ZeroTierOne/node/Identity.cpp
2020-03-27 07:40:14 -07:00

707 lines
20 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Constants.hpp"
#include "Identity.hpp"
#include "SHA512.hpp"
#include "Salsa20.hpp"
#include "Utils.hpp"
#include "Speck128.hpp"
#include "Poly1305.hpp"
#include <cstring>
#include <cstdint>
#include <algorithm>
// This takes around one second on a typical ~2.4ghz x64 machine.
#define ZT_V1_IDENTITY_MIMC52_VDF_ROUNDS_BASE 1000000
namespace ZeroTier {
namespace {
// This is the memory-intensive hash function used to compute v0 identities from v0 public keys.
#define ZT_V0_IDENTITY_GEN_MEMORY 2097152
void identityV0ProofOfWorkFrankenhash(const void *const publicKey,unsigned int publicKeyBytes,void *const digest,void *const genmem) noexcept
{
// Digest publicKey[] to obtain initial digest
SHA512(digest,publicKey,publicKeyBytes);
// Initialize genmem[] using Salsa20 in a CBC-like configuration since
// ordinary Salsa20 is randomly seek-able. This is good for a cipher
// but is not what we want for sequential memory-hardness.
Utils::zero<ZT_V0_IDENTITY_GEN_MEMORY>(genmem);
Salsa20 s20(digest,(char *)digest + 32);
s20.crypt20((char *)genmem,(char *)genmem,64);
for(unsigned long i=64;i<ZT_V0_IDENTITY_GEN_MEMORY;i+=64) {
unsigned long k = i - 64;
*((uint64_t *)((char *)genmem + i)) = *((uint64_t *)((char *)genmem + k));
*((uint64_t *)((char *)genmem + i + 8)) = *((uint64_t *)((char *)genmem + k + 8));
*((uint64_t *)((char *)genmem + i + 16)) = *((uint64_t *)((char *)genmem + k + 16));
*((uint64_t *)((char *)genmem + i + 24)) = *((uint64_t *)((char *)genmem + k + 24));
*((uint64_t *)((char *)genmem + i + 32)) = *((uint64_t *)((char *)genmem + k + 32));
*((uint64_t *)((char *)genmem + i + 40)) = *((uint64_t *)((char *)genmem + k + 40));
*((uint64_t *)((char *)genmem + i + 48)) = *((uint64_t *)((char *)genmem + k + 48));
*((uint64_t *)((char *)genmem + i + 56)) = *((uint64_t *)((char *)genmem + k + 56));
s20.crypt20((char *)genmem + i,(char *)genmem + i,64);
}
// Render final digest using genmem as a lookup table
for(unsigned long i=0;i<(ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (64 / sizeof(uint64_t)));
unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t)));
uint64_t tmp = ((uint64_t *)genmem)[idx2];
((uint64_t *)genmem)[idx2] = ((uint64_t *)digest)[idx1];
((uint64_t *)digest)[idx1] = tmp;
s20.crypt20(digest,digest,64);
}
}
struct identityV0ProofOfWorkCriteria
{
ZT_INLINE identityV0ProofOfWorkCriteria(unsigned char *sb,char *gm) noexcept : digest(sb),genmem(gm) {}
ZT_INLINE bool operator()(const uint8_t pub[ZT_C25519_PUBLIC_KEY_LEN]) const noexcept
{
identityV0ProofOfWorkFrankenhash(pub,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
return (digest[0] < 17);
}
unsigned char *digest;
char *genmem;
};
// This is a simpler memory-intensive hash function for V1 identity generation.
// It's not quite as intensive as the V0 frankenhash, is a little more orderly in
// its design, but remains relatively resistant to GPU acceleration due to memory
// requirements for efficient computation.
bool identityV1ProofOfWorkCriteria(const void *in,const unsigned int len)
{
uint64_t b[98304]; // 768 KiB of working memory
uint64_t polykey[4];
SHA512(b,in,len);
// Poly1305 key, used in final hash at the end.
polykey[0] = b[0];
polykey[1] = b[1];
polykey[2] = b[2];
polykey[3] = b[3];
#if __BYTE_ORDER == __BIG_ENDIAN
b[0] = Utils::swapBytes(b[0]);
b[1] = Utils::swapBytes(b[1]);
b[2] = Utils::swapBytes(b[2]);
b[3] = Utils::swapBytes(b[3]);
b[4] = Utils::swapBytes(b[4]);
b[5] = Utils::swapBytes(b[5]);
b[6] = Utils::swapBytes(b[6]);
b[7] = Utils::swapBytes(b[7]);
#endif
// Memory-intensive work: fill 'b' with pseudo-random bits generated from
// a reduced-round instance of Speck128 using a CBC-like construction.
// Then sort the resulting integer array in ascending numerical order.
// The sort requires that we compute and cache the whole data set, or at
// least that this is the most efficient implementation.
Speck128<24> s16;
s16.initXY(b[4],b[5]);
for(unsigned long i=0;i<(98304-8);) {
uint64_t x0 = b[i];
uint64_t y0 = b[i + 1];
uint64_t x1 = b[i + 2];
uint64_t y1 = b[i + 3];
uint64_t x2 = b[i + 4];
uint64_t y2 = b[i + 5];
uint64_t x3 = b[i + 6];
uint64_t y3 = b[i + 7];
i += 8;
x0 += x1; // mix parallel 128-bit blocks
x1 += x2;
x2 += x3;
x3 += y0;
s16.encryptXYXYXYXY(x0,y0,x1,y1,x2,y2,x3,y3);
b[i] = x0;
b[i + 1] = y0;
b[i + 2] = x1;
b[i + 3] = y1;
b[i + 4] = x2;
b[i + 5] = y2;
b[i + 6] = x3;
b[i + 7] = y3;
}
std::sort(b,b + 98304);
#if __BYTE_ORDER == __BIG_ENDIAN
for(unsigned int i=0;i<98304;i+=8) {
b[i] = Utils::swapBytes(b[i]);
b[i + 1] = Utils::swapBytes(b[i + 1]);
b[i + 2] = Utils::swapBytes(b[i + 2]);
b[i + 3] = Utils::swapBytes(b[i + 3]);
b[i + 4] = Utils::swapBytes(b[i + 4]);
b[i + 5] = Utils::swapBytes(b[i + 5]);
b[i + 6] = Utils::swapBytes(b[i + 6]);
b[i + 7] = Utils::swapBytes(b[i + 7]);
}
#endif
// Use poly1305 to compute a very fast digest of 'b'. This doesn't have to be
// cryptographic per se, just have good hashing properties.
poly1305(b,b,sizeof(b),polykey);
// Criterion: add two 64-bit components of poly1305 hash, must be zero mod 180.
// As with the rest of this bits are used in little-endian byte order. The value
// of 180 was set empirically to result in about one second per new identity on
// one CPU core of a typical desktop or server in 2020.
#if __BYTE_ORDER == __BIG_ENDIAN
const uint64_t finalHash = Utils::swapBytes(b[0]) + Utils::swapBytes(b[1]);
#else
const uint64_t finalHash = b[0] + b[1];
#endif
return (finalHash % 180U) == 0;
}
} // anonymous namespace
const Identity Identity::NIL;
bool Identity::generate(const Type t)
{
_type = t;
_hasPrivate = true;
switch(t) {
case C25519: {
// Generate C25519/Ed25519 key pair whose hash satisfies a "hashcash" criterion and generate the
// address from the last 40 bits of this hash. This is different from the fingerprint hash for V0.
uint8_t digest[64];
char *const genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
do {
C25519::generateSatisfying(identityV0ProofOfWorkCriteria(digest,genmem),_pub.c25519,_priv.c25519);
_address.setTo(digest + 59);
} while (_address.isReserved());
delete[] genmem;
_computeHash();
} break;
case P384: {
for(;;) {
// Loop until we pass the PoW criteria. The nonce is only 8 bits, so generate
// some new key material every time it wraps. The ECC384 generator is slightly
// faster so use that one.
_pub.nonce = 0;
C25519::generate(_pub.c25519,_priv.c25519);
ECC384GenerateKey(_pub.p384,_priv.p384);
for(;;) {
if (identityV1ProofOfWorkCriteria(&_pub,sizeof(_pub)))
break;
if (++_pub.nonce == 0)
ECC384GenerateKey(_pub.p384,_priv.p384);
}
// If we passed PoW then check that the address is valid, otherwise loop
// back around and run the whole process again.
_computeHash();
_address.setTo(_fp.hash());
if (!_address.isReserved())
break;
}
} break;
default:
return false;
}
return true;
}
bool Identity::locallyValidate() const noexcept
{
try {
if ((!_address.isReserved()) && (_address)) {
switch (_type) {
case C25519: {
uint8_t digest[64];
char *genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
identityV0ProofOfWorkFrankenhash(_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
delete[] genmem;
return ((_address == Address(digest + 59)) && (digest[0] < 17));
}
case P384:
return ((_address == Address(_fp.hash())) && identityV1ProofOfWorkCriteria(&_pub,sizeof(_pub)) );
}
}
} catch ( ... ) {}
return false;
}
void Identity::hashWithPrivate(uint8_t h[ZT_IDENTITY_HASH_SIZE]) const
{
if (_hasPrivate) {
switch (_type) {
case C25519:
SHA384(h,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN);
break;
case P384:
SHA384(h,&_pub,sizeof(_pub),&_priv,sizeof(_priv));
break;
}
return;
}
Utils::zero<48>(h);
}
unsigned int Identity::sign(const void *data,unsigned int len,void *sig,unsigned int siglen) const
{
if (_hasPrivate) {
switch(_type) {
case C25519:
if (siglen >= ZT_C25519_SIGNATURE_LEN) {
C25519::sign(_priv.c25519,_pub.c25519,data,len,sig);
return ZT_C25519_SIGNATURE_LEN;
}
case P384:
if (siglen >= ZT_ECC384_SIGNATURE_SIZE) {
uint8_t h[48];
SHA384(h,data,len,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE); // include C25519 public key in hash
ECC384ECDSASign(_priv.p384,h,(uint8_t *)sig);
return ZT_ECC384_SIGNATURE_SIZE;
}
}
}
return 0;
}
bool Identity::verify(const void *data,unsigned int len,const void *sig,unsigned int siglen) const
{
switch(_type) {
case C25519:
return C25519::verify(_pub.c25519,data,len,sig,siglen);
case P384:
if (siglen == ZT_ECC384_SIGNATURE_SIZE) {
uint8_t h[48];
SHA384(h,data,len,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
return ECC384ECDSAVerify(_pub.p384,h,(const uint8_t *)sig);
}
break;
}
return false;
}
bool Identity::agree(const Identity &id,uint8_t key[ZT_PEER_SECRET_KEY_LENGTH]) const
{
uint8_t rawkey[128];
uint8_t h[64];
if (_hasPrivate) {
if (_type == C25519) {
if ((id._type == C25519)||(id._type == P384)) {
// If we are a C25519 key we can agree with another C25519 key or with only the
// C25519 portion of a type 1 P-384 key.
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
SHA512(h,rawkey,ZT_C25519_SHARED_KEY_LEN);
Utils::copy<ZT_PEER_SECRET_KEY_LENGTH>(key,h);
return true;
}
} else if (_type == P384) {
if (id._type == P384) {
// For another P384 identity we execute DH agreement with BOTH keys and then
// hash the results together. For those (cough FIPS cough) who only consider
// P384 to be kosher, the C25519 secret can be considered a "salt"
// or something. For those who don't trust P384 this means the privacy of
// your traffic is also protected by C25519.
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
ECC384ECDH(id._pub.p384,_priv.p384,rawkey + ZT_C25519_SHARED_KEY_LEN);
SHA384(h,rawkey,ZT_C25519_SHARED_KEY_LEN + ZT_ECC384_SHARED_SECRET_SIZE);
Utils::copy<ZT_PEER_SECRET_KEY_LENGTH>(key,h);
return true;
} else if (id._type == C25519) {
// If the other identity is a C25519 identity we can agree using only that type.
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
SHA512(h,rawkey,ZT_C25519_SHARED_KEY_LEN);
Utils::copy<ZT_PEER_SECRET_KEY_LENGTH>(key,h);
return true;
}
}
}
return false;
}
char *Identity::toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
{
char *p = buf;
_address.toString(p);
p += 10;
*(p++) = ':';
switch(_type) {
case C25519: {
*(p++) = '0';
*(p++) = ':';
Utils::hex(_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,p);
p += ZT_C25519_PUBLIC_KEY_LEN * 2;
if ((_hasPrivate)&&(includePrivate)) {
*(p++) = ':';
Utils::hex(_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN,p);
p += ZT_C25519_PRIVATE_KEY_LEN * 2;
}
*p = (char)0;
return buf;
}
case P384: {
*(p++) = '1';
*(p++) = ':';
int el = Utils::b32e((const uint8_t *)(&_pub),sizeof(_pub),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
if ((_hasPrivate)&&(includePrivate)) {
*(p++) = ':';
el = Utils::b32e((const uint8_t *)(&_priv),sizeof(_priv),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
}
*p = (char)0;
return buf;
}
}
return nullptr;
}
bool Identity::fromString(const char *str)
{
_fp.zero();
_hasPrivate = false;
if (!str) {
_address.zero();
return false;
}
char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH];
if (!Utils::scopy(tmp,sizeof(tmp),str)) {
_address.zero();
return false;
}
int fno = 0;
char *saveptr = (char *)0;
for(char *f=Utils::stok(tmp,":",&saveptr);((f)&&(fno < 4));f=Utils::stok((char *)0,":",&saveptr)) {
switch(fno++) {
case 0:
_address = Address(Utils::hexStrToU64(f));
if (_address.isReserved()) {
_address.zero();
return false;
}
break;
case 1:
if ((f[0] == '0')&&(!f[1])) {
_type = C25519;
} else if ((f[0] == '1')&&(!f[1])) {
_type = P384;
} else {
_address.zero();
return false;
}
break;
case 2:
switch(_type) {
case C25519:
if (Utils::unhex(f,strlen(f),_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN) != ZT_C25519_PUBLIC_KEY_LEN) {
_address.zero();
return false;
}
break;
case P384:
if (Utils::b32d(f,(uint8_t *)(&_pub),sizeof(_pub)) != sizeof(_pub)) {
_address.zero();
return false;
}
break;
}
break;
case 3:
if (strlen(f) > 1) {
switch(_type) {
case C25519:
if (Utils::unhex(f,strlen(f),_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN) != ZT_C25519_PRIVATE_KEY_LEN) {
_address.zero();
return false;
} else {
_hasPrivate = true;
}
break;
case P384:
if (Utils::b32d(f,(uint8_t *)(&_priv),sizeof(_priv)) != sizeof(_priv)) {
_address.zero();
return false;
} else {
_hasPrivate = true;
}
break;
}
break;
}
}
}
if (fno < 3) {
_address.zero();
return false;
}
_computeHash();
if ((_type == P384)&&(_address != Address(_fp.hash()))) {
_address.zero();
return false;
}
return true;
}
int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate) const noexcept
{
_address.copyTo(data);
switch(_type) {
case C25519:
data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519;
Utils::copy<ZT_C25519_PUBLIC_KEY_LEN>(data + ZT_ADDRESS_LENGTH + 1,_pub.c25519);
if ((includePrivate)&&(_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = ZT_C25519_PRIVATE_KEY_LEN;
Utils::copy<ZT_C25519_PRIVATE_KEY_LEN>(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,_priv.c25519);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN;
} else {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = 0;
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1;
}
case P384:
data[ZT_ADDRESS_LENGTH] = (uint8_t)P384;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1,&_pub);
if ((includePrivate)&&(_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,&_priv);
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
} else {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0;
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
}
}
return -1;
}
int Identity::unmarshal(const uint8_t *data,const int len) noexcept
{
_fp.zero();
_hasPrivate = false;
if (len < (1 + ZT_ADDRESS_LENGTH))
return -1;
_address.setTo(data);
unsigned int privlen;
switch((_type = (Type)data[ZT_ADDRESS_LENGTH])) {
case C25519:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1))
return -1;
Utils::copy<ZT_C25519_PUBLIC_KEY_LEN>(_pub.c25519,data + ZT_ADDRESS_LENGTH + 1);
_computeHash();
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN];
if (privlen == ZT_C25519_PRIVATE_KEY_LEN) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN))
return -1;
_hasPrivate = true;
Utils::copy<ZT_C25519_PRIVATE_KEY_LEN>(_priv.c25519,data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN;
} else if (privlen == 0) {
_hasPrivate = false;
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1;
}
break;
case P384:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1))
return -1;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(&_pub,data + ZT_ADDRESS_LENGTH + 1);
_computeHash(); // this sets the address for P384
if (_address != Address(_fp.hash())) // this sanity check is possible with V1 identities
return -1;
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE];
if (privlen == ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE))
return -1;
_hasPrivate = true;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE>(&_priv,data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1);
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
} else if (privlen == 0) {
_hasPrivate = false;
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
}
break;
}
return -1;
}
void Identity::_computeHash()
{
switch(_type) {
default:
_fp.zero();
break;
case C25519:
_fp._fp.address = _address.toInt();
SHA384(_fp._fp.hash,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
break;
case P384:
SHA384(_fp._fp.hash,&_pub,sizeof(_pub));
_fp._fp.address = _address.toInt();
break;
}
}
} // namespace ZeroTier
extern "C" {
ZT_Identity *ZT_Identity_new(enum ZT_Identity_Type type)
{
if ((type != ZT_IDENTITY_TYPE_C25519)&&(type != ZT_IDENTITY_TYPE_P384))
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity();
id->generate((ZeroTier::Identity::Type)type);
return reinterpret_cast<ZT_Identity *>(id);
} catch ( ... ) {
return nullptr;
}
}
ZT_Identity *ZT_Identity_fromString(const char *idStr)
{
if (!idStr)
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity();
if (!id->fromString(idStr)) {
delete id;
return nullptr;
}
return reinterpret_cast<ZT_Identity *>(id);
} catch ( ... ) {
return nullptr;
}
}
int ZT_Identity_validate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->locallyValidate() ? 1 : 0;
}
unsigned int ZT_Identity_sign(const ZT_Identity *id,const void *data,unsigned int len,void *signature,unsigned int signatureBufferLength)
{
if (!id)
return 0;
if (signatureBufferLength < ZT_SIGNATURE_BUFFER_SIZE)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data,len,signature,signatureBufferLength);
}
int ZT_Identity_verify(const ZT_Identity *id,const void *data,unsigned int len,const void *signature,unsigned int sigLen)
{
if ((!id)||(!signature)||(!sigLen))
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data,len,signature,sigLen) ? 1 : 0;
}
enum ZT_Identity_Type ZT_Identity_type(const ZT_Identity *id)
{
if (!id)
return (ZT_Identity_Type)0;
return (enum ZT_Identity_Type)reinterpret_cast<const ZeroTier::Identity *>(id)->type();
}
char *ZT_Identity_toString(const ZT_Identity *id,char *buf,int capacity,int includePrivate)
{
if ((!id)||(!buf)||(capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
return nullptr;
reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0,buf);
return buf;
}
int ZT_Identity_hasPrivate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->hasPrivate() ? 1 : 0;
}
uint64_t ZT_Identity_address(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->address().toInt();
}
const ZT_Fingerprint *ZT_Identity_fingerprint(const ZT_Identity *id)
{
if (!id)
return nullptr;
return reinterpret_cast<const ZeroTier::Identity *>(id)->fingerprint().apiFingerprint();
}
ZT_SDK_API void ZT_Identity_delete(ZT_Identity *id)
{
if (id)
delete reinterpret_cast<ZeroTier::Identity *>(id);
}
}