/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2024-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_AES_HPP #define ZT_AES_HPP #include "Constants.hpp" #include "Utils.hpp" #include "SHA512.hpp" #include #if (defined(__amd64) || defined(__amd64__) || defined(__x86_64) || defined(__x86_64__) || defined(__AMD64) || defined(__AMD64__) || defined(_M_X64)) #include #include #include #include #define ZT_AES_AESNI 1 #endif namespace ZeroTier { /** * AES-256 and pals including GMAC, CTR, etc. */ class AES { public: ZT_ALWAYS_INLINE AES() {} ZT_ALWAYS_INLINE AES(const uint8_t key[32]) { this->init(key); } ZT_ALWAYS_INLINE ~AES() { Utils::burn(&_k,sizeof(_k)); } /** * Set (or re-set) this AES256 cipher's key */ ZT_ALWAYS_INLINE void init(const uint8_t key[32]) { #ifdef ZT_AES_AESNI if (likely(Utils::CPUID.aes)) { _init_aesni(key); return; } #endif _initSW(key); } /** * Encrypt a single AES block (ECB mode) * * @param in Input block * @param out Output block (can be same as input) */ ZT_ALWAYS_INLINE void encrypt(const uint8_t in[16],uint8_t out[16]) const { #ifdef ZT_AES_AESNI if (likely(Utils::CPUID.aes)) { _encrypt_aesni(in,out); return; } #endif _encryptSW(in,out); } /** * Compute GMAC-AES256 (GCM without ciphertext) * * @param iv 96-bit IV * @param in Input data * @param len Length of input * @param out 128-bit authorization tag from GMAC */ ZT_ALWAYS_INLINE void gmac(const uint8_t iv[12],const void *in,const unsigned int len,uint8_t out[16]) const { #ifdef ZT_AES_AESNI if (likely(Utils::CPUID.aes)) { _gmac_aesni(iv,(const uint8_t *)in,len,out); return; } #endif _gmacSW(iv,(const uint8_t *)in,len,out); } /** * Encrypt or decrypt (they're the same) using AES256-CTR * * The counter here is a 128-bit big-endian that starts at the IV. The code only * increments the least significant 64 bits, making it only safe to use for a * maximum of 2^64-1 bytes (much larger than we ever do). * * @param iv 128-bit CTR IV * @param in Input plaintext or ciphertext * @param len Length of input * @param out Output plaintext or ciphertext */ ZT_ALWAYS_INLINE void ctr(const uint8_t iv[16],const void *in,unsigned int len,void *out) const { #ifdef ZT_AES_AESNI if (likely(Utils::CPUID.aes)) { _ctr_aesni(iv,(const uint8_t *)in,len,(uint8_t *)out); return; } #endif _ctrSW(iv,in,len,out); } private: static const uint32_t Te0[256]; static const uint32_t Te1[256]; static const uint32_t Te2[256]; static const uint32_t Te3[256]; static const uint32_t rcon[10]; void _initSW(const uint8_t key[32]); void _encryptSW(const uint8_t in[16],uint8_t out[16]) const; void _ctrSW(const uint8_t iv[16],const void *in,unsigned int len,void *out) const; void _gmacSW(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const; /**************************************************************************/ union { #ifdef ZT_AES_ARMNEON // ARM NEON key and GMAC parameters struct { uint32x4_t k[15]; } neon; #endif #ifdef ZT_AES_AESNI // AES-NI key and GMAC parameters struct { __m128i k[15]; __m128i h,hh,hhh,hhhh; } ni; #endif // Software mode key and GMAC parameters struct { uint64_t h[2]; uint32_t ek[60]; } sw; } _k; /**************************************************************************/ #ifdef ZT_AES_ARMNEON /******************************************************/ static inline void _aes_256_expAssist_armneon(uint32x4_t prev1,uint32x4_t prev2,uint32_t rcon,uint32x4_t *e1,uint32x4_t *e2) { uint32_t round1[4], round2[4], prv1[4], prv2[4]; vst1q_u32(prv1, prev1); vst1q_u32(prv2, prev2); round1[0] = sub_word(rot_word(prv2[3])) ^ rcon ^ prv1[0]; round1[1] = sub_word(rot_word(round1[0])) ^ rcon ^ prv1[1]; round1[2] = sub_word(rot_word(round1[1])) ^ rcon ^ prv1[2]; round1[3] = sub_word(rot_word(round1[2])) ^ rcon ^ prv1[3]; round2[0] = sub_word(rot_word(round1[3])) ^ rcon ^ prv2[0]; round2[1] = sub_word(rot_word(round2[0])) ^ rcon ^ prv2[1]; round2[2] = sub_word(rot_word(round2[1])) ^ rcon ^ prv2[2]; round2[3] = sub_word(rot_word(round2[2])) ^ rcon ^ prv2[3]; *e1 = vld1q_u3(round1); *e2 = vld1q_u3(round2); //uint32x4_t expansion[2] = {vld1q_u3(round1), vld1q_u3(round2)}; //return expansion; } inline void _init_armneon(uint8x16_t encKey) { uint32x4_t *schedule = _k.neon.k; uint32x4_t e1,e2; (*schedule)[0] = vld1q_u32(encKey); (*schedule)[1] = vld1q_u32(encKey + 16); _aes_256_expAssist_armneon((*schedule)[0],(*schedule)[1],0x01,&e1,&e2); (*schedule)[2] = e1; (*schedule)[3] = e2; _aes_256_expAssist_armneon((*schedule)[2],(*schedule)[3],0x01,&e1,&e2); (*schedule)[4] = e1; (*schedule)[5] = e2; _aes_256_expAssist_armneon((*schedule)[4],(*schedule)[5],0x01,&e1,&e2); (*schedule)[6] = e1; (*schedule)[7] = e2; _aes_256_expAssist_armneon((*schedule)[6],(*schedule)[7],0x01,&e1,&e2); (*schedule)[8] = e1; (*schedule)[9] = e2; _aes_256_expAssist_armneon((*schedule)[8],(*schedule)[9],0x01,&e1,&e2); (*schedule)[10] = e1; (*schedule)[11] = e2; _aes_256_expAssist_armneon((*schedule)[10],(*schedule)[11],0x01,&e1,&e2); (*schedule)[12] = e1; (*schedule)[13] = e2; _aes_256_expAssist_armneon((*schedule)[12],(*schedule)[13],0x01,&e1,&e2); (*schedule)[14] = e1; /* doubleRound = _aes_256_expAssist_armneon((*schedule)[0], (*schedule)[1], 0x01); (*schedule)[2] = doubleRound[0]; (*schedule)[3] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[2], (*schedule)[3], 0x02); (*schedule)[4] = doubleRound[0]; (*schedule)[5] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[4], (*schedule)[5], 0x04); (*schedule)[6] = doubleRound[0]; (*schedule)[7] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[6], (*schedule)[7], 0x08); (*schedule)[8] = doubleRound[0]; (*schedule)[9] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[8], (*schedule)[9], 0x10); (*schedule)[10] = doubleRound[0]; (*schedule)[11] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[10], (*schedule)[11], 0x20); (*schedule)[12] = doubleRound[0]; (*schedule)[13] = doubleRound[1]; doubleRound = _aes_256_expAssist_armneon((*schedule)[12], (*schedule)[13], 0x40); (*schedule)[14] = doubleRound[0]; */ } inline void _encrypt_armneon(uint8x16_t *data) const { *data = veorq_u8(*data, _k.neon.k[0]); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[1])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[2])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[3])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[4])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[5])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[6])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[7])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[8])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[9])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[10])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[11])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[12])); *data = vaesmcq_u8(vaeseq_u8(*data, (uint8x16_t)_k.neon.k[13])); *data = vaeseq_u8(*data, _k.neon.k[14]); } #endif /*********************************************************************/ #ifdef ZT_AES_AESNI /********************************************************/ void _init_aesni(const uint8_t key[32]); ZT_ALWAYS_INLINE void _encrypt_aesni(const void *const in,void *const out) const { __m128i tmp; tmp = _mm_loadu_si128((const __m128i *)in); tmp = _mm_xor_si128(tmp,_k.ni.k[0]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[1]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[2]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[3]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[4]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[5]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[6]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[7]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[8]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[9]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[10]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[11]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[12]); tmp = _mm_aesenc_si128(tmp,_k.ni.k[13]); _mm_storeu_si128((__m128i *)out,_mm_aesenclast_si128(tmp,_k.ni.k[14])); } void _gmac_aesni(const uint8_t iv[12],const uint8_t *in,unsigned int len,uint8_t out[16]) const; void _ctr_aesni(const uint8_t iv[16],const uint8_t *in,unsigned int len,uint8_t *out) const; #endif /* ZT_AES_AESNI ******************************************************/ }; } // namespace ZeroTier #endif