/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2024-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "Constants.hpp" #include "RuntimeEnvironment.hpp" #include "Trace.hpp" #include "Peer.hpp" #include "Topology.hpp" #include "Node.hpp" #include "SelfAwareness.hpp" #include "InetAddress.hpp" #include "Protocol.hpp" #include "Endpoint.hpp" #include namespace ZeroTier { struct _PathPriorityComparisonOperator { ZT_ALWAYS_INLINE bool operator()(const SharedPtr &a,const SharedPtr &b) const { return ( ((a)&&(a->lastIn() > 0)) && ((!b)||(b->lastIn() <= 0)||(a->lastIn() < b->lastIn())) ); } }; Peer::Peer(const RuntimeEnvironment *renv) : RR(renv), _lastReceive(0), _lastWhoisRequestReceived(0), _lastEchoRequestReceived(0), _lastPushDirectPathsReceived(0), _lastProbeReceived(0), _lastAttemptedP2PInit(0), _lastTriedStaticPath(0), _lastPrioritizedPaths(0), _lastAttemptedAggressiveNATTraversal(0), _latency(0xffff), _alivePathCount(0), _vProto(0), _vMajor(0), _vMinor(0), _vRevision(0) { } bool Peer::init(const Identity &peerIdentity) { RWMutex::Lock l(_lock); if (_id == peerIdentity) return true; _id = peerIdentity; if (!RR->identity.agree(peerIdentity,_key)) return false; _incomingProbe = Protocol::createProbe(_id,RR->identity,_key); return true; } void Peer::received( void *tPtr, const SharedPtr &path, const unsigned int hops, const uint64_t packetId, const unsigned int payloadLength, const Protocol::Verb verb, const Protocol::Verb inReVerb) { const int64_t now = RR->node->now(); _lastReceive = now; if (hops == 0) { _lock.rlock(); for(int i=0;i<(int)_alivePathCount;++i) { if (_paths[i] == path) { _lock.runlock(); goto path_check_done; } } _lock.runlock(); if (verb == Protocol::VERB_OK) { RWMutex::Lock l(_lock); int64_t lastReceiveTimeMax = 0; int lastReceiveTimeMaxAt = 0; for(int i=0;iaddress().family() == path->address().family()) && (_paths[i]->localSocket() == path->localSocket()) && // TODO: should be localInterface when multipath is integrated (_paths[i]->address().ipsEqual2(path->address()))) { // Replace older path if everything is the same except the port number. _paths[i] = path; goto path_check_done; } else { if (_paths[i]) { if (_paths[i]->lastIn() > lastReceiveTimeMax) { lastReceiveTimeMax = _paths[i]->lastIn(); lastReceiveTimeMaxAt = i; } } else { lastReceiveTimeMax = 0x7fffffffffffffffLL; lastReceiveTimeMaxAt = i; } } } _lastPrioritizedPaths = now; InetAddress old; if (_paths[lastReceiveTimeMaxAt]) old = _paths[lastReceiveTimeMaxAt]->address(); _paths[lastReceiveTimeMaxAt] = path; _bootstrap = Endpoint(path->address()); _prioritizePaths(now); RR->t->learnedNewPath(tPtr,0x582fabdd,packetId,_id,path->address(),old); } else { if (RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id,path->localSocket(),path->address())) { RR->t->tryingNewPath(tPtr,0xb7747ddd,_id,path->address(),path->address(),packetId,(uint8_t)verb,_id.address(),_id.hash().data(),ZT_TRACE_TRYING_NEW_PATH_REASON_PACKET_RECEIVED_FROM_UNKNOWN_PATH); path->sent(now,sendHELLO(tPtr,path->localSocket(),path->address(),now)); } } } path_check_done: if ((now - _lastAttemptedP2PInit) >= ((hops == 0) ? ZT_DIRECT_PATH_PUSH_INTERVAL_HAVEPATH : ZT_DIRECT_PATH_PUSH_INTERVAL)) { _lastAttemptedP2PInit = now; InetAddress addr; if ((_bootstrap.type() == Endpoint::TYPE_INETADDR_V4)||(_bootstrap.type() == Endpoint::TYPE_INETADDR_V6)) { RR->t->tryingNewPath(tPtr,0x0a009444,_id,_bootstrap.inetAddr(),InetAddress::NIL,0,0,0,nullptr,ZT_TRACE_TRYING_NEW_PATH_REASON_BOOTSTRAP_ADDRESS); sendHELLO(tPtr,-1,_bootstrap.inetAddr(),now); } if (RR->node->externalPathLookup(tPtr,_id,-1,addr)) { if (RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id,-1,addr)) { RR->t->tryingNewPath(tPtr,0x84a10000,_id,_bootstrap.inetAddr(),InetAddress::NIL,0,0,0,nullptr,ZT_TRACE_TRYING_NEW_PATH_REASON_EXPLICITLY_SUGGESTED_ADDRESS); sendHELLO(tPtr,-1,addr,now); } } std::vector localInterfaceAddresses(RR->node->localInterfaceAddresses()); std::multimap detectedAddresses(RR->sa->externalAddresses(now)); std::set addrs; for(std::vector::const_iterator i(localInterfaceAddresses.begin());i!=localInterfaceAddresses.end();++i) addrs.insert(asInetAddress(i->address)); for(std::multimap::const_reverse_iterator i(detectedAddresses.rbegin());i!=detectedAddresses.rend();++i) { if (i->first <= 1) break; if (addrs.count(i->second) == 0) { addrs.insert(i->second); break; } } if (!addrs.empty()) { #if 0 ScopedPtr outp(new Packet(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS)); outp->addSize(2); // leave room for count unsigned int count = 0; for(std::set::iterator a(addrs.begin());a!=addrs.end();++a) { uint8_t addressType = 4; uint8_t addressLength = 6; unsigned int ipLength = 4; const void *rawIpData = nullptr; uint16_t port = 0; switch(a->ss_family) { case AF_INET: rawIpData = &(reinterpret_cast(&(*a))->sin_addr.s_addr); port = Utils::ntoh((uint16_t)reinterpret_cast(&(*a))->sin_port); break; case AF_INET6: rawIpData = reinterpret_cast(&(*a))->sin6_addr.s6_addr; port = Utils::ntoh((uint16_t)reinterpret_cast(&(*a))->sin6_port); addressType = 6; addressLength = 18; ipLength = 16; break; default: continue; } outp->append((uint8_t)0); // no flags outp->append((uint16_t)0); // no extensions outp->append(addressType); outp->append(addressLength); outp->append(rawIpData,ipLength); outp->append(port); ++count; if (outp->size() >= (ZT_PROTO_MAX_PACKET_LENGTH - 32)) break; } if (count > 0) { outp->setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count); outp->compress(); outp->armor(_key,true); path->send(RR,tPtr,outp->data(),outp->size(),now); } #endif } } } unsigned int Peer::sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now) { #if 0 Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); outp.append(now); RR->identity.serialize(outp,false); atAddress.serialize(outp); RR->node->expectReplyTo(outp.packetId()); if (atAddress) { outp.armor(_key,false); // false == don't encrypt full payload, but add MAC RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size()); } else { RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC } #endif } unsigned int Peer::sendNOP(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now) { Buf outp; Protocol::Header &ph = outp.as(); ph.packetId = Protocol::getPacketId(); _id.address().copyTo(ph.destination); RR->identity.address().copyTo(ph.source); ph.flags = 0; ph.verb = Protocol::VERB_NOP; Protocol::armor(outp,sizeof(Protocol::Header),_key,this->cipher()); RR->node->putPacket(tPtr,localSocket,atAddress,outp.unsafeData,sizeof(Protocol::Header)); return sizeof(Protocol::Header); } void Peer::ping(void *tPtr,int64_t now,const bool pingAllAddressTypes) { RWMutex::RLock l(_lock); _lastPrioritizedPaths = now; _prioritizePaths(now); if (_alivePathCount > 0) { for (unsigned int i = 0; i < _alivePathCount; ++i) { _paths[i]->sent(now,sendHELLO(tPtr,_paths[i]->localSocket(),_paths[i]->address(),now)); if (!pingAllAddressTypes) return; } return; } if ((_bootstrap.type() == Endpoint::TYPE_INETADDR_V4)||(_bootstrap.type() == Endpoint::TYPE_INETADDR_V6)) sendHELLO(tPtr,-1,_bootstrap.inetAddr(),now); SharedPtr r(RR->topology->root()); if ((r)&&(r.ptr() != this)) { SharedPtr rp(r->path(now)); if (rp) { rp->sent(now,sendHELLO(tPtr,rp->localSocket(),rp->address(),now)); return; } } } void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now) { RWMutex::RLock l(_lock); for(unsigned int i=0; i < _alivePathCount; ++i) { if ((_paths[i])&&((_paths[i]->address().family() == inetAddressFamily)&&(_paths[i]->address().ipScope() == scope))) { _paths[i]->sent(now,sendHELLO(tPtr,_paths[i]->localSocket(),_paths[i]->address(),now)); } } } void Peer::updateLatency(const unsigned int l) noexcept { if ((l > 0)&&(l < 0xffff)) { unsigned int lat = _latency; if (lat < 0xffff) { _latency = (l + l + lat) / 3; } else { _latency = l; } } } SharedPtr Peer::path(const int64_t now) { if ((now - _lastPrioritizedPaths) > ZT_PEER_PRIORITIZE_PATHS_INTERVAL) { _lastPrioritizedPaths = now; RWMutex::Lock l(_lock); _prioritizePaths(now); if (_alivePathCount == 0) return SharedPtr(); return _paths[0]; } else { RWMutex::RLock l(_lock); if (_alivePathCount == 0) return SharedPtr(); return _paths[0]; } } bool Peer::direct(const int64_t now) { if ((now - _lastPrioritizedPaths) > ZT_PEER_PRIORITIZE_PATHS_INTERVAL) { _lastPrioritizedPaths = now; RWMutex::Lock l(_lock); _prioritizePaths(now); return (_alivePathCount > 0); } else { RWMutex::RLock l(_lock); return (_alivePathCount > 0); } } void Peer::getAllPaths(std::vector< SharedPtr > &paths) { RWMutex::RLock l(_lock); paths.clear(); paths.assign(_paths,_paths + _alivePathCount); } void Peer::save(void *tPtr) const { uint8_t *const buf = (uint8_t *)malloc(8 + ZT_PEER_MARSHAL_SIZE_MAX); if (!buf) return; Utils::storeBigEndian(buf,(uint64_t)RR->node->now()); _lock.rlock(); const int len = marshal(buf + 8); _lock.runlock(); if (len > 0) { uint64_t id[2]; id[0] = _id.address().toInt(); id[1] = 0; RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_PEER,id,buf,(unsigned int)len + 8); } free(buf); } void Peer::contact(void *tPtr,const Endpoint &ep,const int64_t now,const bool bfg1024) { static uint8_t junk = 0; InetAddress phyAddr(ep.inetAddr()); if (phyAddr) { // only this endpoint type is currently implemented if (!RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id,-1,phyAddr)) return; // Sending a packet with a low TTL before the real message assists traversal with some // stateful firewalls and is harmless otherwise AFAIK. ++junk; RR->node->putPacket(tPtr,-1,phyAddr,&junk,1,2); // In a few hundred milliseconds we'll send the real packet. { RWMutex::Lock l(_lock); _contactQueue.push_back(_ContactQueueItem(phyAddr,ZT_MAX_PEER_NETWORK_PATHS)); } // If the peer indicates that they may be behind a symmetric NAT and there are no // living direct paths, try a few more aggressive things. if ((phyAddr.family() == AF_INET) && (!direct(now))) { unsigned int port = phyAddr.port(); if ((bfg1024)&&(port < 1024)&&(RR->node->natMustDie())) { // If the other side is using a low-numbered port and has elected to // have this done, we can try scanning every port below 1024. The search // space here is small enough that we have a very good chance of punching. // Generate a random order list of all <1024 ports except 0 and the original sending port. uint16_t ports[1022]; uint16_t ctr = 1; for (int i=0;i<1022;++i) { if (ctr == port) ++ctr; ports[i] = ctr++; } for (int i=0;i<512;++i) { uint64_t rn = Utils::random(); unsigned int a = ((unsigned int)rn) % 1022; unsigned int b = ((unsigned int)(rn >> 24U)) % 1022; if (a != b) { uint16_t tmp = ports[a]; ports[a] = ports[b]; ports[b] = tmp; } } // Chunk ports into chunks of 128 to try in few hundred millisecond intervals, // abandoning attempts once there is at least one direct path. { RWMutex::Lock l(_lock); for (int i=0;i<896;i+=128) _contactQueue.push_back(_ContactQueueItem(phyAddr,ports + i,ports + i + 128,1)); _contactQueue.push_back(_ContactQueueItem(phyAddr,ports + 896,ports + 1022,1)); } } else { // Otherwise use the simpler sequential port attempt method in intervals. RWMutex::Lock l(_lock); for (int k=0;k<3;++k) { if (++port > 65535) break; InetAddress tryNext(phyAddr); tryNext.setPort(port); _contactQueue.push_back(_ContactQueueItem(tryNext,1)); } } } // Start alarms going off to actually send these... RR->node->setPeerAlarm(_id.address(),now + ZT_NAT_TRAVERSAL_INTERVAL); } } void Peer::alarm(void *tPtr,const int64_t now) { // Pop one contact queue item and also clean the queue of any that are no // longer applicable because the alive path count has exceeded their threshold. bool stillHaveContactQueueItems; _ContactQueueItem qi; { RWMutex::Lock l(_lock); if (_contactQueue.empty()) return; while (_alivePathCount >= _contactQueue.front().alivePathThreshold) { _contactQueue.pop_front(); if (_contactQueue.empty()) return; } _ContactQueueItem &qi2 = _contactQueue.front(); qi.address = qi2.address; qi.ports.swap(qi2.ports); qi.alivePathThreshold = qi2.alivePathThreshold; _contactQueue.pop_front(); for(std::list<_ContactQueueItem>::iterator q(_contactQueue.begin());q!=_contactQueue.end();) { if (_alivePathCount >= q->alivePathThreshold) _contactQueue.erase(q++); else ++q; } stillHaveContactQueueItems = !_contactQueue.empty(); } if (_vProto >= 11) { uint64_t outgoingProbe = Protocol::createProbe(RR->identity,_id,_key); if (qi.ports.empty()) { RR->node->putPacket(tPtr,-1,qi.address,&outgoingProbe,ZT_PROTO_PROBE_LENGTH); } else { for (std::vector::iterator p(qi.ports.begin()); p != qi.ports.end(); ++p) { qi.address.setPort(*p); RR->node->putPacket(tPtr,-1,qi.address,&outgoingProbe,ZT_PROTO_PROBE_LENGTH); } } } else { if (qi.ports.empty()) { this->sendNOP(tPtr,-1,qi.address,now); } else { for (std::vector::iterator p(qi.ports.begin()); p != qi.ports.end(); ++p) { qi.address.setPort(*p); this->sendNOP(tPtr,-1,qi.address,now); } } } if (stillHaveContactQueueItems) RR->node->setPeerAlarm(_id.address(),now + ZT_NAT_TRAVERSAL_INTERVAL); } int Peer::marshal(uint8_t data[ZT_PEER_MARSHAL_SIZE_MAX]) const noexcept { RWMutex::RLock l(_lock); data[0] = 0; // serialized peer version int s = _id.marshal(data + 1,false); if (s <= 0) return s; int p = 1 + s; s = _locator.marshal(data + p); if (s <= 0) return s; p += s; s = _bootstrap.marshal(data + p); if (s <= 0) return s; p += s; Utils::storeBigEndian(data + p,(uint16_t)_vProto); p += 2; Utils::storeBigEndian(data + p,(uint16_t)_vMajor); p += 2; Utils::storeBigEndian(data + p,(uint16_t)_vMinor); p += 2; Utils::storeBigEndian(data + p,(uint16_t)_vRevision); p += 2; data[p++] = 0; data[p++] = 0; return p; } int Peer::unmarshal(const uint8_t *restrict data,const int len) noexcept { int p; { RWMutex::Lock l(_lock); if ((len <= 1) || (data[0] != 0)) return -1; int s = _id.unmarshal(data + 1,len - 1); if (s <= 0) return s; p = 1 + s; s = _locator.unmarshal(data + p,len - p); if (s <= 0) return s; p += s; s = _bootstrap.unmarshal(data + p,len - p); if (s <= 0) return s; p += s; if ((p + 10) > len) return -1; _vProto = Utils::loadBigEndian(data + p); p += 2; _vMajor = Utils::loadBigEndian(data + p); p += 2; _vMinor = Utils::loadBigEndian(data + p); p += 2; _vRevision = Utils::loadBigEndian(data + p); p += 2; p += 2 + (int)Utils::loadBigEndian(data + p); if (p > len) return -1; } if (!RR->identity.agree(_id,_key)) return -1; _incomingProbe = Protocol::createProbe(_id,RR->identity,_key); return p; } void Peer::_prioritizePaths(const int64_t now) { // assumes _lock is locked for writing std::sort(_paths,_paths + ZT_MAX_PEER_NETWORK_PATHS,_PathPriorityComparisonOperator()); for(int i=0;ialive(now))) { _alivePathCount = i; for(;i