #if 0 template static ZT_ALWAYS_INLINE bool isPrimitiveType() { return false; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } template<> ZT_ALWAYS_INLINE bool isPrimitiveType() { return true; } #endif } // namespace Utils } // namespace ZeroTier #endif