mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-07-22 10:22:50 +02:00
304 lines
10 KiB
Rust
304 lines
10 KiB
Rust
use crate::{cbd::*, ntt::*, params::*, reduce::*, symmetric::*};
|
|
|
|
#[derive(Clone)]
|
|
pub struct Poly {
|
|
pub coeffs: [i16; KYBER_N],
|
|
}
|
|
|
|
impl Copy for Poly {}
|
|
|
|
impl Default for Poly {
|
|
fn default() -> Self {
|
|
Poly { coeffs: [0i16; KYBER_N] }
|
|
}
|
|
}
|
|
|
|
// new() is nicer
|
|
impl Poly {
|
|
pub fn new() -> Self {
|
|
Self::default()
|
|
}
|
|
}
|
|
|
|
// Name: poly_compress
|
|
//
|
|
// Description: Compression and subsequent serialization of a polynomial
|
|
//
|
|
// Arguments: - [u8] r: output byte array (needs space for KYBER_POLYCOMPRESSEDBYTES bytes)
|
|
// - const poly *a: input polynomial
|
|
pub fn poly_compress(r: &mut [u8], a: Poly) {
|
|
let mut t = [0u8; 8];
|
|
let mut k = 0usize;
|
|
let mut u: i16;
|
|
|
|
match KYBER_POLYCOMPRESSEDBYTES {
|
|
128 => {
|
|
for i in 0..KYBER_N / 8 {
|
|
for j in 0..8 {
|
|
// map to positive standard representatives
|
|
u = a.coeffs[8 * i + j];
|
|
u += (u >> 15) & KYBER_Q as i16;
|
|
t[j] = (((((u as u16) << 4) + KYBER_Q as u16 / 2) / KYBER_Q as u16) & 15) as u8;
|
|
}
|
|
r[k] = t[0] | (t[1] << 4);
|
|
r[k + 1] = t[2] | (t[3] << 4);
|
|
r[k + 2] = t[4] | (t[5] << 4);
|
|
r[k + 3] = t[6] | (t[7] << 4);
|
|
k += 4;
|
|
}
|
|
}
|
|
160 => {
|
|
for i in 0..(KYBER_N / 8) {
|
|
for j in 0..8 {
|
|
// map to positive standard representatives
|
|
u = a.coeffs[8 * i + j];
|
|
u += (u >> 15) & KYBER_Q as i16;
|
|
t[j] = (((((u as u32) << 5) + KYBER_Q as u32 / 2) / KYBER_Q as u32) & 31) as u8;
|
|
}
|
|
r[k] = t[0] | (t[1] << 5);
|
|
r[k + 1] = (t[1] >> 3) | (t[2] << 2) | (t[3] << 7);
|
|
r[k + 2] = (t[3] >> 1) | (t[4] << 4);
|
|
r[k + 3] = (t[4] >> 4) | (t[5] << 1) | (t[6] << 6);
|
|
r[k + 4] = (t[6] >> 2) | (t[7] << 3);
|
|
k += 5;
|
|
}
|
|
}
|
|
_ => panic!("KYBER_POLYCOMPRESSEDBYTES needs to be one of (128, 160)"),
|
|
}
|
|
}
|
|
|
|
// Name: poly_decompress
|
|
//
|
|
// Description: De-serialization and subsequent decompression of a polynomial;
|
|
// approximate inverse of poly_compress
|
|
//
|
|
// Arguments: - poly *r: output polynomial
|
|
// - const [u8] a: input byte array (of length KYBER_POLYCOMPRESSEDBYTES bytes)
|
|
pub fn poly_decompress(r: &mut Poly, a: &[u8]) {
|
|
match KYBER_POLYCOMPRESSEDBYTES {
|
|
128 => {
|
|
let mut idx = 0usize;
|
|
for i in 0..KYBER_N / 2 {
|
|
r.coeffs[2 * i + 0] = ((((a[idx] & 15) as usize * KYBER_Q) + 8) >> 4) as i16;
|
|
r.coeffs[2 * i + 1] = ((((a[idx] >> 4) as usize * KYBER_Q) + 8) >> 4) as i16;
|
|
idx += 1;
|
|
}
|
|
}
|
|
160 => {
|
|
let mut idx = 0usize;
|
|
let mut t = [0u8; 8];
|
|
for i in 0..KYBER_N / 8 {
|
|
t[0] = a[idx + 0];
|
|
t[1] = (a[idx + 0] >> 5) | (a[idx + 1] << 3);
|
|
t[2] = a[idx + 1] >> 2;
|
|
t[3] = (a[idx + 1] >> 7) | (a[idx + 2] << 1);
|
|
t[4] = (a[idx + 2] >> 4) | (a[idx + 3] << 4);
|
|
t[5] = a[idx + 3] >> 1;
|
|
t[6] = (a[idx + 3] >> 6) | (a[idx + 4] << 2);
|
|
t[7] = a[idx + 4] >> 3;
|
|
idx += 5;
|
|
for j in 0..8 {
|
|
r.coeffs[8 * i + j] = ((((t[j] as u32) & 31) * KYBER_Q as u32 + 16) >> 5) as i16;
|
|
}
|
|
}
|
|
}
|
|
_ => panic!("KYBER_POLYCOMPRESSEDBYTES needs to be either (128, 160)"),
|
|
}
|
|
}
|
|
|
|
// Name: poly_tobytes
|
|
//
|
|
// Description: Serialization of a polynomial
|
|
//
|
|
// Arguments: - [u8] r: output byte array (needs space for KYBER_POLYBYTES bytes)
|
|
// - const poly *a: input polynomial
|
|
pub fn poly_tobytes(r: &mut [u8], a: Poly) {
|
|
let (mut t0, mut t1);
|
|
|
|
for i in 0..(KYBER_N / 2) {
|
|
// map to positive standard representatives
|
|
t0 = a.coeffs[2 * i];
|
|
t0 += (t0 >> 15) & KYBER_Q as i16;
|
|
t1 = a.coeffs[2 * i + 1];
|
|
t1 += (t1 >> 15) & KYBER_Q as i16;
|
|
r[3 * i + 0] = (t0 >> 0) as u8;
|
|
r[3 * i + 1] = ((t0 >> 8) | (t1 << 4)) as u8;
|
|
r[3 * i + 2] = (t1 >> 4) as u8;
|
|
}
|
|
}
|
|
|
|
// Name: poly_frombytes
|
|
//
|
|
// Description: De-serialization of a polynomial;
|
|
// inverse of poly_tobytes
|
|
//
|
|
// Arguments: - poly *r: output polynomial
|
|
// - const [u8] a: input byte array (of KYBER_POLYBYTES bytes)
|
|
pub fn poly_frombytes(r: &mut Poly, a: &[u8]) {
|
|
for i in 0..(KYBER_N / 2) {
|
|
r.coeffs[2 * i + 0] = ((a[3 * i + 0] >> 0) as u16 | ((a[3 * i + 1] as u16) << 8) & 0xFFF) as i16;
|
|
r.coeffs[2 * i + 1] = ((a[3 * i + 1] >> 4) as u16 | ((a[3 * i + 2] as u16) << 4) & 0xFFF) as i16;
|
|
}
|
|
}
|
|
|
|
// Name: poly_getnoise_eta1
|
|
//
|
|
// Description: Sample a polynomial deterministically from a seed and a nonce,
|
|
// with output polynomial close to centered binomial distribution
|
|
// with parameter KYBER_ETA1
|
|
//
|
|
// Arguments: - poly *r: output polynomial
|
|
// - const [u8] seed: input seed (pointing to array of length KYBER_SYMBYTES bytes)
|
|
// - [u8] nonce: one-byte input nonce
|
|
pub fn poly_getnoise_eta1(r: &mut Poly, seed: &[u8], nonce: u8) {
|
|
const LENGTH: usize = KYBER_ETA1 * KYBER_N / 4;
|
|
let mut buf = [0u8; LENGTH];
|
|
prf(&mut buf, LENGTH, seed, nonce);
|
|
poly_cbd_eta1(r, &buf);
|
|
}
|
|
|
|
// Name: poly_getnoise_eta2
|
|
//
|
|
// Description: Sample a polynomial deterministically from a seed and a nonce,
|
|
// with output polynomial close to centered binomial distribution
|
|
// with parameter KYBER_ETA2
|
|
//
|
|
// Arguments: - poly *r: output polynomial
|
|
// - const [u8] seed: input seed (pointing to array of length KYBER_SYMBYTES bytes)
|
|
// - [u8] nonce: one-byte input nonce
|
|
pub fn poly_getnoise_eta2(r: &mut Poly, seed: &[u8], nonce: u8) {
|
|
const LENGTH: usize = KYBER_ETA2 * KYBER_N / 4;
|
|
let mut buf = [0u8; LENGTH];
|
|
prf(&mut buf, LENGTH, seed, nonce);
|
|
poly_cbd_eta2(r, &buf);
|
|
}
|
|
|
|
// Name: poly_ntt
|
|
//
|
|
// Description: Computes negacyclic number-theoretic transform (NTT) of
|
|
// a polynomial in place;
|
|
// inputs assumed to be in normal order, output in bitreversed order
|
|
//
|
|
// Arguments: - Poly r: in/output polynomial
|
|
pub fn poly_ntt(r: &mut Poly) {
|
|
ntt(&mut r.coeffs);
|
|
poly_reduce(r);
|
|
}
|
|
|
|
// Name: poly_invntt
|
|
//
|
|
// Description: Computes inverse of negacyclic number-theoretic transform (NTT) of
|
|
// a polynomial in place;
|
|
// inputs assumed to be in bitreversed order, output in normal order
|
|
//
|
|
// Arguments: - Poly a: in/output polynomial
|
|
pub fn poly_invntt_tomont(r: &mut Poly) {
|
|
invntt(&mut r.coeffs);
|
|
}
|
|
|
|
// Name: poly_basemul
|
|
//
|
|
// Description: Multiplication of two polynomials in NTT domain
|
|
//
|
|
// Arguments: - poly *r: output polynomial
|
|
// - const poly *a: first input polynomial
|
|
// - const poly *b: second input polynomial
|
|
pub fn poly_basemul(r: &mut Poly, a: &Poly, b: &Poly) {
|
|
for i in 0..(KYBER_N / 4) {
|
|
basemul(&mut r.coeffs[4 * i..], &a.coeffs[4 * i..], &b.coeffs[4 * i..], ZETAS[64 + i]);
|
|
basemul(
|
|
&mut r.coeffs[4 * i + 2..],
|
|
&a.coeffs[4 * i + 2..],
|
|
&b.coeffs[4 * i + 2..],
|
|
-(ZETAS[64 + i]),
|
|
);
|
|
}
|
|
}
|
|
|
|
// Name: poly_frommont
|
|
//
|
|
// Description: Inplace conversion of all coefficients of a polynomial
|
|
// from Montgomery domain to normal domain
|
|
//
|
|
// Arguments: - poly *r: input/output polynomial
|
|
pub fn poly_frommont(r: &mut Poly) {
|
|
let f = ((1u64 << 32) % KYBER_Q as u64) as i16;
|
|
for i in 0..KYBER_N {
|
|
let a = r.coeffs[i] as i32 * f as i32;
|
|
r.coeffs[i] = montgomery_reduce(a);
|
|
}
|
|
}
|
|
|
|
// Name: poly_reduce
|
|
//
|
|
// Description: Applies Barrett reduction to all coefficients of a polynomial
|
|
// for details of the Barrett reduction see comments in reduce.c
|
|
//
|
|
// Arguments: - poly *r: input/output polynomial
|
|
pub fn poly_reduce(r: &mut Poly) {
|
|
for i in 0..KYBER_N {
|
|
r.coeffs[i] = barrett_reduce(r.coeffs[i]);
|
|
}
|
|
}
|
|
|
|
// Name: poly_add
|
|
//
|
|
// Description: Add two polynomials; no modular reduction is performed
|
|
//
|
|
// Arguments: - poly *r: output polynomial
|
|
// - const poly *a: first input polynomial
|
|
// - const poly *b: second input polynomial
|
|
pub fn poly_add(r: &mut Poly, b: &Poly) {
|
|
for i in 0..KYBER_N {
|
|
r.coeffs[i] += b.coeffs[i];
|
|
}
|
|
}
|
|
|
|
// Name: poly_sub
|
|
//
|
|
// Description: Subtract two polynomials; no modular reduction is performed
|
|
//
|
|
// Arguments: - poly *r: output polynomial
|
|
// - const poly *a: first input polynomial
|
|
// - const poly *b: second input polynomial
|
|
pub fn poly_sub(r: &mut Poly, a: &Poly) {
|
|
for i in 0..KYBER_N {
|
|
r.coeffs[i] = a.coeffs[i] - r.coeffs[i];
|
|
}
|
|
}
|
|
|
|
// Name: poly_frommsg
|
|
//
|
|
// Description: Convert 32-byte message to polynomial
|
|
//
|
|
// Arguments: - poly *r: output polynomial
|
|
// - const [u8] msg: input message
|
|
pub fn poly_frommsg(r: &mut Poly, msg: &[u8]) {
|
|
let mut mask;
|
|
for i in 0..KYBER_SYMBYTES {
|
|
for j in 0..8 {
|
|
mask = ((msg[i] as u16 >> j) & 1).wrapping_neg();
|
|
r.coeffs[8 * i + j] = (mask & ((KYBER_Q + 1) / 2) as u16) as i16;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Name: poly_tomsg
|
|
//
|
|
// Description: Convert polynomial to 32-byte message
|
|
//
|
|
// Arguments: - [u8] msg: output message
|
|
// - const poly *a: input polynomial
|
|
pub fn poly_tomsg(msg: &mut [u8], a: Poly) {
|
|
let mut t;
|
|
|
|
for i in 0..KYBER_SYMBYTES {
|
|
msg[i] = 0;
|
|
for j in 0..8 {
|
|
t = a.coeffs[8 * i + j];
|
|
t += (t >> 15) & KYBER_Q as i16;
|
|
t = (((t << 1) + KYBER_Q as i16 / 2) / KYBER_Q as i16) & 1;
|
|
msg[i] |= (t << j) as u8;
|
|
}
|
|
}
|
|
}
|