ZeroTierOne/node/Topology.cpp

267 lines
7.3 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Topology.hpp"
namespace ZeroTier {
Topology::Topology(const RuntimeEnvironment *renv,void *tPtr) :
RR(renv),
m_numConfiguredPhysicalPaths(0)
{
uint64_t idtmp[2]; idtmp[0] = 0; idtmp[1] = 0;
Vector<uint8_t> data(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_ROOTS,idtmp));
if (!data.empty()) {
uint8_t *dptr = data.data();
int drem = (int)data.size();
while (drem > 0) {
Identity id;
int l = id.unmarshal(dptr,drem);
if (l > 0) {
m_roots.insert(id);
dptr += l;
drem -= l;
ZT_SPEW("recalled root %s",id.address().toString().c_str());
}
}
}
for(Set<Identity>::const_iterator r(m_roots.begin());r != m_roots.end();++r) {
SharedPtr<Peer> p;
m_loadCached(tPtr,r->address(),p);
if ((!p)||(p->identity() != *r)) {
p.set(new Peer(RR));
p->init(*r);
}
m_rootPeers.push_back(p);
m_peers[p->address()] = p;
}
}
SharedPtr<Peer> Topology::add(void *tPtr,const SharedPtr<Peer> &peer)
{
RWMutex::Lock _l(m_peers_l);
SharedPtr<Peer> &hp = m_peers[peer->address()];
if (hp)
return hp;
m_loadCached(tPtr,peer->address(),hp);
if (hp)
return hp;
hp = peer;
return peer;
}
PeerList Topology::peersByProbeToken(const uint32_t probeToken) const
{
Mutex::Lock l(m_peersByProbeToken_l);
std::pair< MultiMap< uint32_t,SharedPtr<Peer> >::const_iterator,MultiMap< uint32_t,SharedPtr<Peer> >::const_iterator > r(m_peersByProbeToken.equal_range(probeToken));
PeerList pl;
if (r.first == r.second)
return pl;
const unsigned int cnt = (unsigned int)std::distance(r.first,r.second);
pl.resize(cnt);
MultiMap< uint32_t,SharedPtr<Peer> >::const_iterator pi(r.first);
for(unsigned int i=0;i<cnt;++i) {
pl[i] = pi->second;
++pi;
}
return pl;
}
void Topology::updateProbeToken(const SharedPtr<Peer> &peer,const uint32_t oldToken,const uint32_t newToken)
{
Mutex::Lock l(m_peersByProbeToken_l);
if (oldToken != 0) {
std::pair< MultiMap< uint32_t,SharedPtr<Peer> >::iterator,MultiMap< uint32_t,SharedPtr<Peer> >::iterator > r(m_peersByProbeToken.equal_range(oldToken));
for(MultiMap< uint32_t,SharedPtr<Peer> >::iterator i(r.first);i!=r.second;) {
if (i->second == peer)
m_peersByProbeToken.erase(i++);
else ++i;
}
}
if (newToken != 0)
m_peersByProbeToken.insert(std::pair< uint32_t,SharedPtr<Peer> >(newToken,peer));
}
void Topology::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig)
{
if (!pathNetwork) {
m_numConfiguredPhysicalPaths = 0;
} else {
std::map<InetAddress,ZT_PhysicalPathConfiguration> cpaths;
for(unsigned int i=0,j=m_numConfiguredPhysicalPaths;i < j;++i)
cpaths[m_physicalPathConfig[i].first] = m_physicalPathConfig[i].second;
if (pathConfig) {
ZT_PhysicalPathConfiguration pc(*pathConfig);
if (pc.mtu <= 0)
pc.mtu = ZT_DEFAULT_UDP_MTU;
else if (pc.mtu < ZT_MIN_UDP_MTU)
pc.mtu = ZT_MIN_UDP_MTU;
else if (pc.mtu > ZT_MAX_UDP_MTU)
pc.mtu = ZT_MAX_UDP_MTU;
cpaths[*(reinterpret_cast<const InetAddress *>(pathNetwork))] = pc;
} else {
cpaths.erase(*(reinterpret_cast<const InetAddress *>(pathNetwork)));
}
unsigned int cnt = 0;
for(std::map<InetAddress,ZT_PhysicalPathConfiguration>::const_iterator i(cpaths.begin());((i!=cpaths.end())&&(cnt<ZT_MAX_CONFIGURABLE_PATHS));++i) {
m_physicalPathConfig[cnt].first = i->first;
m_physicalPathConfig[cnt].second = i->second;
++cnt;
}
m_numConfiguredPhysicalPaths = cnt;
}
}
struct p_RootSortComparisonOperator
{
ZT_INLINE bool operator()(const SharedPtr<Peer> &a,const SharedPtr<Peer> &b) const noexcept
{
// Sort in inverse order of latency with lowest latency first (and -1 last).
const int bb = b->latency();
if (bb < 0)
return true;
return bb < a->latency();
}
};
void Topology::addRoot(void *const tPtr,const Identity &id,const InetAddress &bootstrap)
{
if (id == RR->identity)
return;
RWMutex::Lock l1(m_peers_l);
std::pair< Set<Identity>::iterator,bool > ir(m_roots.insert(id));
if (ir.second) {
SharedPtr<Peer> &p = m_peers[id.address()];
if (!p) {
p.set(new Peer(RR));
p->init(id);
if (bootstrap)
p->setBootstrap(Endpoint(bootstrap));
}
m_rootPeers.push_back(p);
std::sort(m_rootPeers.begin(),m_rootPeers.end(),p_RootSortComparisonOperator());
m_writeRootList(tPtr);
}
}
bool Topology::removeRoot(void *const tPtr,const Identity &id)
{
RWMutex::Lock l1(m_peers_l);
Set<Identity>::iterator r(m_roots.find(id));
if (r != m_roots.end()) {
for(Vector< SharedPtr<Peer> >::iterator p(m_rootPeers.begin());p != m_rootPeers.end();++p) {
if ((*p)->identity() == id) {
m_rootPeers.erase(p);
break;
}
}
m_roots.erase(r);
m_writeRootList(tPtr);
return true;
}
return false;
}
void Topology::rankRoots()
{
RWMutex::Lock l1(m_peers_l);
std::sort(m_rootPeers.begin(),m_rootPeers.end(),p_RootSortComparisonOperator());
}
void Topology::doPeriodicTasks(void *tPtr,const int64_t now)
{
// Delete peers that haven't said anything in ZT_PEER_ALIVE_TIMEOUT.
{
RWMutex::Lock l1(m_peers_l);
for(Map< Address,SharedPtr<Peer> >::iterator i(m_peers.begin());i != m_peers.end();) {
if ( ((now - i->second->lastReceive()) > ZT_PEER_ALIVE_TIMEOUT) && (m_roots.count(i->second->identity()) == 0) ) {
updateProbeToken(i->second,i->second->probeToken(),0);
i->second->save(tPtr);
m_peers.erase(i++);
} else ++i;
}
}
// Delete paths that are no longer held by anyone else ("weak reference" type behavior).
{
RWMutex::Lock l1(m_paths_l);
for(Map< uint64_t,SharedPtr<Path> >::iterator i(m_paths.begin());i != m_paths.end();) {
if (i->second.weakGC())
m_paths.erase(i++);
else ++i;
}
}
}
void Topology::saveAll(void *tPtr)
{
RWMutex::RLock l(m_peers_l);
for(Map< Address,SharedPtr<Peer> >::iterator i(m_peers.begin());i!=m_peers.end();++i)
i->second->save(tPtr);
}
void Topology::m_loadCached(void *tPtr, const Address &zta, SharedPtr<Peer> &peer)
{
try {
uint64_t id[2];
id[0] = zta.toInt();
id[1] = 0;
Vector<uint8_t> data(RR->node->stateObjectGet(tPtr,ZT_STATE_OBJECT_PEER,id));
if (data.size() > 8) {
const uint8_t *d = data.data();
int dl = (int)data.size();
const int64_t ts = (int64_t)Utils::loadBigEndian<uint64_t>(d);
Peer *const p = new Peer(RR);
int n = p->unmarshal(d + 8,dl - 8);
if (n < 0) {
delete p;
return;
}
if ((RR->node->now() - ts) < ZT_PEER_GLOBAL_TIMEOUT) {
// TODO: handle many peers, same address (?)
peer.set(p);
return;
}
}
} catch ( ... ) {
peer.zero();
}
}
void Topology::m_writeRootList(void *tPtr)
{
// assumes m_peers_l is locked
uint8_t *const roots = (uint8_t *)malloc(ZT_IDENTITY_MARSHAL_SIZE_MAX * m_roots.size());
if (roots) { // sanity check
int p = 0;
for(Set<Identity>::const_iterator i(m_roots.begin());i != m_roots.end();++i) {
const int pp = i->marshal(roots + p,false);
if (pp > 0)
p += pp;
}
uint64_t id[2];
id[0] = 0;
id[1] = 0;
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_ROOTS,id,roots,(unsigned int)p);
free(roots);
}
}
} // namespace ZeroTier