ZeroTierOne/zerotier-network-hypervisor/src/vl1/peer.rs

569 lines
28 KiB
Rust

/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at https://mozilla.org/MPL/2.0/.
*
* (c)2021 ZeroTier, Inc.
* https://www.zerotier.com/
*/
use std::convert::TryInto;
use std::mem::MaybeUninit;
use std::num::NonZeroI64;
use std::ptr::copy_nonoverlapping;
use std::sync::Arc;
use std::sync::atomic::{AtomicI64, AtomicU64, AtomicU8, Ordering};
use libc::uname;
use parking_lot::Mutex;
use zerotier_core_crypto::aes_gmac_siv::{AesCtr, AesGmacSiv};
use zerotier_core_crypto::c25519::C25519KeyPair;
use zerotier_core_crypto::hash::{SHA384, SHA384_HASH_SIZE};
use zerotier_core_crypto::kbkdf::zt_kbkdf_hmac_sha384;
use zerotier_core_crypto::p521::P521KeyPair;
use zerotier_core_crypto::poly1305::Poly1305;
use zerotier_core_crypto::random::next_u64_secure;
use zerotier_core_crypto::salsa::Salsa;
use zerotier_core_crypto::secret::Secret;
use crate::{PacketBuffer, VERSION_MAJOR, VERSION_MINOR, VERSION_PROTO, VERSION_REVISION};
use crate::util::{array_range, u64_as_bytes};
use crate::util::buffer::Buffer;
use crate::util::pool::{Pool, PoolFactory};
use crate::vl1::{Dictionary, Endpoint, Identity, InetAddress, Path};
use crate::vl1::ephemeral::EphemeralSymmetricSecret;
use crate::vl1::identity::{IDENTITY_CIPHER_SUITE_INCLUDE_ALL, IDENTITY_CIPHER_SUITE_X25519};
use crate::vl1::node::*;
use crate::vl1::protocol::*;
use crate::vl1::symmetricsecret::SymmetricSecret;
struct AesGmacSivPoolFactory(Secret<48>, Secret<48>);
impl PoolFactory<AesGmacSiv> for AesGmacSivPoolFactory {
#[inline(always)]
fn create(&self) -> AesGmacSiv { AesGmacSiv::new(&self.0.0[0..32], &self.1.0[0..32]) }
#[inline(always)]
fn reset(&self, obj: &mut AesGmacSiv) { obj.reset(); }
}
/// A secret key with all its derived forms and initialized ciphers.
struct PeerSecret {
// Time secret was created in ticks for ephemeral secrets, or -1 for static secrets.
create_time_ticks: i64,
// Number of times secret has been used to encrypt something during this session.
encrypt_count: AtomicU64,
// Raw secret itself.
secret: Secret<48>,
// Reusable AES-GMAC-SIV ciphers initialized with secret.
// These can't be used concurrently so they're pooled to allow low-contention concurrency.
aes: Pool<AesGmacSiv, AesGmacSivPoolFactory>,
}
/// A remote peer known to this node.
/// Sending-related and receiving-related fields are locked separately since concurrent
/// send/receive is not uncommon.
pub struct Peer {
// This peer's identity.
identity: Identity,
// Static shared secret computed from agreement with identity.
static_secret: SymmetricSecret,
// Latest ephemeral secret acknowledged with OK(HELLO).
ephemeral_secret: Mutex<Option<Arc<EphemeralSymmetricSecret>>>,
// Paths sorted in descending order of quality / preference.
paths: Mutex<Vec<Arc<Path>>>,
// Local external address most recently reported by this peer (IP transport only).
reported_local_ip: Mutex<Option<InetAddress>>,
// Statistics and times of events.
last_send_time_ticks: AtomicI64,
last_receive_time_ticks: AtomicI64,
last_forward_time_ticks: AtomicI64,
total_bytes_sent: AtomicU64,
total_bytes_sent_indirect: AtomicU64,
total_bytes_received: AtomicU64,
total_bytes_received_indirect: AtomicU64,
total_bytes_forwarded: AtomicU64,
// Counter for assigning sequential message IDs.
message_id_counter: AtomicU64,
// Remote peer version information.
remote_version: AtomicU64,
remote_protocol_version: AtomicU8,
}
/// Derive per-packet key for Sals20/12 encryption (and Poly1305 authentication).
///
/// This effectively adds a few additional bits of entropy to the IV from packet
/// characteristics such as its size and direction of communication. It also
/// effectively incorporates header information as AAD, since if the header info
/// is different the key will be wrong and MAC will fail.
///
/// This is only used for Salsa/Poly modes.
#[inline(always)]
fn salsa_derive_per_packet_key(key: &Secret<48>, header: &PacketHeader, packet_size: usize) -> Secret<48> {
let hb = header.as_bytes();
let mut k = key.clone();
for i in 0..18 {
k.0[i] ^= hb[i];
}
k.0[18] ^= hb[HEADER_FLAGS_FIELD_INDEX] & HEADER_FLAGS_FIELD_MASK_HIDE_HOPS;
k.0[19] ^= (packet_size >> 8) as u8;
k.0[20] ^= packet_size as u8;
k
}
/// Create initialized instances of Salsa20/12 and Poly1305 for a packet.
#[inline(always)]
fn salsa_poly_create(secret: &SymmetricSecret, header: &PacketHeader, packet_size: usize) -> (Salsa, Poly1305) {
let key = salsa_derive_per_packet_key(&secret.key, header, packet_size);
let mut salsa = Salsa::new(&key.0[0..32], &header.id, true).unwrap();
let mut poly1305_key = [0_u8; 32];
salsa.crypt_in_place(&mut poly1305_key);
(salsa, Poly1305::new(&poly1305_key).unwrap())
}
/// Attempt AEAD packet encryption and MAC validation.
fn try_aead_decrypt(secret: &SymmetricSecret, packet_frag0_payload_bytes: &[u8], header: &PacketHeader, fragments: &[Option<PacketBuffer>], payload: &mut Buffer<PACKET_SIZE_MAX>, message_id: &mut u64) -> bool {
packet_frag0_payload_bytes.get(0).map_or(false, |verb| {
match header.cipher() {
CIPHER_NOCRYPT_POLY1305 => {
if (verb & VERB_MASK) == VERB_VL1_HELLO {
let mut total_packet_len = packet_frag0_payload_bytes.len() + PACKET_HEADER_SIZE;
for f in fragments.iter() {
total_packet_len += f.as_ref().map_or(0, |f| f.len());
}
let _ = payload.append_bytes(packet_frag0_payload_bytes);
for f in fragments.iter() {
let _ = f.as_ref().map(|f| f.as_bytes_starting_at(FRAGMENT_HEADER_SIZE).map(|f| payload.append_bytes(f)));
}
let (_, mut poly) = salsa_poly_create(secret, header, total_packet_len);
poly.update(payload.as_bytes());
if poly.finish()[0..8].eq(&header.mac) {
*message_id = u64::from_ne_bytes(header.id);
true
} else {
false
}
} else {
// Only HELLO is permitted without payload encryption. Drop other packet types if sent this way.
false
}
}
CIPHER_SALSA2012_POLY1305 => {
let mut total_packet_len = packet_frag0_payload_bytes.len() + PACKET_HEADER_SIZE;
for f in fragments.iter() {
total_packet_len += f.as_ref().map_or(0, |f| f.len());
}
let (mut salsa, mut poly) = salsa_poly_create(secret, header, total_packet_len);
poly.update(packet_frag0_payload_bytes);
let _ = payload.append_bytes_get_mut(packet_frag0_payload_bytes.len()).map(|b| salsa.crypt(packet_frag0_payload_bytes, b));
for f in fragments.iter() {
let _ = f.as_ref().map(|f| f.as_bytes_starting_at(FRAGMENT_HEADER_SIZE).map(|f| {
poly.update(f);
let _ = payload.append_bytes_get_mut(f.len()).map(|b| salsa.crypt(f, b));
}));
}
if poly.finish()[0..8].eq(&header.mac) {
*message_id = u64::from_ne_bytes(header.id);
true
} else {
false
}
}
CIPHER_AES_GMAC_SIV => {
let mut aes = secret.aes_gmac_siv.get();
aes.decrypt_init(&header.aes_gmac_siv_tag());
aes.decrypt_set_aad(&header.aad_bytes());
// NOTE: if there are somehow missing fragments this part will silently fail,
// but the packet will fail MAC check in decrypt_finish() so meh.
let _ = payload.append_bytes_get_mut(packet_frag0_payload_bytes.len()).map(|b| aes.decrypt(packet_frag0_payload_bytes, b));
for f in fragments.iter() {
f.as_ref().map(|f| {
f.as_bytes_starting_at(FRAGMENT_HEADER_SIZE).map(|f| {
let _ = payload.append_bytes_get_mut(f.len()).map(|b| aes.decrypt(f, b));
})
});
}
aes.decrypt_finish().map_or(false, |tag| {
// AES-GMAC-SIV encrypts the packet ID too as part of its computation of a single
// opaque 128-bit tag, so to get the original packet ID we have to grab it from the
// decrypted tag.
*message_id = u64::from_ne_bytes(*array_range::<u8, 16, 0, 8>(tag));
true
})
}
_ => false,
}
})
}
impl Peer {
/// Create a new peer.
/// This only returns None if this_node_identity does not have its secrets or if some
/// fatal error occurs performing key agreement between the two identities.
pub(crate) fn new(this_node_identity: &Identity, id: Identity) -> Option<Peer> {
this_node_identity.agree(&id).map(|static_secret| {
Peer {
identity: id,
static_secret: SymmetricSecret::new(static_secret),
ephemeral_secret: Mutex::new(None),
paths: Mutex::new(Vec::new()),
reported_local_ip: Mutex::new(None),
last_send_time_ticks: AtomicI64::new(0),
last_receive_time_ticks: AtomicI64::new(0),
last_forward_time_ticks: AtomicI64::new(0),
total_bytes_sent: AtomicU64::new(0),
total_bytes_sent_indirect: AtomicU64::new(0),
total_bytes_received: AtomicU64::new(0),
total_bytes_received_indirect: AtomicU64::new(0),
total_bytes_forwarded: AtomicU64::new(0),
message_id_counter: AtomicU64::new(next_u64_secure()),
remote_version: AtomicU64::new(0),
remote_protocol_version: AtomicU8::new(0),
}
})
}
/// Get the next message ID.
#[inline(always)]
pub(crate) fn next_message_id(&self) -> u64 { self.message_id_counter.fetch_add(1, Ordering::Relaxed) }
/// Receive, decrypt, authenticate, and process an incoming packet from this peer.
/// If the packet comes in multiple fragments, the fragments slice should contain all
/// those fragments after the main packet header and first chunk.
pub(crate) fn receive<CI: NodeInterface, PH: VL1PacketHandler>(&self, node: &Node, ci: &CI, ph: &PH, time_ticks: i64, source_path: &Arc<Path>, header: &PacketHeader, packet: &Buffer<{ PACKET_SIZE_MAX }>, fragments: &[Option<PacketBuffer>]) {
let _ = packet.as_bytes_starting_at(PACKET_VERB_INDEX).map(|packet_frag0_payload_bytes| {
let mut payload: Buffer<PACKET_SIZE_MAX> = unsafe { Buffer::new_without_memzero() };
let mut message_id = 0_u64;
let ephemeral_secret: Option<Arc<EphemeralSymmetricSecret>> = self.ephemeral_secret.lock().clone();
let forward_secrecy = if !ephemeral_secret.map_or(false, |ephemeral_secret| try_aead_decrypt(&ephemeral_secret.secret, packet_frag0_payload_bytes, header, fragments, &mut payload, &mut message_id)) {
unsafe { payload.set_size_unchecked(0); }
if !try_aead_decrypt(&self.static_secret, packet_frag0_payload_bytes, header, fragments, &mut payload, &mut message_id) {
return;
}
false
} else {
true
};
self.last_receive_time_ticks.store(time_ticks, Ordering::Relaxed);
self.total_bytes_received.fetch_add((payload.len() + PACKET_HEADER_SIZE) as u64, Ordering::Relaxed);
debug_assert!(!payload.is_empty()); // should be impossible since this fails in try_aead_decrypt()
let mut verb = payload.as_bytes()[0];
// If this flag is set, the end of the payload is a full HMAC-SHA384 authentication
// tag for much stronger authentication.
let extended_authentication = (verb & VERB_FLAG_EXTENDED_AUTHENTICATION) != 0;
if extended_authentication {
if payload.len() >= (1 + SHA384_HASH_SIZE) {
let actual_end_of_payload = payload.len() - SHA384_HASH_SIZE;
let hmac = SHA384::hmac_multipart(self.static_secret.packet_hmac_key.as_ref(), &[u64_as_bytes(&message_id), payload.as_bytes()]);
if !hmac.eq(&(payload.as_bytes()[actual_end_of_payload..])) {
return;
}
payload.set_size(actual_end_of_payload);
} else {
return;
}
}
if (verb & VERB_FLAG_COMPRESSED) != 0 {
let mut decompressed_payload: [u8; PACKET_SIZE_MAX] = unsafe { MaybeUninit::uninit().assume_init() };
decompressed_payload[0] = verb;
let dlen = lz4_flex::block::decompress_into(&payload.as_bytes()[1..], &mut decompressed_payload[1..]);
if dlen.is_ok() {
payload.set_to(&decompressed_payload[0..(dlen.unwrap() + 1)]);
} else {
return;
}
}
// For performance reasons we let VL2 handle packets first. It returns false
// if it didn't handle the packet, in which case it's handled at VL1. This is
// because the most performance critical path is the handling of the ???_FRAME
// verbs, which are in VL2.
verb &= VERB_MASK;
if !ph.handle_packet(self, source_path, forward_secrecy, extended_authentication, verb, &payload) {
match verb {
//VERB_VL1_NOP => {}
VERB_VL1_HELLO => self.receive_hello(ci, node, time_ticks, source_path, &payload),
VERB_VL1_ERROR => self.receive_error(ci, ph, node, time_ticks, source_path, forward_secrecy, extended_authentication, &payload),
VERB_VL1_OK => self.receive_ok(ci, ph, node, time_ticks, source_path, forward_secrecy, extended_authentication, &payload),
VERB_VL1_WHOIS => self.receive_whois(ci, node, time_ticks, source_path, &payload),
VERB_VL1_RENDEZVOUS => self.receive_rendezvous(ci, node, time_ticks, source_path, &payload),
VERB_VL1_ECHO => self.receive_echo(ci, node, time_ticks, source_path, &payload),
VERB_VL1_PUSH_DIRECT_PATHS => self.receive_push_direct_paths(ci, node, time_ticks, source_path, &payload),
VERB_VL1_USER_MESSAGE => self.receive_user_message(ci, node, time_ticks, source_path, &payload),
_ => {}
}
}
});
}
fn send_to_endpoint<CI: NodeInterface>(&self, ci: &CI, endpoint: &Endpoint, local_socket: Option<NonZeroI64>, local_interface: Option<NonZeroI64>, packet: &Buffer<{ PACKET_SIZE_MAX }>) -> bool {
debug_assert!(packet.len() <= PACKET_SIZE_MAX);
debug_assert!(packet.len() >= PACKET_SIZE_MIN);
match endpoint {
Endpoint::Ip(_) | Endpoint::IpUdp(_) | Endpoint::Ethernet(_) | Endpoint::Bluetooth(_) | Endpoint::WifiDirect(_) => {
let packet_size = packet.len();
if packet_size > UDP_DEFAULT_MTU {
let bytes = packet.as_bytes();
if !ci.wire_send(endpoint, local_socket, local_interface, &[&bytes[0..UDP_DEFAULT_MTU]], 0) {
return false;
}
let mut pos = UDP_DEFAULT_MTU;
let overrun_size = (packet_size - UDP_DEFAULT_MTU) as u32;
let fragment_count = (overrun_size / (UDP_DEFAULT_MTU - FRAGMENT_HEADER_SIZE) as u32) + (((overrun_size % (UDP_DEFAULT_MTU - FRAGMENT_HEADER_SIZE) as u32) != 0) as u32);
debug_assert!(fragment_count <= PACKET_FRAGMENT_COUNT_MAX as u32);
let mut header = FragmentHeader {
id: unsafe { *packet.as_bytes().as_ptr().cast::<[u8; 8]>() },
dest: bytes[PACKET_DESTINATION_INDEX..PACKET_DESTINATION_INDEX + ADDRESS_SIZE].try_into().unwrap(),
fragment_indicator: PACKET_FRAGMENT_INDICATOR,
total_and_fragment_no: ((fragment_count + 1) << 4) as u8,
reserved_hops: 0,
};
let mut chunk_size = (packet_size - pos).min(UDP_DEFAULT_MTU - FRAGMENT_HEADER_SIZE);
loop {
header.total_and_fragment_no += 1;
let next_pos = pos + chunk_size;
if !ci.wire_send(endpoint, local_socket, local_interface, &[header.as_bytes(), &bytes[pos..next_pos]], 0) {
return false;
}
pos = next_pos;
if pos < packet_size {
chunk_size = (packet_size - pos).min(UDP_DEFAULT_MTU - FRAGMENT_HEADER_SIZE);
} else {
return true;
}
}
} else {
return ci.wire_send(endpoint, local_socket, local_interface, &[packet.as_bytes()], 0);
}
}
_ => {
return ci.wire_send(endpoint, local_socket, local_interface, &[packet.as_bytes()], 0);
}
}
}
/// Send a packet to this peer.
///
/// This will go directly if there is an active path, or otherwise indirectly
/// via a root or some other route.
pub(crate) fn send<CI: NodeInterface>(&self, ci: &CI, node: &Node, time_ticks: i64, packet: &Buffer<{ PACKET_SIZE_MAX }>) -> bool {
self.path(node).map_or(false, |path| {
if self.send_to_endpoint(ci, path.endpoint(), path.local_socket(), path.local_interface(), packet) {
self.last_send_time_ticks.store(time_ticks, Ordering::Relaxed);
self.total_bytes_sent.fetch_add(packet.len() as u64, Ordering::Relaxed);
true
} else {
false
}
})
}
/// Forward a packet to this peer.
///
/// This is called when we receive a packet not addressed to this node and
/// want to pass it along.
///
/// This doesn't fragment large packets since fragments are forwarded individually.
/// Intermediates don't need to adjust fragmentation.
pub(crate) fn forward<CI: NodeInterface>(&self, ci: &CI, time_ticks: i64, packet: &Buffer<{ PACKET_SIZE_MAX }>) -> bool {
self.direct_path().map_or(false, |path| {
if ci.wire_send(path.endpoint(), path.local_socket(), path.local_interface(), &[packet.as_bytes()], 0) {
self.last_forward_time_ticks.store(time_ticks, Ordering::Relaxed);
self.total_bytes_forwarded.fetch_add(packet.len() as u64, Ordering::Relaxed);
true
} else {
false
}
})
}
/// Send a HELLO to this peer.
///
/// If explicit_endpoint is not None the packet will be sent directly to this endpoint.
/// Otherwise it will be sent via the best direct or indirect path known.
pub(crate) fn send_hello<CI: NodeInterface>(&self, ci: &CI, node: &Node, explicit_endpoint: Option<&Endpoint>) -> bool {
let (path, endpoint) = if explicit_endpoint.is_some() {
(None, explicit_endpoint.unwrap())
} else {
let p = self.path(node);
if p.is_none() {
return false;
}
(p, p.as_ref().unwrap().endpoint())
};
let mut packet: Buffer<{ PACKET_SIZE_MAX }> = Buffer::new();
let time_ticks = ci.time_ticks();
let message_id = self.next_message_id();
let packet_header: &mut PacketHeader = packet.append_struct_get_mut().unwrap();
let hello_fixed_headers: &mut message_component_structs::HelloFixedHeaderFields = packet.append_struct_get_mut().unwrap();
packet_header.id = message_id.to_ne_bytes(); // packet ID and message ID are the same when Poly1305 MAC is used
packet_header.dest = self.identity.address.to_bytes();
packet_header.src = node.address().to_bytes();
packet_header.flags_cipher_hops = CIPHER_NOCRYPT_POLY1305;
hello_fixed_headers.verb = VERB_VL1_HELLO | VERB_FLAG_EXTENDED_AUTHENTICATION;
hello_fixed_headers.version_proto = VERSION_PROTO;
hello_fixed_headers.version_major = VERSION_MAJOR;
hello_fixed_headers.version_minor = VERSION_MINOR;
hello_fixed_headers.version_revision = (VERSION_REVISION as u16).to_be_bytes();
hello_fixed_headers.timestamp = (time_ticks as u64).to_be_bytes();
assert!(self.identity.marshal(&mut packet, IDENTITY_CIPHER_SUITE_INCLUDE_ALL, false).is_ok());
if self.identity.cipher_suites() == IDENTITY_CIPHER_SUITE_X25519 {
// LEGACY: append an extra zero when marshaling identities containing only
// x25519 keys. This is interpreted as an empty InetAddress by old nodes.
// This isn't needed if a NIST P-521 key or other new key types are present.
// See comments before IDENTITY_CIPHER_SUITE_EC_NIST_P521 in identity.rs.
assert!(packet.append_u8(0).is_ok());
}
assert!(packet.append_u64(0).is_ok()); // reserved, must be zero for legacy compatibility
assert!(packet.append_u64(node.instance_id).is_ok());
// LEGACY: create a 16-bit encrypted field that specifies zero "moons." This is ignored now
// but causes old nodes to be able to parse this packet properly. This is not significant in
// terms of encryption or authentication and can disappear once old versions are dead. Newer
// versions ignore these bytes.
let zero_moon_count = packet.append_bytes_fixed_get_mut::<2>().unwrap();
let mut salsa_iv = message_id.to_ne_bytes();
salsa_iv[7] &= 0xf8;
Salsa::new(&self.static_secret.key.0[0..32], &salsa_iv, true).unwrap().crypt(&[0_u8, 0_u8], zero_moon_count);
// Size of dictionary with optional fields, currently none. For future use.
assert!(packet.append_u16(0).is_ok());
// Add full HMAC for strong authentication with newer nodes.
assert!(packet.append_bytes_fixed(&SHA384::hmac_multipart(&self.static_secret.packet_hmac_key.0, &[u64_as_bytes(&message_id), &packet.as_bytes()[PACKET_HEADER_SIZE..]])).is_ok());
// LEGACY: set MAC field in header to poly1305 for older nodes.
let (_, mut poly) = salsa_poly_create(&self.static_secret, packet.struct_at::<PacketHeader>(0).unwrap(), packet.len());
poly.update(packet.as_bytes_starting_at(PACKET_HEADER_SIZE).unwrap());
packet_header.mac.copy_from_slice(&poly.finish()[0..8]);
self.last_send_time_ticks.store(time_ticks, Ordering::Relaxed);
self.total_bytes_sent.fetch_add(packet.len() as u64, Ordering::Relaxed);
path.as_ref().map_or_else(|| {
self.send_to_endpoint(ci, endpoint, None, None, &packet)
}, |path| {
path.log_send(time_ticks);
self.send_to_endpoint(ci, endpoint, path.local_socket(), path.local_interface(), &packet)
})
}
pub(crate) const CALL_EVERY_INTERVAL_MS: i64 = EPHEMERAL_SECRET_REKEY_AFTER_TIME / 10;
/// Called every INTERVAL during background tasks.
#[inline(always)]
pub(crate) fn call_every_interval<CI: NodeInterface>(&self, ct: &CI, time_ticks: i64) {}
#[inline(always)]
fn receive_hello<CI: NodeInterface>(&self, ci: &CI, node: &Node, time_ticks: i64, source_path: &Arc<Path>, payload: &Buffer<{ PACKET_SIZE_MAX }>) {}
#[inline(always)]
fn receive_error<CI: NodeInterface, PH: VL1PacketHandler>(&self, ci: &CI, ph: &PH, node: &Node, time_ticks: i64, source_path: &Arc<Path>, forward_secrecy: bool, extended_authentication: bool, payload: &Buffer<{ PACKET_SIZE_MAX }>) {
let mut cursor: usize = 0;
let _ = payload.read_struct::<message_component_structs::ErrorHeader>(&mut cursor).map(|error_header| {
let in_re_message_id = u64::from_ne_bytes(error_header.in_re_message_id);
let current_packet_id_counter = self.message_id_counter.load(Ordering::Relaxed);
if current_packet_id_counter.wrapping_sub(in_re_message_id) <= PACKET_RESPONSE_COUNTER_DELTA_MAX {
match error_header.in_re_verb {
_ => {
ph.handle_error(self, source_path, forward_secrecy, extended_authentication, error_header.in_re_verb, in_re_message_id, error_header.error_code, payload, &mut cursor);
}
}
}
});
}
#[inline(always)]
fn receive_ok<CI: NodeInterface, PH: VL1PacketHandler>(&self, ci: &CI, ph: &PH, node: &Node, time_ticks: i64, source_path: &Arc<Path>, forward_secrecy: bool, extended_authentication: bool, payload: &Buffer<{ PACKET_SIZE_MAX }>) {
let mut cursor: usize = 0;
let _ = payload.read_struct::<message_component_structs::OkHeader>(&mut cursor).map(|ok_header| {
let in_re_message_id = u64::from_ne_bytes(ok_header.in_re_message_id);
let current_packet_id_counter = self.message_id_counter.load(Ordering::Relaxed);
if current_packet_id_counter.wrapping_sub(in_re_message_id) <= PACKET_RESPONSE_COUNTER_DELTA_MAX {
match ok_header.in_re_verb {
VERB_VL1_HELLO => {
}
VERB_VL1_WHOIS => {
}
_ => {
ph.handle_ok(self, source_path, forward_secrecy, extended_authentication, ok_header.in_re_verb, in_re_message_id, payload, &mut cursor);
}
}
}
});
}
#[inline(always)]
fn receive_whois<CI: NodeInterface>(&self, ci: &CI, node: &Node, time_ticks: i64, source_path: &Arc<Path>, payload: &Buffer<{ PACKET_SIZE_MAX }>) {}
#[inline(always)]
fn receive_rendezvous<CI: NodeInterface>(&self, ci: &CI, node: &Node, time_ticks: i64, source_path: &Arc<Path>, payload: &Buffer<{ PACKET_SIZE_MAX }>) {}
#[inline(always)]
fn receive_echo<CI: NodeInterface>(&self, ci: &CI, node: &Node, time_ticks: i64, source_path: &Arc<Path>, payload: &Buffer<{ PACKET_SIZE_MAX }>) {}
#[inline(always)]
fn receive_push_direct_paths<CI: NodeInterface>(&self, ci: &CI, node: &Node, time_ticks: i64, source_path: &Arc<Path>, payload: &Buffer<{ PACKET_SIZE_MAX }>) {}
#[inline(always)]
fn receive_user_message<CI: NodeInterface>(&self, ci: &CI, node: &Node, time_ticks: i64, source_path: &Arc<Path>, payload: &Buffer<{ PACKET_SIZE_MAX }>) {}
/// Get current best path or None if there are no direct paths to this peer.
#[inline(always)]
pub fn direct_path(&self) -> Option<Arc<Path>> {
self.paths.lock().first().map(|p| p.clone())
}
/// Get either the current best direct path or an indirect path.
pub fn path(&self, node: &Node) -> Option<Arc<Path>> {
self.direct_path().map_or_else(|| node.root().map_or(None, |root| root.direct_path().map_or(None, |bp| Some(bp))), |bp| Some(bp))
}
/// Get the remote version of this peer: major, minor, revision, and build.
/// Returns None if it's not yet known.
pub fn version(&self) -> Option<[u16; 4]> {
let rv = self.remote_version.load(Ordering::Relaxed);
if rv != 0 {
Some([(rv >> 48) as u16, (rv >> 32) as u16, (rv >> 16) as u16, rv as u16])
} else {
None
}
}
/// Get the remote protocol version of this peer or None if not yet known.
pub fn protocol_version(&self) -> Option<u8> {
let pv = self.remote_protocol_version.load(Ordering::Relaxed);
if pv != 0 {
Some(pv)
} else {
None
}
}
}