ZeroTierOne/node/Dictionary.cpp
2020-05-29 07:06:00 -07:00

250 lines
6.1 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Dictionary.hpp"
#include "Identity.hpp"
namespace ZeroTier {
static const FCV<char, 8> s_signatureFingerprint("@Si", 4);
static const FCV<char, 8> s_signatureData("@Ss", 4);
Dictionary::Dictionary()
{
}
Vector<uint8_t> &Dictionary::operator[](const char *k)
{
FCV<char, 8> key;
return m_entries[s_key(key, k)];
}
const Vector<uint8_t> &Dictionary::operator[](const char *k) const
{
static const Vector<uint8_t> s_emptyEntry;
FCV<char, 8> key;
SortedMap<FCV<char, 8>, Vector<uint8_t> >::const_iterator e(m_entries.find(s_key(key, k)));
return (e == m_entries.end()) ? s_emptyEntry : e->second;
}
void Dictionary::add(const char *k, bool v)
{
Vector<uint8_t> &e = (*this)[k];
e.resize(2);
e[0] = (uint8_t) (v ? '1' : '0');
e[1] = 0;
}
void Dictionary::add(const char *k, const Address &v)
{
Vector<uint8_t> &e = (*this)[k];
e.resize(ZT_ADDRESS_STRING_SIZE_MAX);
v.toString((char *) e.data());
}
void Dictionary::add(const char *k, const char *v)
{
if ((v) && (*v)) {
Vector<uint8_t> &e = (*this)[k];
e.clear();
while (*v)
e.push_back((uint8_t) *(v++));
}
}
void Dictionary::add(const char *k, const void *data, unsigned int len)
{
Vector<uint8_t> &e = (*this)[k];
if (len != 0) {
e.assign((const uint8_t *) data, (const uint8_t *) data + len);
} else {
e.clear();
}
}
bool Dictionary::getB(const char *k, bool dfl) const
{
const Vector<uint8_t> &e = (*this)[k];
if (!e.empty()) {
switch ((char) e[0]) {
case '1':
case 't':
case 'T':
case 'y':
case 'Y':
return true;
default:
return false;
}
}
return dfl;
}
uint64_t Dictionary::getUI(const char *k, uint64_t dfl) const
{
uint8_t tmp[18];
uint64_t v = dfl;
const Vector<uint8_t> &e = (*this)[k];
if (!e.empty()) {
if (e.back() != 0) {
const unsigned long sl = e.size();
Utils::copy(tmp, e.data(), (sl > 17) ? 17 : sl);
tmp[17] = 0;
return Utils::unhex((const char *) tmp);
}
return Utils::unhex((const char *) e.data());
}
return v;
}
char *Dictionary::getS(const char *k, char *v, const unsigned int cap) const
{
if (cap == 0) // sanity check
return v;
const Vector<uint8_t> &e = (*this)[k];
unsigned int i = 0;
const unsigned int last = cap - 1;
for (;;) {
if ((i == last) || (i >= (unsigned int)e.size()))
break;
v[i] = (char) e[i];
++i;
}
v[i] = 0;
return v;
}
bool Dictionary::sign(const Identity &signer)
{
Vector<uint8_t> data;
encode(data, true);
uint8_t sig[ZT_SIGNATURE_BUFFER_SIZE];
const unsigned int siglen = signer.sign(data.data(), (unsigned int) data.size(), sig, ZT_SIGNATURE_BUFFER_SIZE);
if (siglen == 0)
return false;
uint8_t fp[ZT_ADDRESS_LENGTH + ZT_FINGERPRINT_HASH_SIZE];
Address(signer.fingerprint().address).copyTo(fp);
Utils::copy<ZT_FINGERPRINT_HASH_SIZE>(fp + ZT_ADDRESS_LENGTH, signer.fingerprint().hash);
m_entries[s_signatureFingerprint].assign(fp, fp + ZT_ADDRESS_LENGTH + ZT_FINGERPRINT_HASH_SIZE);
m_entries[s_signatureData].assign(sig, sig + siglen);
return true;
}
Fingerprint Dictionary::signer() const
{
SortedMap<FCV<char, 8>, Vector<uint8_t> >::const_iterator sigfp(m_entries.find(s_signatureFingerprint));
Fingerprint fp;
if ((sigfp != m_entries.end()) && (sigfp->second.size() == (ZT_ADDRESS_LENGTH + ZT_FINGERPRINT_HASH_SIZE))) {
fp.address = Address(sigfp->second.data());
Utils::copy<ZT_FINGERPRINT_HASH_SIZE>(fp.hash, sigfp->second.data() + ZT_ADDRESS_LENGTH);
}
return fp;
}
bool Dictionary::verify(const Identity &signer) const
{
SortedMap< FCV<char, 8>, Vector<uint8_t> >::const_iterator sigfp(m_entries.find(s_signatureFingerprint));
if (
(sigfp == m_entries.end()) ||
(sigfp->second.size() != (ZT_ADDRESS_LENGTH + ZT_FINGERPRINT_HASH_SIZE)) ||
(Address(sigfp->second.data()) != signer.address()) ||
(memcmp(sigfp->second.data() + ZT_ADDRESS_LENGTH,signer.fingerprint().hash,ZT_FINGERPRINT_HASH_SIZE) != 0))
return false;
SortedMap< FCV<char, 8>, Vector<uint8_t> >::const_iterator sig(m_entries.find(s_signatureData));
if ((sig == m_entries.end()) || (sig->second.empty()))
return false;
Vector<uint8_t> data;
encode(data, true);
return signer.verify(data.data(),(unsigned int)data.size(),sig->second.data(),(unsigned int)sig->second.size());
}
void Dictionary::clear()
{
m_entries.clear();
}
void Dictionary::encode(Vector<uint8_t> &out, const bool omitSignatureFields) const
{
out.clear();
for (SortedMap<FCV<char, 8>, Vector<uint8_t> >::const_iterator ti(m_entries.begin());ti != m_entries.end();++ti) {
if ((!omitSignatureFields) || ((ti->first != s_signatureFingerprint) && (ti->first != s_signatureData))) {
s_appendKey(out, ti->first.data());
for (Vector<uint8_t>::const_iterator i(ti->second.begin());i != ti->second.end();++i)
s_appendValueByte(out, *i);
out.push_back((uint8_t) '\n');
}
}
out.push_back(0);
}
bool Dictionary::decode(const void *data, unsigned int len)
{
clear();
FCV<char, 8> k;
Vector<uint8_t> *v = nullptr;
bool escape = false;
for (unsigned int di = 0;di < len;++di) {
uint8_t c = reinterpret_cast<const uint8_t *>(data)[di];
if (!c) break;
if (v) {
if (escape) {
escape = false;
switch (c) {
case 48:
v->push_back(0);
break;
case 101:
v->push_back(61);
break;
case 110:
v->push_back(10);
break;
case 114:
v->push_back(13);
break;
default:
v->push_back(c);
break;
}
} else {
if (c == (uint8_t) '\n') {
k.clear();
v = nullptr;
} else if (c == 92) { // backslash
escape = true;
} else {
v->push_back(c);
}
}
} else {
if ((c < 33) || (c > 126) || (c == 92)) {
return false;
} else if (c == (uint8_t) '=') {
k.push_back(0);
v = &m_entries[k];
} else if (k.size() < 7) {
k.push_back(c);
} else {
return false;
}
}
}
return true;
}
} // namespace ZeroTier