ZeroTierOne/node/Identity.cpp
2020-02-19 10:18:52 -08:00

636 lines
17 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Constants.hpp"
#include "Identity.hpp"
#include "SHA512.hpp"
#include "Salsa20.hpp"
#include "AES.hpp"
#include "Utils.hpp"
#include <cstring>
#include <cstdint>
#include <algorithm>
namespace ZeroTier {
namespace {
// --------------------------------------------------------------------------------------------------------------------
// This is the memory-intensive hash function used to compute v0 identities
// from v0 public keys.
#define ZT_V0_IDENTITY_GEN_MEMORY 2097152
static void _computeMemoryHardHash(const void *const publicKey,unsigned int publicKeyBytes,void *const digest,void *const genmem) noexcept
{
// Digest publicKey[] to obtain initial digest
SHA512(digest,publicKey,publicKeyBytes);
// Initialize genmem[] using Salsa20 in a CBC-like configuration since
// ordinary Salsa20 is randomly seek-able. This is good for a cipher
// but is not what we want for sequential memory-hardness.
memset(genmem,0,ZT_V0_IDENTITY_GEN_MEMORY);
Salsa20 s20(digest,(char *)digest + 32);
s20.crypt20((char *)genmem,(char *)genmem,64);
for(unsigned long i=64;i<ZT_V0_IDENTITY_GEN_MEMORY;i+=64) {
unsigned long k = i - 64;
*((uint64_t *)((char *)genmem + i)) = *((uint64_t *)((char *)genmem + k));
*((uint64_t *)((char *)genmem + i + 8)) = *((uint64_t *)((char *)genmem + k + 8));
*((uint64_t *)((char *)genmem + i + 16)) = *((uint64_t *)((char *)genmem + k + 16));
*((uint64_t *)((char *)genmem + i + 24)) = *((uint64_t *)((char *)genmem + k + 24));
*((uint64_t *)((char *)genmem + i + 32)) = *((uint64_t *)((char *)genmem + k + 32));
*((uint64_t *)((char *)genmem + i + 40)) = *((uint64_t *)((char *)genmem + k + 40));
*((uint64_t *)((char *)genmem + i + 48)) = *((uint64_t *)((char *)genmem + k + 48));
*((uint64_t *)((char *)genmem + i + 56)) = *((uint64_t *)((char *)genmem + k + 56));
s20.crypt20((char *)genmem + i,(char *)genmem + i,64);
}
// Render final digest using genmem as a lookup table
for(unsigned long i=0;i<(ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (64 / sizeof(uint64_t)));
unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t)));
uint64_t tmp = ((uint64_t *)genmem)[idx2];
((uint64_t *)genmem)[idx2] = ((uint64_t *)digest)[idx1];
((uint64_t *)digest)[idx1] = tmp;
s20.crypt20(digest,digest,64);
}
}
struct _v0_identity_generate_cond
{
ZT_ALWAYS_INLINE _v0_identity_generate_cond() noexcept {}
ZT_ALWAYS_INLINE _v0_identity_generate_cond(unsigned char *sb,char *gm) noexcept : digest(sb),genmem(gm) {}
ZT_ALWAYS_INLINE bool operator()(const uint8_t pub[ZT_C25519_PUBLIC_KEY_LEN]) const noexcept
{
_computeMemoryHardHash(pub,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
return (digest[0] < 17);
}
unsigned char *digest;
char *genmem;
};
// --------------------------------------------------------------------------------------------------------------------
} // anonymous namespace
const Identity Identity::NIL;
bool Identity::generate(const Type t)
{
uint8_t digest[64];
_type = t;
_hasPrivate = true;
switch(t) {
case C25519: {
char *const genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
do {
C25519::generateSatisfying(_v0_identity_generate_cond(digest,genmem),_pub.c25519,_priv.c25519);
_address.setTo(digest + 59); // last 5 bytes are address
} while (_address.isReserved());
delete[] genmem;
_computeHash();
} break;
case P384: {
AES c;
do {
C25519::generate(_pub.c25519,_priv.c25519);
ECC384GenerateKey(_pub.p384,_priv.p384);
SHA384(digest,&_pub,sizeof(_pub));
c.init(digest);
c.encrypt(digest,digest);
c.encrypt(digest + 16,digest + 16);
c.encrypt(digest + 32,digest + 32);
if (digest[47] != 0)
continue;
_address.setTo(digest);
} while (_address.isReserved());
_hash.set(digest); // P384 uses the same hash for hash() and address generation
} break;
default:
return false;
}
return true;
}
bool Identity::locallyValidate() const
{
if ((_address.isReserved())||(!_address))
return false;
switch (_type) {
case C25519:
try {
uint8_t digest[64];
char *genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
_computeMemoryHardHash(_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
delete [] genmem;
return ((_address == Address(digest + 59))&&(!_address.isReserved())&&(digest[0] < 17));
} catch ( ... ) {}
return false;
case P384:
return ((_hash[47] == 0)&&(Address(_hash.data()) == _address));
}
return false;
}
void Identity::hashWithPrivate(uint8_t h[48]) const
{
if (_hasPrivate) {
switch (_type) {
case C25519:
SHA384(h,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN);
break;
case P384:
SHA384(h,&_pub,sizeof(_pub),&_priv,sizeof(_priv));
break;
}
return;
}
memset(h,0,48);
}
unsigned int Identity::sign(const void *data,unsigned int len,void *sig,unsigned int siglen) const
{
if (_hasPrivate) {
switch(_type) {
case C25519:
if (siglen >= ZT_C25519_SIGNATURE_LEN) {
C25519::sign(_priv.c25519,_pub.c25519,data,len,sig);
return ZT_C25519_SIGNATURE_LEN;
}
case P384:
if (siglen >= ZT_ECC384_SIGNATURE_SIZE) {
// For P384 we sign SHA384(data | public keys) for added defense against any attack
// that attempted to decouple the two keys in some way. Otherwise this has no impact
// on the security of the signature (unless SHA384 had some serious flaw).
uint8_t h[48];
SHA384(h,data,len,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
ECC384ECDSASign(_priv.p384,h,(uint8_t *)sig);
return ZT_ECC384_SIGNATURE_SIZE;
}
}
}
return 0;
}
bool Identity::verify(const void *data,unsigned int len,const void *sig,unsigned int siglen) const
{
switch(_type) {
case C25519:
return C25519::verify(_pub.c25519,data,len,sig,siglen);
case P384:
if (siglen == ZT_ECC384_SIGNATURE_SIZE) {
uint8_t h[48];
SHA384(h,data,len,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
return ECC384ECDSAVerify(_pub.p384,h,(const uint8_t *)sig);
}
break;
}
return false;
}
bool Identity::agree(const Identity &id,uint8_t key[ZT_PEER_SECRET_KEY_LENGTH]) const
{
uint8_t rawkey[128];
uint8_t h[64];
if (_hasPrivate) {
if (_type == C25519) {
if ((id._type == C25519)||(id._type == P384)) {
// If we are a C25519 key we can agree with another C25519 key or with only the
// C25519 portion of a type 1 P-384 key.
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
SHA512(h,rawkey,ZT_C25519_SHARED_KEY_LEN);
memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
return true;
}
} else if (_type == P384) {
if (id._type == P384) {
// For another P384 identity we execute DH agreement with BOTH keys and then
// hash the results together. For those (cough FIPS cough) who only consider
// P384 to be kosher, the C25519 secret can be considered a "salt"
// or something. For those who don't trust P384 this means the privacy of
// your traffic is also protected by C25519.
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
ECC384ECDH(id._pub.p384,_priv.p384,rawkey + ZT_C25519_SHARED_KEY_LEN);
SHA384(h,rawkey,ZT_C25519_SHARED_KEY_LEN + ZT_ECC384_SHARED_SECRET_SIZE);
memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
return true;
} else if (id._type == C25519) {
// If the other identity is a C25519 identity we can agree using only that type.
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
SHA512(h,rawkey,ZT_C25519_SHARED_KEY_LEN);
memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
return true;
}
}
}
return false;
}
char *Identity::toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
{
char *p = buf;
_address.toString(p);
p += 10;
*(p++) = ':';
switch(_type) {
case C25519: {
*(p++) = '0';
*(p++) = ':';
Utils::hex(_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,p);
p += ZT_C25519_PUBLIC_KEY_LEN * 2;
if ((_hasPrivate)&&(includePrivate)) {
*(p++) = ':';
Utils::hex(_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN,p);
p += ZT_C25519_PRIVATE_KEY_LEN * 2;
}
*p = (char)0;
return buf;
}
case P384: {
*(p++) = '1';
*(p++) = ':';
int el = Utils::b32e((const uint8_t *)(&_pub),sizeof(_pub),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
if ((_hasPrivate)&&(includePrivate)) {
*(p++) = ':';
el = Utils::b32e((const uint8_t *)(&_priv),sizeof(_priv),p,(int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
}
*p = (char)0;
return buf;
}
}
return nullptr;
}
bool Identity::fromString(const char *str)
{
_hash.zero();
_hasPrivate = false;
if (!str) {
_address.zero();
return false;
}
char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH];
if (!Utils::scopy(tmp,sizeof(tmp),str)) {
_address.zero();
return false;
}
int fno = 0;
char *saveptr = (char *)0;
for(char *f=Utils::stok(tmp,":",&saveptr);((f)&&(fno < 4));f=Utils::stok((char *)0,":",&saveptr)) {
switch(fno++) {
case 0:
_address = Address(Utils::hexStrToU64(f));
if (_address.isReserved()) {
_address.zero();
return false;
}
break;
case 1:
if ((f[0] == '0')&&(!f[1])) {
_type = C25519;
} else if ((f[0] == '1')&&(!f[1])) {
_type = P384;
} else {
_address.zero();
return false;
}
break;
case 2:
switch(_type) {
case C25519:
if (Utils::unhex(f,strlen(f),_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN) != ZT_C25519_PUBLIC_KEY_LEN) {
_address.zero();
return false;
}
break;
case P384:
if (Utils::b32d(f,(uint8_t *)(&_pub),sizeof(_pub)) != sizeof(_pub)) {
_address.zero();
return false;
}
break;
}
break;
case 3:
if (strlen(f) > 1) {
switch(_type) {
case C25519:
if (Utils::unhex(f,strlen(f),_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN) != ZT_C25519_PRIVATE_KEY_LEN) {
_address.zero();
return false;
} else {
_hasPrivate = true;
}
break;
case P384:
if (Utils::b32d(f,(uint8_t *)(&_priv),sizeof(_priv)) != sizeof(_priv)) {
_address.zero();
return false;
} else {
_hasPrivate = true;
}
break;
}
break;
}
}
}
if (fno < 3) {
_address.zero();
return false;
}
_computeHash();
return true;
}
int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate) const noexcept
{
_address.copyTo(data);
switch(_type) {
case C25519:
data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519;
memcpy(data + ZT_ADDRESS_LENGTH + 1,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
if ((includePrivate)&&(_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = ZT_C25519_PRIVATE_KEY_LEN;
memcpy(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN;
} else {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = 0;
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1;
}
case P384:
data[ZT_ADDRESS_LENGTH] = (uint8_t)P384;
memcpy(data + ZT_ADDRESS_LENGTH + 1,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
if ((includePrivate)&&(_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
memcpy(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,&_priv,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
} else {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0;
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
}
}
return -1;
}
int Identity::unmarshal(const uint8_t *data,const int len) noexcept
{
_hash.zero();
_hasPrivate = false;
if (len < (ZT_ADDRESS_LENGTH + 1))
return -1;
unsigned int privlen;
switch((_type = (Type)data[ZT_ADDRESS_LENGTH])) {
case C25519:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1))
return -1;
memcpy(_pub.c25519,data + ZT_ADDRESS_LENGTH + 1,ZT_C25519_PUBLIC_KEY_LEN);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN];
if (privlen == ZT_C25519_PRIVATE_KEY_LEN) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN))
return -1;
_hasPrivate = true;
memcpy(_priv.c25519,data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,ZT_C25519_PRIVATE_KEY_LEN);
_computeHash();
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN;
} else if (privlen == 0) {
_hasPrivate = false;
_computeHash();
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1;
}
break;
case P384:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1))
return -1;
memcpy(&_pub,data + ZT_ADDRESS_LENGTH + 1,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE];
if (privlen == ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE))
return -1;
_hasPrivate = true;
memcpy(&_priv,data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
_computeHash();
if (!this->locallyValidate()) // for P384 we do this always
return -1;
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
} else if (privlen == 0) {
_hasPrivate = false;
_computeHash();
if (!this->locallyValidate()) // for P384 we do this always
return -1;
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
}
break;
}
return -1;
}
void Identity::_computeHash()
{
switch(_type) {
default:
_hash.zero();
break;
case C25519:
SHA384(_hash.data(),_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
break;
case P384:
if (!_hash) {
uint8_t *const h = _hash.data();
SHA384(h,&_pub,sizeof(_pub));
AES c(h);
c.encrypt(h,h);
c.encrypt(h + 16,h + 16);
c.encrypt(h + 32,h + 32);
}
break;
}
}
} // namespace ZeroTier
extern "C" {
ZT_Identity *ZT_Identity_new(enum ZT_Identity_Type type)
{
if ((type != ZT_IDENTITY_TYPE_C25519)&&(type != ZT_IDENTITY_TYPE_P384))
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity();
id->generate((ZeroTier::Identity::Type)type);
return reinterpret_cast<ZT_Identity *>(id);
} catch ( ... ) {
return nullptr;
}
}
ZT_Identity *ZT_Identity_fromString(const char *idStr)
{
if (!idStr)
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity();
if (!id->fromString(idStr)) {
delete id;
return nullptr;
}
return reinterpret_cast<ZT_Identity *>(id);
} catch ( ... ) {
return nullptr;
}
}
int ZT_Identity_validate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->locallyValidate() ? 1 : 0;
}
unsigned int ZT_Identity_sign(const ZT_Identity *id,const void *data,unsigned int len,void *signature,unsigned int signatureBufferLength)
{
if (!id)
return 0;
if (signatureBufferLength < ZT_SIGNATURE_BUFFER_SIZE)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data,len,signature,signatureBufferLength);
}
int ZT_Identity_verify(const ZT_Identity *id,const void *data,unsigned int len,const void *signature,unsigned int sigLen)
{
if ((!id)||(!signature)||(!sigLen))
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data,len,signature,sigLen) ? 1 : 0;
}
enum ZT_Identity_Type ZT_Identity_type(const ZT_Identity *id)
{
if (!id)
return (ZT_Identity_Type)0;
return (enum ZT_Identity_Type)reinterpret_cast<const ZeroTier::Identity *>(id)->type();
}
char *ZT_Identity_toString(const ZT_Identity *id,char *buf,int capacity,int includePrivate)
{
if ((!id)||(!buf)||(capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
return nullptr;
reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0,buf);
return buf;
}
int ZT_Identity_hasPrivate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->hasPrivate() ? 1 : 0;
}
uint64_t ZT_Identity_address(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->address().toInt();
}
void ZT_Identity_hash(const ZT_Identity *id,uint8_t h[48],int includePrivate)
{
if (includePrivate)
reinterpret_cast<const ZeroTier::Identity *>(id)->hashWithPrivate(h);
else memcpy(h,reinterpret_cast<const ZeroTier::Identity *>(id)->hash().data(),ZT_IDENTITY_HASH_SIZE);
}
ZT_SDK_API void ZT_Identity_delete(ZT_Identity *id)
{
if (id)
delete reinterpret_cast<ZeroTier::Identity *>(id);
}
}