ZeroTierOne/node/Identity.cpp
2020-01-24 21:16:07 -08:00

569 lines
17 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include <cstring>
#include <cstdint>
#include "Constants.hpp"
#include "Identity.hpp"
#include "SHA512.hpp"
#include "Salsa20.hpp"
#include "Utils.hpp"
namespace ZeroTier {
namespace {
// These can't be changed without a new identity type. They define the
// parameters of the hashcash hashing/searching algorithm for type 0
// identities.
#define ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN 17
#define ZT_IDENTITY_GEN_MEMORY 2097152
// A memory-hard composition of SHA-512 and Salsa20 for hashcash hashing
static void _computeMemoryHardHash(const void *publicKey,unsigned int publicKeyBytes,void *digest,void *genmem)
{
// Digest publicKey[] to obtain initial digest
SHA512(digest,publicKey,publicKeyBytes);
// Initialize genmem[] using Salsa20 in a CBC-like configuration since
// ordinary Salsa20 is randomly seek-able. This is good for a cipher
// but is not what we want for sequential memory-hardness.
memset(genmem,0,ZT_IDENTITY_GEN_MEMORY);
Salsa20 s20(digest,(char *)digest + 32);
s20.crypt20((char *)genmem,(char *)genmem,64);
for(unsigned long i=64;i<ZT_IDENTITY_GEN_MEMORY;i+=64) {
unsigned long k = i - 64;
*((uint64_t *)((char *)genmem + i)) = *((uint64_t *)((char *)genmem + k));
*((uint64_t *)((char *)genmem + i + 8)) = *((uint64_t *)((char *)genmem + k + 8));
*((uint64_t *)((char *)genmem + i + 16)) = *((uint64_t *)((char *)genmem + k + 16));
*((uint64_t *)((char *)genmem + i + 24)) = *((uint64_t *)((char *)genmem + k + 24));
*((uint64_t *)((char *)genmem + i + 32)) = *((uint64_t *)((char *)genmem + k + 32));
*((uint64_t *)((char *)genmem + i + 40)) = *((uint64_t *)((char *)genmem + k + 40));
*((uint64_t *)((char *)genmem + i + 48)) = *((uint64_t *)((char *)genmem + k + 48));
*((uint64_t *)((char *)genmem + i + 56)) = *((uint64_t *)((char *)genmem + k + 56));
s20.crypt20((char *)genmem + i,(char *)genmem + i,64);
}
// Render final digest using genmem as a lookup table
for(unsigned long i=0;i<(ZT_IDENTITY_GEN_MEMORY / sizeof(uint64_t));) {
unsigned long idx1 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (64 / sizeof(uint64_t)));
unsigned long idx2 = (unsigned long)(Utils::ntoh(((uint64_t *)genmem)[i++]) % (ZT_IDENTITY_GEN_MEMORY / sizeof(uint64_t)));
uint64_t tmp = ((uint64_t *)genmem)[idx2];
((uint64_t *)genmem)[idx2] = ((uint64_t *)digest)[idx1];
((uint64_t *)digest)[idx1] = tmp;
s20.crypt20(digest,digest,64);
}
}
// Hashcash generation halting condition -- halt when first byte is less than
// threshold value.
struct _Identity_generate_cond
{
inline _Identity_generate_cond() {}
inline _Identity_generate_cond(unsigned char *sb,char *gm) : digest(sb),genmem(gm) {}
inline bool operator()(const uint8_t pub[ZT_C25519_PUBLIC_KEY_LEN]) const
{
_computeMemoryHardHash(pub,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
return (digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN);
}
unsigned char *digest;
char *genmem;
};
} // anonymous namespace
void Identity::generate(const Type t)
{
uint8_t digest[64];
_type = t;
_hasPrivate = true;
_hash[0] = 0; // force hash recompute
char *const genmem = new char[ZT_IDENTITY_GEN_MEMORY];
do {
C25519::generateSatisfying(_Identity_generate_cond(digest,genmem),_pub.c25519,_priv.c25519);
_address.setTo(digest + 59); // last 5 bytes are address
} while (_address.isReserved());
delete [] genmem;
if (t == P384) {
// We sign with both because in pure FIPS environments we might have to say
// that we do not rely on any non-FIPS algorithms, or may even have to disable
// them.
ECC384GenerateKey(_pub.p384,_priv.p384);
C25519::sign(_priv.c25519,_pub.c25519,&_pub,ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE,_pub.c25519s);
SHA384(digest,&_pub,ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE);
ECC384ECDSASign(_priv.p384,digest,_pub.p384s);
}
}
bool Identity::locallyValidate() const
{
uint8_t digest[64];
if (_address.isReserved())
return false;
switch(_type) {
case C25519:
break;
case P384:
if (!C25519::verify(_pub.c25519,&_pub,ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE,_pub.c25519s,ZT_C25519_SIGNATURE_LEN))
return false;
SHA384(digest,&_pub,ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE);
if (!ECC384ECDSAVerify(_pub.p384,digest,_pub.p384s))
return false;
break;
default:
return false;
}
char *genmem = nullptr;
try {
genmem = new char[ZT_IDENTITY_GEN_MEMORY];
_computeMemoryHardHash(_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,digest,genmem);
delete [] genmem;
return ((_address == Address(digest + 59,ZT_ADDRESS_LENGTH))&&(!_address.isReserved())&&(digest[0] < ZT_IDENTITY_GEN_HASHCASH_FIRST_BYTE_LESS_THAN));
} catch ( ... ) {
if (genmem) delete [] genmem;
}
return false;
}
void Identity::hashWithPrivate(uint8_t h[48]) const
{
switch(_type) {
case C25519: SHA384(h,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN); break;
case P384: SHA384(h,&_pub,sizeof(_pub),&_priv,sizeof(_priv)); break;
default: memset(h,0,48);
}
}
unsigned int Identity::sign(const void *data,unsigned int len,void *sig,unsigned int siglen) const
{
if (_hasPrivate) {
switch(_type) {
case C25519:
if (siglen >= ZT_C25519_SIGNATURE_LEN) {
C25519::sign(_priv.c25519,_pub.c25519,data,len,sig);
return ZT_C25519_SIGNATURE_LEN;
}
case P384:
if (siglen >= ZT_ECC384_SIGNATURE_SIZE) {
// When signing with P384 we also hash the C25519 public key as an
// extra measure to ensure that only this identity can verify.
uint8_t h[48];
SHA384(h,data,len,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
ECC384ECDSASign(_priv.p384,h,(uint8_t *)sig);
return ZT_ECC384_SIGNATURE_SIZE;
}
}
}
return 0;
}
bool Identity::verify(const void *data,unsigned int len,const void *sig,unsigned int siglen) const
{
switch(_type) {
case C25519:
return C25519::verify(_pub.c25519,data,len,sig,siglen);
case P384:
if (siglen == ZT_ECC384_SIGNATURE_SIZE) {
uint8_t h[48];
SHA384(h,data,len,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
return ECC384ECDSAVerify(_pub.p384,h,(const uint8_t *)sig);
}
break;
}
return false;
}
bool Identity::agree(const Identity &id,uint8_t key[ZT_PEER_SECRET_KEY_LENGTH]) const
{
uint8_t rawkey[128];
uint8_t h[64];
if (_hasPrivate) {
if (_type == C25519) {
if ((id._type == C25519)||(id._type == P384)) {
// If we are a C25519 key we can agree with another C25519 key or with only the
// C25519 portion of a type 1 P-384 key.
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
SHA512(h,rawkey,ZT_C25519_SHARED_KEY_LEN);
memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
return true;
}
} else if (_type == P384) {
if (id._type == P384) {
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
ECC384ECDH(id._pub.p384,_priv.p384,rawkey + ZT_C25519_SHARED_KEY_LEN);
SHA384(h,rawkey,ZT_C25519_SHARED_KEY_LEN + ZT_ECC384_SHARED_SECRET_SIZE);
memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
return true;
} else if (id._type == C25519) {
// If the other identity is a C25519 identity we can agree using only that type.
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
SHA512(h,rawkey,ZT_C25519_SHARED_KEY_LEN);
memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
return true;
}
}
}
return false;
}
char *Identity::toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const
{
switch(_type) {
case C25519: {
char *p = buf;
Utils::hex10(_address.toInt(),p);
p += 10;
*(p++) = ':';
*(p++) = '0';
*(p++) = ':';
Utils::hex(_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,p);
p += ZT_C25519_PUBLIC_KEY_LEN * 2;
if ((_hasPrivate)&&(includePrivate)) {
*(p++) = ':';
Utils::hex(_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN,p);
p += ZT_C25519_PRIVATE_KEY_LEN * 2;
}
*p = (char)0;
return buf;
}
case P384: {
char *p = buf;
Utils::hex10(_address.toInt(),p);
p += 10;
*(p++) = ':';
*(p++) = '1';
*(p++) = ':';
int el = Utils::b32e((const uint8_t *)(&_pub),sizeof(_pub),p,(unsigned int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
if ((_hasPrivate)&&(includePrivate)) {
*(p++) = ':';
el = Utils::b32e((const uint8_t *)(&_priv),sizeof(_priv),p,(unsigned int)(ZT_IDENTITY_STRING_BUFFER_LENGTH - (uintptr_t)(p - buf)));
if (el <= 0) return nullptr;
p += el;
}
*p = (char)0;
return buf;
}
}
return nullptr;
}
bool Identity::fromString(const char *str)
{
_hasPrivate = false;
_hash[0] = 0; // force hash recompute
if (!str) {
_address.zero();
return false;
}
char tmp[ZT_IDENTITY_STRING_BUFFER_LENGTH];
if (!Utils::scopy(tmp,sizeof(tmp),str)) {
_address.zero();
return false;
}
int fno = 0;
char *saveptr = (char *)0;
for(char *f=Utils::stok(tmp,":",&saveptr);((f)&&(fno < 4));f=Utils::stok((char *)0,":",&saveptr)) {
switch(fno++) {
case 0:
_address = Address(Utils::hexStrToU64(f));
if (_address.isReserved()) {
_address.zero();
return false;
}
break;
case 1:
if ((f[0] == '0')&&(!f[1])) {
_type = C25519;
} else if ((f[0] == '1')&&(!f[1])) {
_type = P384;
} else {
_address.zero();
return false;
}
break;
case 2:
switch(_type) {
case C25519:
if (Utils::unhex(f,strlen(f),_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN) != ZT_C25519_PUBLIC_KEY_LEN) {
_address.zero();
return false;
}
break;
case P384:
if (Utils::b32d(f,(uint8_t *)(&_pub),sizeof(_pub)) != sizeof(_pub)) {
_address.zero();
return false;
}
break;
}
break;
case 3:
if (strlen(f) > 1) {
switch(_type) {
case C25519:
if (Utils::unhex(f,strlen(f),_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN) != ZT_C25519_PRIVATE_KEY_LEN) {
_address.zero();
return false;
} else {
_hasPrivate = true;
}
break;
case P384:
if (Utils::b32d(f,(uint8_t *)(&_priv),sizeof(_priv)) != sizeof(_priv)) {
_address.zero();
return false;
} else {
_hasPrivate = true;
}
break;
}
break;
}
}
}
if (fno < 3) {
_address.zero();
return false;
}
return true;
}
int Identity::marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate) const
{
_address.copyTo(data);
switch(_type) {
case C25519:
data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519;
memcpy(data + ZT_ADDRESS_LENGTH + 1,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
if ((includePrivate)&&(_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = ZT_C25519_PRIVATE_KEY_LEN;
memcpy(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN);
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN);
}
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1);
case P384:
data[ZT_ADDRESS_LENGTH] = (uint8_t)P384;
memcpy(data + ZT_ADDRESS_LENGTH + 1,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
if ((includePrivate)&&(_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_C25519_PRIVATE_KEY_LEN + ZT_ECC384_PRIVATE_KEY_SIZE;
memcpy(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,&_priv,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1);
}
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0;
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2);
}
return -1;
}
int Identity::unmarshal(const uint8_t *data,const int len)
{
if (len < (ZT_ADDRESS_LENGTH + 1))
return -1;
_hash[0] = 0; // force hash recompute
unsigned int privlen;
switch((_type = (Type)data[ZT_ADDRESS_LENGTH])) {
case C25519:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1))
return -1;
memcpy(_pub.c25519,data + ZT_ADDRESS_LENGTH + 1,ZT_C25519_PUBLIC_KEY_LEN);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN];
if (privlen == ZT_C25519_PRIVATE_KEY_LEN) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN))
return -1;
_hasPrivate = true;
memcpy(_priv.c25519,data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,ZT_C25519_PRIVATE_KEY_LEN);
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN);
} else if (privlen == 0) {
_hasPrivate = false;
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1);
}
break;
case P384:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2))
return -1;
memcpy(&_pub,data + ZT_ADDRESS_LENGTH + 1,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE];
if (privlen == ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1))
return -1;
_hasPrivate = true;
memcpy(&_priv,data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE];
if (len < (int)(privlen + (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1)))
return -1;
return (int)(privlen + (unsigned int)(ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1));
} else if (privlen == 0) {
_hasPrivate = false;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2);
}
break;
}
return -1;
}
void Identity::_computeHash()
{
switch(_type) {
case C25519: SHA384(_hash,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN); break;
case P384: SHA384(_hash,&_pub,sizeof(_pub)); break;
default: memset(_hash,0,48);
}
}
} // namespace ZeroTier
extern "C" {
ZT_Identity *ZT_Identity_new(enum ZT_Identity_Type type)
{
if ((type != ZT_IDENTITY_TYPE_C25519)&&(type != ZT_IDENTITY_TYPE_P384))
return nullptr;
try {
ZeroTier::Identity *id = new ZeroTier::Identity();
id->generate((ZeroTier::Identity::Type)type);
return reinterpret_cast<ZT_Identity *>(id);
} catch ( ... ) {
return nullptr;
}
}
ZT_Identity *ZT_Identity_fromString(const char *idStr)
{
if (!idStr)
return nullptr;
try {
ZeroTier::Identity *id = new ZeroTier::Identity();
if (!id->fromString(idStr)) {
delete id;
return nullptr;
}
return reinterpret_cast<ZT_Identity *>(id);
} catch ( ... ) {
return nullptr;
}
}
int ZT_Identity_validate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->locallyValidate() ? 1 : 0;
}
unsigned int ZT_Identity_sign(const ZT_Identity *id,const void *data,unsigned int len,void *signature,unsigned int signatureBufferLength)
{
if (!id)
return 0;
if (signatureBufferLength < ZT_SIGNATURE_BUFFER_SIZE)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->sign(data,len,signature,signatureBufferLength);
}
int ZT_Identity_verify(const ZT_Identity *id,const void *data,unsigned int len,const void *signature,unsigned int sigLen)
{
if ((!id)||(!signature)||(!sigLen))
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->verify(data,len,signature,sigLen) ? 1 : 0;
}
enum ZT_Identity_Type ZT_Identity_type(const ZT_Identity *id)
{
if (!id)
return (ZT_Identity_Type)0;
return (enum ZT_Identity_Type)reinterpret_cast<const ZeroTier::Identity *>(id)->type();
}
char *ZT_Identity_toString(const ZT_Identity *id,char *buf,int capacity,int includePrivate)
{
if ((!id)||(!buf)||(capacity < ZT_IDENTITY_STRING_BUFFER_LENGTH))
return nullptr;
reinterpret_cast<const ZeroTier::Identity *>(id)->toString(includePrivate != 0,buf);
return buf;
}
int ZT_Identity_hasPrivate(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->hasPrivate() ? 1 : 0;
}
uint64_t ZT_Identity_address(const ZT_Identity *id)
{
if (!id)
return 0;
return reinterpret_cast<const ZeroTier::Identity *>(id)->address().toInt();
}
void ZT_Identity_hash(const ZT_Identity *id,uint8_t h[48],int includePrivate)
{
if (includePrivate)
reinterpret_cast<const ZeroTier::Identity *>(id)->hashWithPrivate(h);
else memcpy(h,reinterpret_cast<const ZeroTier::Identity *>(id)->hash(),48);
}
ZT_SDK_API void ZT_Identity_delete(ZT_Identity *id)
{
if (id)
delete reinterpret_cast<ZeroTier::Identity *>(id);
}
}