ZeroTierOne/node/Identity.cpp

721 lines
22 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Constants.hpp"
#include "Identity.hpp"
#include "SHA512.hpp"
#include "Salsa20.hpp"
#include "Utils.hpp"
#include "Speck128.hpp"
#include <cstring>
#include <cstdint>
#include <algorithm>
namespace ZeroTier {
namespace {
// This is the memory-intensive hash function used to compute v0 identities from v0 public keys.
#define ZT_V0_IDENTITY_GEN_MEMORY 2097152
void identityV0ProofOfWorkFrankenhash(const void *const publicKey,unsigned int publicKeyBytes,void *const digest,void *const genmem) noexcept
{
// Digest publicKey[] to obtain initial digest
SHA512(digest,publicKey,publicKeyBytes);
// Initialize genmem[] using Salsa20 in a CBC-like configuration since
// ordinary Salsa20 is randomly seek-able. This is good for a cipher
// but is not what we want for sequential memory-hardness.
Utils::zero<ZT_V0_IDENTITY_GEN_MEMORY>(genmem);
Salsa20 s20(digest,(char *)digest + 32);
s20.crypt20((char *)genmem,(char *)genmem,64);
for(unsigned long i=64;i<ZT_V0_IDENTITY_GEN_MEMORY;i+=64) {
unsigned long k = i - 64;
*((uint64_t *)((char *)genmem + i)) = *((uint64_t *)((char *)genmem + k));
*((uint64_t *)((char *)genmem + i + 8)) = *((uint64_t *)((char *)genmem + k + 8));
*((uint64_t *)((char *)genmem + i + 16)) = *((uint64_t *)((char *)genmem + k + 16));
*((uint64_t *)((char *)genmem + i + 24)) = *((uint64_t *)((char *)genmem + k + 24));
*((uint64_t *)((char *)genmem + i + 32)) = *((uint64_t *)((char *)genmem + k + 32));
*((uint64_t *)((char *)genmem + i + 40)) = *((uint64_t *)((char *)genmem + k + 40));
*((uint64_t *)((char *)genmem + i + 48)) = *((uint64_t *)((char *)genmem + k + 48));
*((uint64_t *)((char *)genmem + i + 56)) = *((uint64_t *)((char *)genmem + k + 56));
s20.crypt20((char *)genmem + i,(char *)genmem + i,64);
}
// Render final digest using genmem as a lookup table
for(unsigned long i=0;i<(ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (64 / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_V0_IDENTITY_GEN_MEMORY / sizeof(uint64_t))); // NOLINT(hicpp-use-auto,modernize-use-auto)
uint64_t tmp = ((uint64_t *)genmem)[idx2];
((uint64_t *)genmem)[idx2] = ((uint64_t *)digest)[idx1];
((uint64_t *)digest)[idx1] = tmp;
s20.crypt20(digest,digest,64);
}
}
struct identityV0ProofOfWorkCriteria
{
ZT_INLINE identityV0ProofOfWorkCriteria(unsigned char *sb,char *gm) noexcept : digest(sb),genmem(gm) {}
ZT_INLINE bool operator()(const uint8_t pub[ZT_C25519_COMBINED_PUBLIC_KEY_SIZE]) const noexcept
{
identityV0ProofOfWorkFrankenhash(pub,ZT_C25519_COMBINED_PUBLIC_KEY_SIZE,digest,genmem);
return (digest[0] < 17);
}
unsigned char *digest;
char *genmem;
};
// This is a simpler memory-intensive hash function for V1 identity generation.
// It's not quite as intensive as the V0 frankenhash, is a little more orderly in
// its design, but remains relatively resistant to GPU acceleration due to memory
// requirements for efficient computation.
#define ZT_IDENTITY_V1_POW_MEMORY_SIZE 98304
bool identityV1ProofOfWorkCriteria(const void *in,const unsigned int len,uint64_t *const b)
{
SHA512(b,in,len);
// This treats hash output as little-endian, so swap on BE machines.
#if __BYTE_ORDER == __BIG_ENDIAN
b[0] = Utils::swapBytes(b[0]);
b[1] = Utils::swapBytes(b[1]);
b[2] = Utils::swapBytes(b[2]);
b[3] = Utils::swapBytes(b[3]);
b[4] = Utils::swapBytes(b[4]);
b[5] = Utils::swapBytes(b[5]);
b[6] = Utils::swapBytes(b[6]);
b[7] = Utils::swapBytes(b[7]);
#endif
// Memory-intensive work: fill 'b' with pseudo-random bits generated from
// a reduced-round instance of Speck128 using a CBC-like construction.
// Then sort the resulting integer array in ascending numerical order.
// The sort requires that we compute and cache the whole data set, or at
// least that this is the most efficient implementation.
Speck128<24> s16;
s16.initXY(b[4],b[5]);
for(unsigned long i=0;i<(ZT_IDENTITY_V1_POW_MEMORY_SIZE-8);) {
// Load four 128-bit blocks.
uint64_t x0 = b[i];
uint64_t y0 = b[i + 1];
uint64_t x1 = b[i + 2];
uint64_t y1 = b[i + 3];
uint64_t x2 = b[i + 4];
uint64_t y2 = b[i + 5];
uint64_t x3 = b[i + 6];
uint64_t y3 = b[i + 7];
// Advance by 512 bits / 64 bytes (its a uint64_t array).
i += 8;
// Ensure that mixing happens across blocks.
x0 += x1;
x1 += x2;
x2 += x3;
x3 += y0;
// Encrypt 4X blocks. Speck is used for this PoW function because
// its performance is similar on all architectures while AES is much
// faster on some than others.
s16.encryptXYXYXYXY(x0,y0,x1,y1,x2,y2,x3,y3);
// Store four 128-bit blocks at new position.
b[i] = x0;
b[i + 1] = y0;
b[i + 2] = x1;
b[i + 3] = y1;
b[i + 4] = x2;
b[i + 5] = y2;
b[i + 6] = x3;
b[i + 7] = y3;
}
// Sort array, something that can't efficiently be done unless we have
// computed the whole array and have it in memory. This also involves
// branching which is less efficient on GPUs.
std::sort(b,b + ZT_IDENTITY_V1_POW_MEMORY_SIZE);
// Swap byte order back on BE machines.
#if __BYTE_ORDER == __BIG_ENDIAN
for(unsigned int i=0;i<98304;i+=8) {
b[i] = Utils::swapBytes(b[i]);
b[i + 1] = Utils::swapBytes(b[i + 1]);
b[i + 2] = Utils::swapBytes(b[i + 2]);
b[i + 3] = Utils::swapBytes(b[i + 3]);
b[i + 4] = Utils::swapBytes(b[i + 4]);
b[i + 5] = Utils::swapBytes(b[i + 5]);
b[i + 6] = Utils::swapBytes(b[i + 6]);
b[i + 7] = Utils::swapBytes(b[i + 7]);
}
#endif
// Hash resulting sorted array to get final result for PoW criteria test.
SHA384(b,b,sizeof(b),in,len);
// PoW passes if sum of first two 64-bit integers (treated as little-endian) mod 180 is 0.
// This value was picked to yield about 1-2s total on typical desktop and server cores in 2020.
#if __BYTE_ORDER == __BIG_ENDIAN
const uint64_t finalHash = Utils::swapBytes(b[0]) + Utils::swapBytes(b[1]);
#else
const uint64_t finalHash = b[0] + b[1];
#endif
return (finalHash % 180U) == 0;
}
} // anonymous namespace
const Identity Identity::NIL;
bool Identity::generate(const Type t)
{
m_type = t;
m_hasPrivate = true;
switch(t) {
case C25519: {
// Generate C25519/Ed25519 key pair whose hash satisfies a "hashcash" criterion and generate the
// address from the last 40 bits of this hash. This is different from the fingerprint hash for V0.
uint8_t digest[64];
char *const genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
do {
C25519::generateSatisfying(identityV0ProofOfWorkCriteria(digest,genmem), m_pub.c25519, m_priv.c25519);
m_address.setTo(digest + 59);
} while (m_address.isReserved());
delete[] genmem;
_computeHash();
} break;
case P384: {
uint64_t *const b = (uint64_t *)malloc(ZT_IDENTITY_V1_POW_MEMORY_SIZE * 8); // NOLINT(hicpp-use-auto,modernize-use-auto)
if (!b)
return false;
for(;;) {
// Loop until we pass the PoW criteria. The nonce is only 8 bits, so generate
// some new key material every time it wraps. The ECC384 generator is slightly
// faster so use that one.
m_pub.nonce = 0;
C25519::generateCombined(m_pub.c25519, m_priv.c25519);
ECC384GenerateKey(m_pub.p384, m_priv.p384);
for(;;) {
if (identityV1ProofOfWorkCriteria(&m_pub, sizeof(m_pub), b))
break;
if (++m_pub.nonce == 0)
ECC384GenerateKey(m_pub.p384, m_priv.p384);
}
// If we passed PoW then check that the address is valid, otherwise loop
// back around and run the whole process again.
_computeHash();
m_address.setTo(m_fp.hash());
if (!m_address.isReserved())
break;
}
free(b);
} break;
default:
return false;
}
return true;
}
bool Identity::locallyValidate() const noexcept
{
try {
if ((!m_address.isReserved()) && (m_address)) {
switch (m_type) {
case C25519: {
uint8_t digest[64];
char *genmem = new char[ZT_V0_IDENTITY_GEN_MEMORY];
identityV0ProofOfWorkFrankenhash(m_pub.c25519, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, digest, genmem);
delete[] genmem;
return ((m_address == Address(digest + 59)) && (digest[0] < 17));
}
case P384: {
if (m_address != Address(m_fp.hash()))
return false;
uint64_t *const b = (uint64_t *)malloc(ZT_IDENTITY_V1_POW_MEMORY_SIZE * 8); // NOLINT(hicpp-use-auto,modernize-use-auto)
if (!b)
return false;
const bool ok = identityV1ProofOfWorkCriteria(&m_pub, sizeof(m_pub), b);
free(b);
return ok;
}
}
}
} catch ( ... ) {}
return false;
}
void Identity::hashWithPrivate(uint8_t h[ZT_FINGERPRINT_HASH_SIZE]) const
{
if (m_hasPrivate) {
switch (m_type) {
case C25519:
SHA384(h, m_pub.c25519, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, m_priv.c25519, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE);
break;
case P384:
SHA384(h, &m_pub, sizeof(m_pub), &m_priv, sizeof(m_priv));
break;
}
return;
}
Utils::zero<48>(h);
}
unsigned int Identity::sign(const void *data,unsigned int len,void *sig,unsigned int siglen) const
{
if (m_hasPrivate) {
switch(m_type) {
case C25519:
if (siglen >= ZT_C25519_SIGNATURE_LEN) {
C25519::sign(m_priv.c25519, m_pub.c25519, data, len, sig);
return ZT_C25519_SIGNATURE_LEN;
}
case P384:
if (siglen >= ZT_ECC384_SIGNATURE_SIZE) {
uint8_t h[48];
SHA384(h, data, len, &m_pub, ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE); // include C25519 public key in hash
ECC384ECDSASign(m_priv.p384, h, (uint8_t *)sig);
return ZT_ECC384_SIGNATURE_SIZE;
}
}
}
return 0;
}
bool Identity::verify(const void *data,unsigned int len,const void *sig,unsigned int siglen) const
{
switch(m_type) {
case C25519:
return C25519::verify(m_pub.c25519, data, len, sig, siglen);
case P384:
if (siglen == ZT_ECC384_SIGNATURE_SIZE) {
uint8_t h[48];
SHA384(h, data, len, &m_pub, ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
return ECC384ECDSAVerify(m_pub.p384, h, (const uint8_t *)sig);
}
break;
}
return false;
}
bool Identity::agree(const Identity &id,uint8_t key[ZT_SYMMETRIC_KEY_SIZE]) const
{
uint8_t rawkey[128];
uint8_t h[64];
if (m_hasPrivate) {
if (m_type == C25519) {
if ((id.m_type == C25519) || (id.m_type == P384)) {
// If we are a C25519 key we can agree with another C25519 key or with only the
// C25519 portion of a type 1 P-384 key.
C25519::agree(m_priv.c25519, id.m_pub.c25519, rawkey);
SHA512(h,rawkey,ZT_C25519_ECDH_SHARED_SECRET_SIZE);
Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key,h);
return true;
}
} else if (m_type == P384) {
if (id.m_type == P384) {
// For another P384 identity we execute DH agreement with BOTH keys and then
// hash the results together. For those (cough FIPS cough) who only consider
// P384 to be kosher, the C25519 secret can be considered a "salt"
// or something. For those who don't trust P384 this means the privacy of
// your traffic is also protected by C25519.
C25519::agree(m_priv.c25519, id.m_pub.c25519, rawkey);
ECC384ECDH(id.m_pub.p384, m_priv.p384, rawkey + ZT_C25519_ECDH_SHARED_SECRET_SIZE);
SHA384(h,rawkey,ZT_C25519_ECDH_SHARED_SECRET_SIZE + ZT_ECC384_SHARED_SECRET_SIZE);
Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key,h);
return true;
} else if (id.m_type == C25519) {
// If the other identity is a C25519 identity we can agree using only that type.
C25519::agree(m_priv.c25519, id.m_pub.c25519, rawkey);
SHA512(h,rawkey,ZT_C25519_ECDH_SHARED_SECRET_SIZE);
Utils::copy<ZT_SYMMETRIC_KEY_SIZE>(key,h);
return true;
}
}
}
return false;
}
char *Identity::toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
{
char *p = buf;
m_address.toString(p);
p += 10;
*(p++) = ':';
switch(m_type) {
case C25519: {
*(p++) = '0';
*(p++) = ':';
Utils::hex(m_pub.c25519, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE, p);
p += ZT_C25519_COMBINED_PUBLIC_KEY_SIZE * 2;
if ((m_hasPrivate) && (includePrivate)) {
*(p++) = ':';
Utils::hex(m_priv.c25519, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE, p);
p += ZT_C25519_COMBINED_PRIVATE_KEY_SIZE * 2;
}
*p = (char)0;
return buf;
}
case P384: {
*(p++) = '1';
*(p++) = ':';
int el = Utils::b32e((const uint8_t *)(&m_pub), sizeof(m_pub), p, (int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
if ((m_hasPrivate) && (includePrivate)) {
*(p++) = ':';
el = Utils::b32e((const uint8_t *)(&m_priv), sizeof(m_priv), p, (int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
}
*p = (char)0;
return buf;
}
}
return nullptr;
}
bool Identity::fromString(const char *str)
{
m_fp.zero();
m_hasPrivate = false;
if (!str) {
m_address.zero();
return false;
}
char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH];
if (!Utils::scopy(tmp,sizeof(tmp),str)) {
m_address.zero();
return false;
}
int fno = 0;
char *saveptr = nullptr;
for(char *f=Utils::stok(tmp,":",&saveptr);((f)&&(fno < 4));f=Utils::stok(nullptr,":",&saveptr)) {
switch(fno++) {
case 0:
m_address = Address(Utils::hexStrToU64(f));
if (m_address.isReserved()) {
m_address.zero();
return false;
}
break;
case 1:
if ((f[0] == '0')&&(!f[1])) {
m_type = C25519;
} else if ((f[0] == '1')&&(!f[1])) {
m_type = P384;
} else {
m_address.zero();
return false;
}
break;
case 2:
switch(m_type) {
case C25519:
if (Utils::unhex(f, strlen(f), m_pub.c25519, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) != ZT_C25519_COMBINED_PUBLIC_KEY_SIZE) {
m_address.zero();
return false;
}
break;
case P384:
if (Utils::b32d(f, (uint8_t *)(&m_pub), sizeof(m_pub)) != sizeof(m_pub)) {
m_address.zero();
return false;
}
break;
}
break;
case 3:
if (strlen(f) > 1) {
switch(m_type) {
case C25519:
if (Utils::unhex(f, strlen(f), m_priv.c25519, ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) != ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) {
m_address.zero();
return false;
} else {
m_hasPrivate = true;
}
break;
case P384:
if (Utils::b32d(f, (uint8_t *)(&m_priv), sizeof(m_priv)) != sizeof(m_priv)) {
m_address.zero();
return false;
} else {
m_hasPrivate = true;
}
break;
}
break;
}
}
}
if (fno < 3) {
m_address.zero();
return false;
}
_computeHash();
if ((m_type == P384) && (m_address != Address(m_fp.hash()))) {
m_address.zero();
return false;
}
return true;
}
int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate) const noexcept
{
m_address.copyTo(data);
switch(m_type) {
case C25519:
data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519;
Utils::copy<ZT_C25519_COMBINED_PUBLIC_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1, m_pub.c25519);
if ((includePrivate)&&(m_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE] = ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
Utils::copy<ZT_C25519_COMBINED_PRIVATE_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1, m_priv.c25519);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
} else {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE] = 0;
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1;
}
case P384:
data[ZT_ADDRESS_LENGTH] = (uint8_t)P384;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1,&m_pub);
if ((includePrivate)&&(m_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE>(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,&m_priv);
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
} else {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0;
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
}
}
return -1;
}
int Identity::unmarshal(const uint8_t *data,const int len) noexcept
{
m_fp.zero();
m_hasPrivate = false;
if (len < (1 + ZT_ADDRESS_LENGTH))
return -1;
m_address.setTo(data);
unsigned int privlen;
switch((m_type = (Type)data[ZT_ADDRESS_LENGTH])) {
case C25519:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1))
return -1;
Utils::copy<ZT_C25519_COMBINED_PUBLIC_KEY_SIZE>(m_pub.c25519, data + ZT_ADDRESS_LENGTH + 1);
_computeHash();
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE];
if (privlen == ZT_C25519_COMBINED_PRIVATE_KEY_SIZE) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE))
return -1;
m_hasPrivate = true;
Utils::copy<ZT_C25519_COMBINED_PRIVATE_KEY_SIZE>(m_priv.c25519, data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1);
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1 + ZT_C25519_COMBINED_PRIVATE_KEY_SIZE;
} else if (privlen == 0) {
m_hasPrivate = false;
return ZT_ADDRESS_LENGTH + 1 + ZT_C25519_COMBINED_PUBLIC_KEY_SIZE + 1;
}
break;
case P384:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1))
return -1;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE>(&m_pub, data + ZT_ADDRESS_LENGTH + 1);
_computeHash(); // this sets the address for P384
if (m_address != Address(m_fp.hash())) // this sanity check is possible with V1 identities
return -1;
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE];
if (privlen == ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE))
return -1;
m_hasPrivate = true;
Utils::copy<ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE>(&m_priv, data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1);
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE;
} else if (privlen == 0) {
m_hasPrivate = false;
return ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1;
}
break;
}
return -1;
}
void Identity::_computeHash()
{
switch(m_type) {
default:
m_fp.zero();
break;
case C25519:
m_fp.m_cfp.address = m_address.toInt();
SHA384(m_fp.m_cfp.hash, m_pub.c25519, ZT_C25519_COMBINED_PUBLIC_KEY_SIZE);
break;
case P384:
SHA384(m_fp.m_cfp.hash, &m_pub, sizeof(m_pub));
m_fp.m_cfp.address = m_address.toInt();
break;
}
}
} // namespace ZeroTier
extern "C" {
ZT_Identity *ZT_Identity_new(enum ZT_Identity_Type type)
{
if ((type != ZT_IDENTITY_TYPE_C25519)&&(type != ZT_IDENTITY_TYPE_P384))
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity(); // NOLINT(hicpp-use-auto,modernize-use-auto)
id->generate((ZeroTier::Identity::Type)type);
return reinterpret_cast<ZT_Identity *>(id);
} catch ( ... ) {
return nullptr;
}
}
ZT_Identity *ZT_Identity_fromString(const char *idStr)
{
if (!idStr)
return nullptr;
try {
ZeroTier::Identity *const id = new ZeroTier::Identity(); // NOLINT(hicpp-use-auto,modernize-use-auto)
if (!id->fromString(idStr)) {
delete id;
return nullptr;
}
return reinterpret_cast<ZT_Identity *>(id);
} catch ( ... ) {
return nullptr;
}
}
int ZT_Identity_validate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->locallyValidate() ? 1 : 0;
}
unsigned int ZT_Identity_sign(const ZT_Identity *id,const void *data,unsigned int len,void *signature,unsigned int signatureBufferLength)
{
if (!id)
return 0;
if (signatureBufferLength < ZT_SIGNATURE_BUFFER_SIZE)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data,len,signature,signatureBufferLength);
}
int ZT_Identity_verify(const ZT_Identity *id,const void *data,unsigned int len,const void *signature,unsigned int sigLen)
{
if ((!id)||(!signature)||(!sigLen))
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data,len,signature,sigLen) ? 1 : 0;
}
enum ZT_Identity_Type ZT_Identity_type(const ZT_Identity *id)
{
if (!id)
return (ZT_Identity_Type)0;
return (enum ZT_Identity_Type)reinterpret_cast<const ZeroTier::Identity *>(id)->type();
}
char *ZT_Identity_toString(const ZT_Identity *id,char *buf,int capacity,int includePrivate)
{
if ((!id)||(!buf)||(capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
return nullptr;
reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0,buf);
return buf;
}
int ZT_Identity_hasPrivate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->hasPrivate() ? 1 : 0;
}
uint64_t ZT_Identity_address(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->address().toInt();
}
const ZT_Fingerprint *ZT_Identity_fingerprint(const ZT_Identity *id)
{
if (!id)
return nullptr;
return reinterpret_cast<const ZeroTier::Identity *>(id)->fingerprint().apiFingerprint();
}
ZT_SDK_API void ZT_Identity_delete(ZT_Identity *id)
{
if (id)
delete reinterpret_cast<ZeroTier::Identity *>(id);
}
}