ZeroTierOne/core/Node.cpp

796 lines
23 KiB
C++

/*
* Copyright (c)2013-2021 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Constants.hpp"
#include "SharedPtr.hpp"
#include "Node.hpp"
#include "NetworkController.hpp"
#include "Topology.hpp"
#include "Address.hpp"
#include "Identity.hpp"
#include "SelfAwareness.hpp"
#include "Network.hpp"
#include "Trace.hpp"
#include "Locator.hpp"
#include "Expect.hpp"
#include "VL1.hpp"
#include "VL2.hpp"
#include "Buf.hpp"
#include "TrustStore.hpp"
#include "Store.hpp"
namespace ZeroTier {
namespace {
struct _NodeObjects
{
ZT_INLINE _NodeObjects(RuntimeEnvironment *const RR, Node *const n, void *const tPtr, const int64_t now) :
networks(),
t(RR),
expect(),
vl2(RR),
vl1(RR),
topology(RR, tPtr, now),
sa(RR),
ts()
{
RR->networks = &networks;
RR->t = &t;
RR->expect = &expect;
RR->vl2 = &vl2;
RR->vl1 = &vl1;
RR->topology = &topology;
RR->sa = &sa;
RR->ts = &ts;
}
TinyMap< SharedPtr< Network > > networks;
Trace t;
Expect expect;
VL2 vl2;
VL1 vl1;
Topology topology;
SelfAwareness sa;
TrustStore ts;
};
} // anonymous namespace
Node::Node(
void *uPtr,
void *tPtr,
const struct ZT_Node_Callbacks *callbacks,
int64_t now) :
m_RR(this),
RR(&m_RR),
m_store(&m_RR),
m_objects(nullptr),
m_lastPeerPulse(0),
m_lastHousekeepingRun(0),
m_lastNetworkHousekeepingRun(0),
m_lastRootRank(0),
m_now(now),
m_online(false)
{
ZT_SPEW("Node starting up!");
Utils::copy< sizeof(ZT_Node_Callbacks) >(&m_RR.cb, callbacks);
m_RR.uPtr = uPtr;
m_RR.store = &m_store;
Vector< uint8_t > data(m_store.get(tPtr, ZT_STATE_OBJECT_IDENTITY_SECRET, Utils::ZERO256, 0));
bool haveIdentity = false;
if (!data.empty()) {
data.push_back(0); // zero-terminate string
if (m_RR.identity.fromString((const char *)data.data())) {
m_RR.identity.toString(false, m_RR.publicIdentityStr);
m_RR.identity.toString(true, m_RR.secretIdentityStr);
haveIdentity = true;
ZT_SPEW("loaded identity %s", RR->identity.toString().c_str());
}
}
if (!haveIdentity) {
m_RR.identity.generate(Identity::C25519);
m_RR.identity.toString(false, m_RR.publicIdentityStr);
m_RR.identity.toString(true, m_RR.secretIdentityStr);
m_store.put(tPtr, ZT_STATE_OBJECT_IDENTITY_SECRET, Utils::ZERO256, 0, m_RR.secretIdentityStr, (unsigned int)strlen(m_RR.secretIdentityStr));
m_store.put(tPtr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, Utils::ZERO256, 0, m_RR.publicIdentityStr, (unsigned int)strlen(m_RR.publicIdentityStr));
ZT_SPEW("no pre-existing identity found, created %s", RR->identity.toString().c_str());
} else {
data = m_store.get(tPtr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, Utils::ZERO256, 0);
if ((data.empty()) || (memcmp(data.data(), m_RR.publicIdentityStr, strlen(m_RR.publicIdentityStr)) != 0))
m_store.put(tPtr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, Utils::ZERO256, 0, m_RR.publicIdentityStr, (unsigned int)strlen(m_RR.publicIdentityStr));
}
uint8_t localSecretCipherKey[ZT_FINGERPRINT_HASH_SIZE];
m_RR.identity.hashWithPrivate(localSecretCipherKey);
++localSecretCipherKey[0];
SHA384(localSecretCipherKey, localSecretCipherKey, ZT_FINGERPRINT_HASH_SIZE);
m_RR.localSecretCipher.init(localSecretCipherKey);
for (unsigned int i = 0; i < 1023; ++i)
m_RR.randomPrivilegedPortOrder[i] = (uint16_t)(i + 1);
for (unsigned int i = 0; i < 512; ++i) {
uint64_t rn = Utils::random();
const unsigned int a = (unsigned int)rn % 1023;
const unsigned int b = (unsigned int)(rn >> 32U) % 1023;
if (a != b) {
const uint16_t tmp = m_RR.randomPrivilegedPortOrder[a];
m_RR.randomPrivilegedPortOrder[a] = m_RR.randomPrivilegedPortOrder[b];
m_RR.randomPrivilegedPortOrder[b] = tmp;
}
}
m_objects = new _NodeObjects(&m_RR, this, tPtr, now);
ZT_SPEW("node initialized!");
postEvent(tPtr, ZT_EVENT_UP);
}
Node::~Node()
{
ZT_SPEW("Node shutting down (in destructor).");
m_allNetworks_l.lock();
RR->networks->clear();
m_allNetworks.clear();
m_allNetworks_l.unlock();
delete reinterpret_cast<_NodeObjects *>(m_objects);
// Let go of cached Buf objects. If other nodes happen to be running in this
// same process space new Bufs will be allocated as needed, but this is almost
// never the case. Calling this here saves RAM if we are running inside something
// that wants to keep running after tearing down its ZeroTier core instance.
Buf::freePool();
}
void Node::shutdown(void *tPtr)
{
m_allNetworks_l.lock();
RR->networks->clear();
m_allNetworks.clear();
m_allNetworks_l.unlock();
postEvent(tPtr, ZT_EVENT_DOWN);
if (RR->topology)
RR->topology->saveAll(tPtr);
}
ZT_ResultCode Node::processBackgroundTasks(
void *tPtr,
int64_t now,
volatile int64_t *nextBackgroundTaskDeadline)
{
m_now = now;
Mutex::Lock bl(m_backgroundTasksLock);
try {
if ((now - m_lastPeerPulse) >= ZT_PEER_PULSE_INTERVAL) {
m_lastPeerPulse = now;
ZT_SPEW("running pulse() on each peer...");
try {
Vector< SharedPtr< Peer > > allPeers, rootPeers;
RR->topology->allPeers(allPeers, rootPeers);
bool online = false;
for (Vector< SharedPtr< Peer > >::iterator p(allPeers.begin()); p != allPeers.end(); ++p) {
const bool isRoot = std::find(rootPeers.begin(), rootPeers.end(), *p) != rootPeers.end();
(*p)->pulse(tPtr, now, isRoot);
online |= ((isRoot || rootPeers.empty()) && (*p)->directlyConnected(now));
}
if (m_online.exchange(online) != online)
postEvent(tPtr, online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
if ((now - m_lastNetworkHousekeepingRun) >= ZT_NETWORK_HOUSEKEEPING_PERIOD) {
m_lastHousekeepingRun = now;
ZT_SPEW("running networking housekeeping...");
Mutex::Lock l(m_allNetworks_l);
for (Vector< SharedPtr< Network > >::const_iterator i(m_allNetworks.begin()); i != m_allNetworks.end(); ++i) {
(*i)->doPeriodicTasks(tPtr, now);
}
}
if ((now - m_lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {
m_lastHousekeepingRun = now;
ZT_SPEW("running housekeeping...");
RR->topology->doPeriodicTasks(tPtr, now);
RR->sa->clean(now);
}
if ((now - m_lastRootRank) >= ZT_ROOT_RANK_PERIOD) {
m_lastRootRank = now;
ZT_SPEW("ranking roots...");
RR->topology->rankRoots(now);
}
*nextBackgroundTaskDeadline = now + ZT_TIMER_TASK_INTERVAL;
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
return ZT_RESULT_OK;
}
ZT_ResultCode Node::join(
uint64_t nwid,
const ZT_Fingerprint *controllerFingerprint,
void *uptr,
void *tptr)
{
Mutex::Lock l(m_allNetworks_l);
Fingerprint fp;
if (controllerFingerprint) {
fp = *controllerFingerprint;
ZT_SPEW("joining network %.16llx with controller fingerprint %s", nwid, fp.toString().c_str());
} else {
ZT_SPEW("joining network %.16llx", nwid);
}
for (Vector< SharedPtr< Network > >::iterator n(m_allNetworks.begin()); n != m_allNetworks.end(); ++n) {
if ((*n)->id() == nwid)
return ZT_RESULT_OK;
}
SharedPtr< Network > network(new Network(RR, tptr, nwid, fp, uptr, nullptr));
m_allNetworks.push_back(network);
RR->networks->set(nwid, network);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::leave(
uint64_t nwid,
void **uptr,
void *tptr)
{
Mutex::Lock l(m_allNetworks_l);
ZT_SPEW("leaving network %.16llx", nwid);
ZT_VirtualNetworkConfig ctmp;
SharedPtr< Network > network;
RR->networks->erase(nwid);
for (Vector< SharedPtr< Network > >::iterator n(m_allNetworks.begin()); n != m_allNetworks.end(); ++n) {
if ((*n)->id() == nwid) {
network.move(*n);
m_allNetworks.erase(n);
break;
}
}
uint64_t tmp[2];
tmp[0] = nwid;
tmp[1] = 0;
m_store.erase(tptr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp, 1);
if (network) {
if (uptr)
*uptr = *network->userPtr();
network->externalConfig(&ctmp);
RR->node->configureVirtualNetworkPort(tptr, nwid, uptr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY, &ctmp);
network->destroy();
return ZT_RESULT_OK;
}
return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
ZT_ResultCode Node::multicastSubscribe(
void *tPtr,
uint64_t nwid,
uint64_t multicastGroup,
unsigned long multicastAdi)
{
ZT_SPEW("multicast subscribe to %s:%lu", MAC(multicastGroup).toString().c_str(), multicastAdi);
const SharedPtr< Network > nw(RR->networks->get(nwid));
if (nw) {
nw->multicastSubscribe(tPtr, MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else {
return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
}
ZT_ResultCode Node::multicastUnsubscribe(
uint64_t nwid,
uint64_t multicastGroup,
unsigned long multicastAdi)
{
ZT_SPEW("multicast unsubscribe from %s:%lu", MAC(multicastGroup).toString().c_str(), multicastAdi);
const SharedPtr< Network > nw(RR->networks->get(nwid));
if (nw) {
nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else {
return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
}
void Node::status(ZT_NodeStatus *status) const
{
status->address = RR->identity.address().toInt();
status->identity = reinterpret_cast<const ZT_Identity *>(&RR->identity);
status->publicIdentity = RR->publicIdentityStr;
status->secretIdentity = RR->secretIdentityStr;
status->online = m_online ? 1 : 0;
}
struct p_ZT_PeerListPrivate : public ZT_PeerList
{
// Actual containers for the memory, hidden from external users.
Vector< ZT_Peer > p_peers;
List< Vector< ZT_Path > > p_paths;
List< Identity > p_identities;
List< Blob< ZT_LOCATOR_MARSHAL_SIZE_MAX > > p_locators;
};
static void p_peerListFreeFunction(const void *pl)
{
if (pl)
delete reinterpret_cast<p_ZT_PeerListPrivate *>(const_cast<void *>(pl));
}
struct p_sortPeerPtrsByAddress
{
ZT_INLINE bool operator()(const SharedPtr< Peer > &a, const SharedPtr< Peer > &b) const noexcept
{ return (a->address() < b->address()); }
};
ZT_PeerList *Node::peers() const
{
p_ZT_PeerListPrivate *pl = nullptr;
try {
pl = new p_ZT_PeerListPrivate;
pl->freeFunction = p_peerListFreeFunction;
Vector< SharedPtr< Peer > > peers, rootPeers;
RR->topology->allPeers(peers, rootPeers);
std::sort(peers.begin(), peers.end(), p_sortPeerPtrsByAddress());
std::sort(rootPeers.begin(), rootPeers.end());
int64_t now = m_now;
for (Vector< SharedPtr< Peer > >::iterator pi(peers.begin()); pi != peers.end(); ++pi) {
pl->p_peers.push_back(ZT_Peer());
ZT_Peer &p = pl->p_peers.back();
Peer &pp = **pi;
p.address = pp.address();
pl->p_identities.push_back(pp.identity());
p.identity = reinterpret_cast<const ZT_Identity *>(&(pl->p_identities.back()));
p.fingerprint = &(pl->p_identities.back().fingerprint());
if (pp.remoteVersionKnown()) {
p.versionMajor = (int)pp.remoteVersionMajor();
p.versionMinor = (int)pp.remoteVersionMinor();
p.versionRev = (int)pp.remoteVersionRevision();
p.versionProto = (int)pp.remoteVersionProtocol();
} else {
p.versionMajor = -1;
p.versionMinor = -1;
p.versionRev = -1;
p.versionProto = -1;
}
p.latency = pp.latency();
p.root = std::binary_search(rootPeers.begin(), rootPeers.end(), *pi) ? 1 : 0;
p.networks = nullptr;
p.networkCount = 0; // TODO: networks this peer belongs to
Vector< SharedPtr< Path > > ztPaths;
pp.getAllPaths(ztPaths);
if (ztPaths.empty()) {
pl->p_paths.push_back(Vector< ZT_Path >());
std::vector< ZT_Path > &apiPaths = pl->p_paths.back();
apiPaths.resize(ztPaths.size());
for (unsigned long i = 0; i < (unsigned long)ztPaths.size(); ++i) {
SharedPtr< Path > &ztp = ztPaths[i];
ZT_Path &apip = apiPaths[i];
apip.endpoint.type = ZT_ENDPOINT_TYPE_IP_UDP;
Utils::copy< sizeof(struct sockaddr_storage) >(&(apip.endpoint.value.ss), &(ztp->address().as.ss));
apip.lastSend = ztp->lastOut();
apip.lastReceive = ztp->lastIn();
apip.alive = ztp->alive(now) ? 1 : 0;
apip.preferred = (i == 0) ? 1 : 0;
}
p.paths = apiPaths.data();
p.pathCount = (unsigned int)apiPaths.size();
} else {
p.paths = nullptr;
p.pathCount = 0;
}
const SharedPtr< const Locator > loc(pp.locator());
if (loc) {
pl->p_locators.push_back(Blob< ZT_LOCATOR_MARSHAL_SIZE_MAX >());
Blob< ZT_LOCATOR_MARSHAL_SIZE_MAX > &lb = pl->p_locators.back();
Utils::zero< ZT_LOCATOR_MARSHAL_SIZE_MAX >(lb.data);
const int ls = loc->marshal(lb.data);
if (ls > 0) {
p.locatorSize = (unsigned int)ls;
p.locator = lb.data;
}
}
}
pl->peers = pl->p_peers.data();
pl->peerCount = (unsigned long)pl->p_peers.size();
return pl;
} catch (...) {
delete pl;
return nullptr;
}
}
ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const
{
const SharedPtr< Network > nw(RR->networks->get(nwid));
if (nw) {
ZT_VirtualNetworkConfig *const nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig));
nw->externalConfig(nc);
return nc;
} else {
return nullptr;
}
}
ZT_VirtualNetworkList *Node::networks() const
{
Mutex::Lock l(m_allNetworks_l);
char *const buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * m_allNetworks.size()));
if (!buf)
return nullptr;
ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf;
nl->freeFunction = reinterpret_cast<void (*)(const void *)>(free);
nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList));
nl->networkCount = 0;
for (Vector< SharedPtr< Network > >::const_iterator i(m_allNetworks.begin()); i != m_allNetworks.end(); ++i)
(*i)->externalConfig(&(nl->networks[nl->networkCount++]));
return nl;
}
void Node::setNetworkUserPtr(
uint64_t nwid,
void *ptr)
{
SharedPtr< Network > nw(RR->networks->get(nwid));
if (nw) {
m_allNetworks_l.lock(); // ensure no concurrent modification of user PTR in network
*(nw->userPtr()) = ptr;
m_allNetworks_l.unlock();
}
}
void Node::setInterfaceAddresses(
const ZT_InterfaceAddress *addrs,
unsigned int addrCount)
{
Mutex::Lock _l(m_localInterfaceAddresses_m);
m_localInterfaceAddresses.clear();
for (unsigned int i = 0; i < addrCount; ++i) {
bool dupe = false;
for (unsigned int j = 0; j < i; ++j) {
if (*(reinterpret_cast<const InetAddress *>(&addrs[j].address)) == *(reinterpret_cast<const InetAddress *>(&addrs[i].address))) {
dupe = true;
break;
}
}
if (!dupe)
m_localInterfaceAddresses.push_back(addrs[i]);
}
}
ZT_ResultCode Node::addPeer(
void *tptr,
const ZT_Identity *identity)
{
if (!identity)
return ZT_RESULT_ERROR_BAD_PARAMETER;
SharedPtr< Peer > peer(RR->topology->peer(tptr, reinterpret_cast<const Identity *>(identity)->address()));
if (!peer) {
peer.set(new Peer(RR));
peer->init(*reinterpret_cast<const Identity *>(identity));
peer = RR->topology->add(tptr, peer);
}
return (peer->identity() == *reinterpret_cast<const Identity *>(identity)) ? ZT_RESULT_OK : ZT_RESULT_ERROR_COLLIDING_OBJECT;
}
int Node::tryPeer(
void *tptr,
const ZT_Fingerprint *fp,
const ZT_Endpoint *endpoint,
int retries)
{
if ((!fp) || (!endpoint))
return 0;
const SharedPtr< Peer > peer(RR->topology->peer(tptr, fp->address, true));
if ((peer) && (peer->identity().fingerprint().bestSpecificityEquals(*fp))) {
peer->contact(tptr, m_now, Endpoint(*endpoint), std::min(retries, 1));
return 1;
}
return 0;
}
ZT_CertificateError Node::addCertificate(
void *tptr,
int64_t now,
unsigned int localTrust,
const ZT_Certificate *cert,
const void *certData,
unsigned int certSize)
{
Certificate c;
if (cert) {
c = *cert;
} else {
if ((!certData) || (!certSize))
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
if (!c.decode(certData, certSize))
return ZT_CERTIFICATE_ERROR_INVALID_FORMAT;
}
RR->ts->add(c, localTrust);
RR->ts->update(now, nullptr);
SharedPtr< TrustStore::Entry > ent(RR->ts->get(c.getSerialNo()));
return (ent) ? ent->error() : ZT_CERTIFICATE_ERROR_INVALID_FORMAT; // should never be null, but if so it means invalid
}
ZT_ResultCode Node::deleteCertificate(
void *tptr,
const void *serialNo)
{
if (!serialNo)
return ZT_RESULT_ERROR_BAD_PARAMETER;
RR->ts->erase(H384(serialNo));
RR->ts->update(-1, nullptr);
return ZT_RESULT_OK;
}
struct p_certificateListInternal
{
Vector< SharedPtr< TrustStore::Entry > > entries;
Vector< const ZT_Certificate * > c;
Vector< unsigned int > t;
};
static void p_freeCertificateList(const void *cl)
{
if (cl) {
reinterpret_cast<const p_certificateListInternal *>(reinterpret_cast<const uint8_t *>(cl) + sizeof(ZT_CertificateList))->~p_certificateListInternal();
free(const_cast<void *>(cl));
}
}
ZT_CertificateList *Node::listCertificates()
{
ZT_CertificateList *const cl = (ZT_CertificateList *)malloc(sizeof(ZT_CertificateList) + sizeof(p_certificateListInternal));
if (!cl)
return nullptr;
p_certificateListInternal *const clint = reinterpret_cast<p_certificateListInternal *>(reinterpret_cast<uint8_t *>(cl) + sizeof(ZT_CertificateList));
new(clint) p_certificateListInternal;
clint->entries = RR->ts->all(false);
clint->c.reserve(clint->entries.size());
clint->t.reserve(clint->entries.size());
for (Vector< SharedPtr< TrustStore::Entry > >::const_iterator i(clint->entries.begin()); i != clint->entries.end(); ++i) {
clint->c.push_back(&((*i)->certificate()));
clint->t.push_back((*i)->localTrust());
}
cl->freeFunction = p_freeCertificateList;
cl->certs = clint->c.data();
cl->localTrust = clint->t.data();
cl->certCount = (unsigned long)clint->c.size();
return cl;
}
int Node::sendUserMessage(
void *tptr,
uint64_t dest,
uint64_t typeId,
const void *data,
unsigned int len)
{
try {
if (RR->identity.address().toInt() != dest) {
// TODO
/*
Packet outp(Address(dest),RR->identity.address(),Packet::VERB_USER_MESSAGE);
outp.append(typeId);
outp.append(data,len);
outp.compress();
RR->sw->send(tptr,outp,true);
*/
return 1;
}
} catch (...) {}
return 0;
}
void Node::setController(void *networkControllerInstance)
{
m_RR.localNetworkController = reinterpret_cast<NetworkController *>(networkControllerInstance);
if (networkControllerInstance)
m_RR.localNetworkController->init(RR->identity, this);
}
// Methods used only within the core ----------------------------------------------------------------------------------
bool Node::shouldUsePathForZeroTierTraffic(void *tPtr, const Identity &id, const int64_t localSocket, const InetAddress &remoteAddress)
{
{
Mutex::Lock l(m_allNetworks_l);
for (Vector< SharedPtr< Network > >::iterator i(m_allNetworks.begin()); i != m_allNetworks.end(); ++i) {
for (unsigned int k = 0, j = (*i)->config().staticIpCount; k < j; ++k) {
if ((*i)->config().staticIps[k].containsAddress(remoteAddress))
return false;
}
}
}
if (RR->cb.pathCheckFunction) {
return (RR->cb.pathCheckFunction(
reinterpret_cast<ZT_Node *>(this),
RR->uPtr,
tPtr,
id.address().toInt(),
(const ZT_Identity *)&id,
localSocket,
reinterpret_cast<const ZT_InetAddress *>(&remoteAddress)) != 0);
}
return true;
}
bool Node::externalPathLookup(void *tPtr, const Identity &id, int family, InetAddress &addr)
{
if (RR->cb.pathLookupFunction) {
return (RR->cb.pathLookupFunction(
reinterpret_cast<ZT_Node *>(this),
RR->uPtr,
tPtr,
id.address().toInt(),
reinterpret_cast<const ZT_Identity *>(&id),
family,
reinterpret_cast<ZT_InetAddress *>(&addr)) == ZT_RESULT_OK);
}
return false;
}
// Implementation of NetworkController::Sender ------------------------------------------------------------------------
void Node::ncSendConfig(uint64_t nwid, uint64_t requestPacketId, const Address &destination, const NetworkConfig &nc, bool sendLegacyFormatConfig)
{
if (destination == RR->identity.address()) {
SharedPtr< Network > n(RR->networks->get(nwid));
if (!n)
return;
n->setConfiguration((void *)0, nc, true);
} else {
Dictionary dconf;
if (nc.toDictionary(dconf)) {
uint64_t configUpdateId = Utils::random();
if (!configUpdateId)
++configUpdateId;
Vector< uint8_t > ddata;
dconf.encode(ddata);
// TODO
/*
unsigned int chunkIndex = 0;
while (chunkIndex < totalSize) {
const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256)));
Packet outp(destination,RR->identity.address(),(requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG);
if (requestPacketId) {
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
}
const unsigned int sigStart = outp.size();
outp.append(nwid);
outp.append((uint16_t)chunkLen);
outp.append((const void *)(dconf->data() + chunkIndex),chunkLen);
outp.append((uint8_t)0); // no flags
outp.append((uint64_t)configUpdateId);
outp.append((uint32_t)totalSize);
outp.append((uint32_t)chunkIndex);
uint8_t sig[256];
const unsigned int siglen = RR->identity.sign(reinterpret_cast<const uint8_t *>(outp.data()) + sigStart,outp.size() - sigStart,sig,sizeof(sig));
outp.append((uint8_t)1);
outp.append((uint16_t)siglen);
outp.append(sig,siglen);
outp.compress();
RR->sw->send((void *)0,outp,true);
chunkIndex += chunkLen;
}
*/
}
}
}
void Node::ncSendRevocation(const Address &destination, const RevocationCredential &rev)
{
if (destination == RR->identity.address()) {
SharedPtr< Network > n(RR->networks->get(rev.networkId()));
if (!n)
return;
n->addCredential(nullptr, RR->identity, rev);
} else {
// TODO
/*
Packet outp(destination,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS);
outp.append((uint8_t)0x00);
outp.append((uint16_t)0);
outp.append((uint16_t)0);
outp.append((uint16_t)1);
rev.serialize(outp);
outp.append((uint16_t)0);
RR->sw->send((void *)0,outp,true);
*/
}
}
void Node::ncSendError(uint64_t nwid, uint64_t requestPacketId, const Address &destination, NetworkController::ErrorCode errorCode)
{
if (destination == RR->identity.address()) {
SharedPtr< Network > n(RR->networks->get(nwid));
if (!n)
return;
switch (errorCode) {
case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
n->setNotFound();
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
n->setAccessDenied();
break;
default:
break;
}
} else if (requestPacketId) {
// TODO
/*
Packet outp(destination,RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
switch(errorCode) {
//case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
//case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
default:
outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
break;
}
outp.append(nwid);
RR->sw->send((void *)0,outp,true);
*/
} // else we can't send an ERROR() in response to nothing, so discard
}
} // namespace ZeroTier