/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2024-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "Topology.hpp" namespace ZeroTier { const uint64_t Topology::s_pathHashSalt = Utils::getSecureRandomU64(); // Sorts roots so as to put the lowest latency alive root first. struct _RootSortComparisonOperator { ZT_ALWAYS_INLINE _RootSortComparisonOperator(const int64_t now) : _now(now) {} ZT_ALWAYS_INLINE bool operator()(const SharedPtr &a,const SharedPtr &b) { const int64_t now = _now; if (a->active(now)) { if (b->active(now)) return (a->latency() < b->latency()); return true; } return a->lastReceive() < b->lastReceive(); } const int64_t _now; }; Topology::Topology(const RuntimeEnvironment *renv,void *tPtr) : RR(renv), _numConfiguredPhysicalPaths(0), _peers(256), _peersByIncomingProbe(256), _peersByIdentityHash(256), _paths(1024) { uint64_t idtmp[2]; idtmp[0] = 0; idtmp[1] = 0; std::vector data(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_ROOTS,idtmp)); if (!data.empty()) { uint8_t *dptr = data.data(); int drem = (int)data.size(); while (drem > 0) { Identity id; int l = id.unmarshal(dptr,drem); if (l > 0) { _roots.insert(id); dptr += l; drem -= l; } } } for(std::set::const_iterator r(_roots.begin());r!=_roots.end();++r) { SharedPtr p; _loadCached(tPtr,r->address(),p); if ((!p)||(p->identity() != *r)) { p.set(new Peer(RR)); p->init(*r); } _rootPeers.push_back(p); _peers[p->address()] = p; _peersByIncomingProbe[p->incomingProbe()] = p; _peersByIdentityHash[p->identity().hash()] = p; } } Topology::~Topology() { } SharedPtr Topology::add(void *tPtr,const SharedPtr &peer) { RWMutex::Lock _l(_peers_l); SharedPtr &hp = _peers[peer->address()]; if (hp) return hp; _loadCached(tPtr,peer->address(),hp); if (hp) { _peersByIncomingProbe[peer->incomingProbe()] = hp; _peersByIdentityHash[peer->identity().hash()] = hp; return hp; } hp = peer; _peersByIncomingProbe[peer->incomingProbe()] = peer; _peersByIdentityHash[peer->identity().hash()] = peer; return peer; } void Topology::getAllPeers(std::vector< SharedPtr > &allPeers) const { RWMutex::RLock l(_peers_l); allPeers.clear(); allPeers.reserve(_peers.size()); Hashtable< Address,SharedPtr >::Iterator i(*(const_cast > *>(&_peers))); Address *a = nullptr; SharedPtr *p = nullptr; while (i.next(a,p)) allPeers.push_back(*p); } void Topology::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig) { if (!pathNetwork) { _numConfiguredPhysicalPaths = 0; } else { std::map cpaths; for(unsigned int i=0,j=_numConfiguredPhysicalPaths;i ZT_MAX_UDP_MTU) pc.mtu = ZT_MAX_UDP_MTU; cpaths[*(reinterpret_cast(pathNetwork))] = pc; } else { cpaths.erase(*(reinterpret_cast(pathNetwork))); } unsigned int cnt = 0; for(std::map::const_iterator i(cpaths.begin());((i!=cpaths.end())&&(cntfirst; _physicalPathConfig[cnt].second = i->second; ++cnt; } _numConfiguredPhysicalPaths = cnt; } } void Topology::addRoot(void *tPtr,const Identity &id,const InetAddress &bootstrap) { if (id == RR->identity) return; // sanity check RWMutex::Lock l1(_peers_l); std::pair< std::set::iterator,bool > ir(_roots.insert(id)); if (ir.second) { SharedPtr &p = _peers[id.address()]; if (!p) { p.set(new Peer(RR)); p->init(id); if (bootstrap) p->setBootstrap(Endpoint(bootstrap)); _peersByIncomingProbe[p->incomingProbe()] = p; _peersByIdentityHash[p->identity().hash()] = p; } _rootPeers.push_back(p); uint8_t *const roots = (uint8_t *)malloc(ZT_IDENTITY_MARSHAL_SIZE_MAX * _roots.size()); if (roots) { int p = 0; for(std::set::const_iterator i(_roots.begin());i!=_roots.end();++i) { int pp = i->marshal(roots + p,false); if (pp > 0) p += pp; } uint64_t id[2]; id[0] = 0; id[1] = 0; RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_ROOTS,id,roots,(unsigned int)p); free(roots); } } } bool Topology::removeRoot(const Identity &id) { RWMutex::Lock l1(_peers_l); std::set::iterator r(_roots.find(id)); if (r != _roots.end()) { for(std::vector< SharedPtr >::iterator p(_rootPeers.begin());p!=_rootPeers.end();++p) { if ((*p)->identity() == id) { _rootPeers.erase(p); break; } } _roots.erase(r); return true; } return false; } void Topology::rankRoots(const int64_t now) { RWMutex::Lock l1(_peers_l); std::sort(_rootPeers.begin(),_rootPeers.end(),_RootSortComparisonOperator(now)); } void Topology::doPeriodicTasks(void *tPtr,const int64_t now) { { RWMutex::Lock l1(_peers_l); Hashtable< Address,SharedPtr >::Iterator i(_peers); Address *a = nullptr; SharedPtr *p = nullptr; while (i.next(a,p)) { if ( (!(*p)->alive(now)) && (_roots.count((*p)->identity()) == 0) ) { (*p)->save(tPtr); _peersByIncomingProbe.erase((*p)->incomingProbe()); _peersByIdentityHash.erase((*p)->identity().hash()); _peers.erase(*a); } } } { RWMutex::Lock l1(_paths_l); Hashtable< uint64_t,SharedPtr >::Iterator i(_paths); uint64_t *k = nullptr; SharedPtr *p = nullptr; while (i.next(k,p)) { if ((p->references() <= 1)&&(!(*p)->alive(now))) _paths.erase(*k); } } } void Topology::saveAll(void *tPtr) { RWMutex::RLock l(_peers_l); Hashtable< Address,SharedPtr >::Iterator i(_peers); Address *a = nullptr; SharedPtr *p = nullptr; while (i.next(a,p)) (*p)->save(tPtr); } void Topology::_loadCached(void *tPtr,const Address &zta,SharedPtr &peer) { try { uint64_t id[2]; id[0] = zta.toInt(); id[1] = 0; std::vector data(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_PEER,id)); if (data.size() > 8) { const uint8_t *d = data.data(); int dl = (int)data.size(); const int64_t ts = (int64_t)Utils::loadBigEndian(d); Peer *const p = new Peer(RR); int n = p->unmarshal(d + 8,dl - 8); if (n < 0) { delete p; return; } if ((RR->node->now() - ts) < ZT_PEER_GLOBAL_TIMEOUT) { // TODO: handle many peers, same address (?) peer.set(p); return; } } } catch ( ... ) { peer.zero(); } } } // namespace ZeroTier