ZeroTierOne/node/Topology.cpp

256 lines
6.8 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Topology.hpp"
namespace ZeroTier {
const uint64_t Topology::s_pathHashSalt = Utils::getSecureRandomU64();
// Sorts roots so as to put the lowest latency alive root first.
struct _RootSortComparisonOperator
{
ZT_INLINE _RootSortComparisonOperator(const int64_t now) : _now(now) {}
ZT_INLINE bool operator()(const SharedPtr<Peer> &a,const SharedPtr<Peer> &b)
{
const int64_t now = _now;
if (a->active(now)) {
if (b->active(now))
return (a->latency() < b->latency());
return true;
}
return a->lastReceive() < b->lastReceive();
}
const int64_t _now;
};
Topology::Topology(const RuntimeEnvironment *renv,void *tPtr) :
RR(renv),
m_numConfiguredPhysicalPaths(0)
{
uint64_t idtmp[2]; idtmp[0] = 0; idtmp[1] = 0;
std::vector<uint8_t> data(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_ROOTS,idtmp));
if (!data.empty()) {
uint8_t *dptr = data.data();
int drem = (int)data.size();
while (drem > 0) {
Identity id;
int l = id.unmarshal(dptr,drem);
if (l > 0) {
m_roots.insert(id);
dptr += l;
drem -= l;
}
}
}
for(std::set<Identity>::const_iterator r(m_roots.begin());r != m_roots.end();++r) {
SharedPtr<Peer> p;
m_loadCached(tPtr, r->address(), p);
if ((!p)||(p->identity() != *r)) {
p.set(new Peer(RR));
p->init(*r);
}
m_rootPeers.push_back(p);
m_peers[p->address()] = p;
m_peersByIncomingProbe[p->incomingProbe()] = p;
m_peersByIdentityHash[p->identity().fingerprint()] = p;
}
}
Topology::~Topology()
{
}
SharedPtr<Peer> Topology::add(void *tPtr,const SharedPtr<Peer> &peer)
{
RWMutex::Lock _l(m_peers_l);
SharedPtr<Peer> &hp = m_peers[peer->address()];
if (hp)
return hp;
m_loadCached(tPtr, peer->address(), hp);
if (hp) {
m_peersByIncomingProbe[peer->incomingProbe()] = hp;
m_peersByIdentityHash[peer->identity().fingerprint()] = hp;
return hp;
}
hp = peer;
m_peersByIncomingProbe[peer->incomingProbe()] = peer;
m_peersByIdentityHash[peer->identity().fingerprint()] = peer;
return peer;
}
void Topology::getAllPeers(std::vector< SharedPtr<Peer> > &allPeers) const
{
RWMutex::RLock l(m_peers_l);
allPeers.clear();
allPeers.reserve(m_peers.size());
for(Map< Address,SharedPtr<Peer> >::const_iterator i(m_peers.begin());i != m_peers.end();++i)
allPeers.push_back(i->second);
}
void Topology::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig)
{
if (!pathNetwork) {
m_numConfiguredPhysicalPaths = 0;
} else {
std::map<InetAddress,ZT_PhysicalPathConfiguration> cpaths;
for(unsigned int i=0,j=m_numConfiguredPhysicalPaths;i < j;++i)
cpaths[m_physicalPathConfig[i].first] = m_physicalPathConfig[i].second;
if (pathConfig) {
ZT_PhysicalPathConfiguration pc(*pathConfig);
if (pc.mtu <= 0)
pc.mtu = ZT_DEFAULT_UDP_MTU;
else if (pc.mtu < ZT_MIN_UDP_MTU)
pc.mtu = ZT_MIN_UDP_MTU;
else if (pc.mtu > ZT_MAX_UDP_MTU)
pc.mtu = ZT_MAX_UDP_MTU;
cpaths[*(reinterpret_cast<const InetAddress *>(pathNetwork))] = pc;
} else {
cpaths.erase(*(reinterpret_cast<const InetAddress *>(pathNetwork)));
}
unsigned int cnt = 0;
for(std::map<InetAddress,ZT_PhysicalPathConfiguration>::const_iterator i(cpaths.begin());((i!=cpaths.end())&&(cnt<ZT_MAX_CONFIGURABLE_PATHS));++i) {
m_physicalPathConfig[cnt].first = i->first;
m_physicalPathConfig[cnt].second = i->second;
++cnt;
}
m_numConfiguredPhysicalPaths = cnt;
}
}
void Topology::addRoot(void *tPtr,const Identity &id,const InetAddress &bootstrap)
{
if (id == RR->identity) return; // sanity check
RWMutex::Lock l1(m_peers_l);
std::pair< std::set<Identity>::iterator,bool > ir(m_roots.insert(id));
if (ir.second) {
SharedPtr<Peer> &p = m_peers[id.address()];
if (!p) {
p.set(new Peer(RR));
p->init(id);
if (bootstrap)
p->setBootstrap(Endpoint(bootstrap));
m_peersByIncomingProbe[p->incomingProbe()] = p;
m_peersByIdentityHash[p->identity().fingerprint()] = p;
}
m_rootPeers.push_back(p);
uint8_t *const roots = (uint8_t *)malloc(ZT_IDENTITY_MARSHAL_SIZE_MAX * m_roots.size());
if (roots) {
int p = 0;
for(std::set<Identity>::const_iterator i(m_roots.begin());i != m_roots.end();++i) {
int pp = i->marshal(roots + p,false);
if (pp > 0)
p += pp;
}
uint64_t id[2];
id[0] = 0;
id[1] = 0;
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_ROOTS,id,roots,(unsigned int)p);
free(roots);
}
}
}
bool Topology::removeRoot(const Identity &id)
{
RWMutex::Lock l1(m_peers_l);
std::set<Identity>::iterator r(m_roots.find(id));
if (r != m_roots.end()) {
for(std::vector< SharedPtr<Peer> >::iterator p(m_rootPeers.begin());p != m_rootPeers.end();++p) {
if ((*p)->identity() == id) {
m_rootPeers.erase(p);
break;
}
}
m_roots.erase(r);
return true;
}
return false;
}
void Topology::rankRoots(const int64_t now)
{
RWMutex::Lock l1(m_peers_l);
std::sort(m_rootPeers.begin(), m_rootPeers.end(), _RootSortComparisonOperator(now));
}
void Topology::doPeriodicTasks(void *tPtr,const int64_t now)
{
{
RWMutex::Lock l1(m_peers_l);
for(Map< Address,SharedPtr<Peer> >::iterator i(m_peers.begin());i != m_peers.end();) {
if ( (!i->second->alive(now)) && (m_roots.count(i->second->identity()) == 0) ) {
i->second->save(tPtr);
m_peersByIncomingProbe.erase(i->second->incomingProbe());
m_peersByIdentityHash.erase(i->second->identity().fingerprint());
m_peers.erase(i++);
} else ++i;
}
}
{
RWMutex::Lock l1(m_paths_l);
for(Map< uint64_t,SharedPtr<Path> >::iterator i(m_paths.begin());i != m_paths.end();) {
if ((i->second.references() <= 1)&&(!i->second->alive(now)))
m_paths.erase(i++);
else ++i;
}
}
}
void Topology::saveAll(void *tPtr)
{
RWMutex::RLock l(m_peers_l);
for(Map< Address,SharedPtr<Peer> >::iterator i(m_peers.begin());i != m_peers.end();++i)
i->second->save(tPtr);
}
void Topology::m_loadCached(void *tPtr, const Address &zta, SharedPtr<Peer> &peer)
{
try {
uint64_t id[2];
id[0] = zta.toInt();
id[1] = 0;
std::vector<uint8_t> data(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_PEER,id));
if (data.size() > 8) {
const uint8_t *d = data.data();
int dl = (int)data.size();
const int64_t ts = (int64_t)Utils::loadBigEndian<uint64_t>(d);
Peer *const p = new Peer(RR);
int n = p->unmarshal(d + 8,dl - 8);
if (n < 0) {
delete p;
return;
}
if ((RR->node->now() - ts) < ZT_PEER_GLOBAL_TIMEOUT) {
// TODO: handle many peers, same address (?)
peer.set(p);
return;
}
}
} catch ( ... ) {
peer.zero();
}
}
} // namespace ZeroTier