ZeroTierOne/core/Node.cpp

1124 lines
33 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Constants.hpp"
#include "SharedPtr.hpp"
#include "Node.hpp"
#include "NetworkController.hpp"
#include "Topology.hpp"
#include "Address.hpp"
#include "Identity.hpp"
#include "SelfAwareness.hpp"
#include "Network.hpp"
#include "Trace.hpp"
#include "Locator.hpp"
#include "Expect.hpp"
#include "VL1.hpp"
#include "VL2.hpp"
#include "Buf.hpp"
namespace ZeroTier {
namespace {
// Structure containing all the core objects for a ZeroTier node to reduce memory allocations.
struct _NodeObjects
{
ZT_INLINE _NodeObjects(RuntimeEnvironment *const RR, void *const tPtr, const int64_t now) :
t(RR),
expect(),
vl2(RR),
vl1(RR),
sa(RR),
topology(RR, tPtr, now)
{
RR->t = &t;
RR->expect = &expect;
RR->vl2 = &vl2;
RR->vl1 = &vl1;
RR->sa = &sa;
RR->topology = &topology;
}
Trace t;
Expect expect;
VL2 vl2;
VL1 vl1;
SelfAwareness sa;
Topology topology;
};
struct _sortPeerPtrsByAddress
{
ZT_INLINE bool operator()(const SharedPtr< Peer > &a, const SharedPtr< Peer > &b) const
{ return (a->address() < b->address()); }
};
} // anonymous namespace
Node::Node(
void *uPtr,
void *tPtr,
const struct ZT_Node_Callbacks *callbacks,
int64_t now) :
m_RR(this),
RR(&m_RR),
m_objects(nullptr),
m_cb(*callbacks),
m_uPtr(uPtr),
m_networks(),
m_lastPeerPulse(0),
m_lastHousekeepingRun(0),
m_lastNetworkHousekeepingRun(0),
m_now(now),
m_online(false)
{
ZT_SPEW("starting up...");
// Load this node's identity.
uint64_t idtmp[2];
idtmp[0] = 0;
idtmp[1] = 0;
Vector< uint8_t > data(stateObjectGet(tPtr, ZT_STATE_OBJECT_IDENTITY_SECRET, idtmp));
bool haveIdentity = false;
if (!data.empty()) {
data.push_back(0); // zero-terminate string
if (RR->identity.fromString((const char *)data.data())) {
RR->identity.toString(false, RR->publicIdentityStr);
RR->identity.toString(true, RR->secretIdentityStr);
haveIdentity = true;
ZT_SPEW("loaded identity %s", RR->identity.toString().c_str());
}
}
// Generate a new identity if we don't have one.
if (!haveIdentity) {
RR->identity.generate(Identity::C25519);
RR->identity.toString(false, RR->publicIdentityStr);
RR->identity.toString(true, RR->secretIdentityStr);
idtmp[0] = RR->identity.address();
idtmp[1] = 0;
stateObjectPut(tPtr, ZT_STATE_OBJECT_IDENTITY_SECRET, idtmp, RR->secretIdentityStr, (unsigned int)strlen(RR->secretIdentityStr));
stateObjectPut(tPtr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, RR->publicIdentityStr, (unsigned int)strlen(RR->publicIdentityStr));
ZT_SPEW("no pre-existing identity found, created %s", RR->identity.toString().c_str());
} else {
idtmp[0] = RR->identity.address();
idtmp[1] = 0;
data = stateObjectGet(tPtr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp);
if ((data.empty()) || (memcmp(data.data(), RR->publicIdentityStr, strlen(RR->publicIdentityStr)) != 0))
stateObjectPut(tPtr, ZT_STATE_OBJECT_IDENTITY_PUBLIC, idtmp, RR->publicIdentityStr, (unsigned int)strlen(RR->publicIdentityStr));
}
// Create a secret key for encrypting local data at rest.
uint8_t tmph[ZT_SHA384_DIGEST_SIZE];
RR->identity.hashWithPrivate(tmph);
SHA384(tmph, tmph, ZT_SHA384_DIGEST_SIZE);
RR->localCacheSymmetric.init(tmph);
Utils::burn(tmph, ZT_SHA384_DIGEST_SIZE);
// Generate a random sort order for privileged ports for use in NAT-t algorithms.
for (unsigned int i = 0; i < 1023; ++i)
RR->randomPrivilegedPortOrder[i] = (uint16_t)(i + 1);
for (unsigned int i = 0; i < 512; ++i) {
uint64_t rn = Utils::random();
const unsigned int a = (unsigned int)rn % 1023;
const unsigned int b = (unsigned int)(rn >> 32U) % 1023;
if (a != b) {
const uint16_t tmp = RR->randomPrivilegedPortOrder[a];
RR->randomPrivilegedPortOrder[a] = RR->randomPrivilegedPortOrder[b];
RR->randomPrivilegedPortOrder[b] = tmp;
}
}
// This constructs all the components of the ZeroTier core within a single contiguous memory container,
// which reduces memory fragmentation and may improve cache locality.
ZT_SPEW("initializing subsystem objects...");
m_objects = new _NodeObjects(RR, tPtr, now);
ZT_SPEW("node initialized!");
postEvent(tPtr, ZT_EVENT_UP);
}
Node::~Node()
{
ZT_SPEW("node destructor run");
m_networks_l.lock();
m_networks_l.unlock();
m_networks.clear();
m_networks_l.lock();
m_networks_l.unlock();
if (m_objects)
delete (_NodeObjects *)m_objects;
// Let go of cached Buf objects. If other nodes happen to be running in this
// same process space new Bufs will be allocated as needed, but this is almost
// never the case. Calling this here saves RAM if we are running inside something
// that wants to keep running after tearing down its ZeroTier core instance.
Buf::freePool();
}
void Node::shutdown(void *tPtr)
{
ZT_SPEW("explicit shutdown() called");
postEvent(tPtr, ZT_EVENT_DOWN);
if (RR->topology)
RR->topology->saveAll(tPtr);
}
ZT_ResultCode Node::processWirePacket(
void *tPtr,
int64_t now,
int64_t localSocket,
const struct sockaddr_storage *remoteAddress,
SharedPtr< Buf > &packetData,
unsigned int packetLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
m_now = now;
RR->vl1->onRemotePacket(tPtr, localSocket, (remoteAddress) ? InetAddress::NIL : *asInetAddress(remoteAddress), packetData, packetLength);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::processVirtualNetworkFrame(
void *tPtr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
SharedPtr< Buf > &frameData,
unsigned int frameLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
m_now = now;
SharedPtr< Network > nw(this->network(nwid));
if (nw) {
RR->vl2->onLocalEthernet(tPtr, nw, MAC(sourceMac), MAC(destMac), etherType, vlanId, frameData, frameLength);
return ZT_RESULT_OK;
} else {
return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
}
ZT_ResultCode Node::processHTTPResponse(
void *tptr,
int64_t now,
void *requestId,
int responseCode,
const char **headerNames,
const char **headerValues,
const void *body,
unsigned int bodySize,
unsigned int flags)
{
return ZT_RESULT_OK;
}
ZT_ResultCode Node::processBackgroundTasks(
void *tPtr,
int64_t now,
volatile int64_t *nextBackgroundTaskDeadline)
{
m_now = now;
Mutex::Lock bl(m_backgroundTasksLock);
try {
// Call peer pulse() method of all peers every ZT_PEER_PULSE_INTERVAL.
if ((now - m_lastPeerPulse) >= ZT_PEER_PULSE_INTERVAL) {
m_lastPeerPulse = now;
ZT_SPEW("running pulse() on each peer...");
try {
Vector< SharedPtr< Peer > > allPeers, rootPeers;
RR->topology->getAllPeers(allPeers, rootPeers);
bool online = false;
for (Vector< SharedPtr< Peer > >::iterator p(allPeers.begin()); p != allPeers.end(); ++p) {
const bool isRoot = std::find(rootPeers.begin(), rootPeers.end(), *p) != rootPeers.end();
(*p)->pulse(tPtr, now, isRoot);
online |= ((isRoot || rootPeers.empty()) && (*p)->directlyConnected(now));
}
RR->topology->rankRoots();
if (m_online.exchange(online) != online)
postEvent(tPtr, online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
// Perform network housekeeping and possibly request new certs and configs every ZT_NETWORK_HOUSEKEEPING_PERIOD.
if ((now - m_lastNetworkHousekeepingRun) >= ZT_NETWORK_HOUSEKEEPING_PERIOD) {
m_lastHousekeepingRun = now;
ZT_SPEW("running networking housekeeping...");
RWMutex::RLock l(m_networks_l);
for (Map< uint64_t, SharedPtr< Network > >::const_iterator i(m_networks.begin()); i != m_networks.end(); ++i) {
i->second->doPeriodicTasks(tPtr, now);
}
}
// Clean up other stuff every ZT_HOUSEKEEPING_PERIOD.
if ((now - m_lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {
m_lastHousekeepingRun = now;
ZT_SPEW("running housekeeping...");
// Clean up any old local controller auth memoizations. This is an
// optimization for network controllers to know whether to accept
// or trust nodes without doing an extra cert check.
m_localControllerAuthorizations_l.lock();
for (Map< p_LocalControllerAuth, int64_t >::iterator i(m_localControllerAuthorizations.begin()); i != m_localControllerAuthorizations.end();) { // NOLINT(hicpp-use-auto,modernize-use-auto)
if ((i->second - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3))
m_localControllerAuthorizations.erase(i++);
else ++i;
}
m_localControllerAuthorizations_l.unlock();
RR->topology->doPeriodicTasks(tPtr, now);
RR->sa->clean(now);
}
*nextBackgroundTaskDeadline = now + ZT_TIMER_TASK_INTERVAL;
} catch (...) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
return ZT_RESULT_OK;
}
ZT_ResultCode Node::join(
uint64_t nwid,
const ZT_Fingerprint *controllerFingerprint,
void *uptr,
void *tptr)
{
Fingerprint fp;
if (controllerFingerprint) {
fp = *controllerFingerprint;
ZT_SPEW("joining network %.16llx with fingerprint %s", nwid, fp.toString().c_str());
} else {
ZT_SPEW("joining network %.16llx", nwid);
}
RWMutex::Lock l(m_networks_l);
SharedPtr< Network > &nw = m_networks[nwid];
if (nw)
return ZT_RESULT_OK;
nw.set(new Network(RR, tptr, nwid, fp, uptr, nullptr));
return ZT_RESULT_OK;
}
ZT_ResultCode Node::leave(
uint64_t nwid,
void **uptr,
void *tptr)
{
ZT_SPEW("leaving network %.16llx", nwid);
ZT_VirtualNetworkConfig ctmp;
m_networks_l.lock();
Map< uint64_t, SharedPtr< Network > >::iterator nwi(m_networks.find(nwid)); // NOLINT(hicpp-use-auto,modernize-use-auto)
if (nwi == m_networks.end()) {
m_networks_l.unlock();
return ZT_RESULT_OK;
}
SharedPtr< Network > nw(nwi->second);
m_networks.erase(nwi);
m_networks_l.unlock();
if (uptr)
*uptr = *nw->userPtr();
nw->externalConfig(&ctmp);
RR->node->configureVirtualNetworkPort(tptr, nwid, uptr, ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY, &ctmp);
nw->destroy();
nw.zero();
uint64_t tmp[2];
tmp[0] = nwid;
tmp[1] = 0;
RR->node->stateObjectDelete(tptr, ZT_STATE_OBJECT_NETWORK_CONFIG, tmp);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::multicastSubscribe(
void *tPtr,
uint64_t nwid,
uint64_t multicastGroup,
unsigned long multicastAdi)
{
ZT_SPEW("multicast subscribe to %s:%lu", MAC(multicastGroup).toString().c_str(), multicastAdi);
const SharedPtr< Network > nw(this->network(nwid));
if (nw) {
nw->multicastSubscribe(tPtr, MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
ZT_ResultCode Node::multicastUnsubscribe(
uint64_t nwid,
uint64_t multicastGroup,
unsigned long multicastAdi)
{
ZT_SPEW("multicast unsubscribe from %s:%lu", MAC(multicastGroup).toString().c_str(), multicastAdi);
const SharedPtr< Network > nw(this->network(nwid));
if (nw) {
nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup), (uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
ZT_ResultCode Node::addRoot(
void *tPtr,
const ZT_Identity *id)
{
return (RR->topology->addRoot(tPtr, *reinterpret_cast<const Identity *>(id))) ? ZT_RESULT_OK : ZT_RESULT_ERROR_BAD_PARAMETER;
}
ZT_ResultCode Node::removeRoot(
void *tPtr,
const uint64_t address)
{
RR->topology->removeRoot(tPtr, Address(address));
return ZT_RESULT_OK;
}
uint64_t Node::address() const
{
return RR->identity.address().toInt();
}
void Node::status(ZT_NodeStatus *status) const
{
status->address = RR->identity.address().toInt();
status->identity = reinterpret_cast<const ZT_Identity *>(&RR->identity);
status->publicIdentity = RR->publicIdentityStr;
status->secretIdentity = RR->secretIdentityStr;
status->online = m_online ? 1 : 0;
}
ZT_PeerList *Node::peers() const
{
Vector< SharedPtr< Peer > > peers;
RR->topology->getAllPeers(peers);
std::sort(peers.begin(), peers.end(), _sortPeerPtrsByAddress());
const unsigned int bufSize =
sizeof(ZT_PeerList) +
(sizeof(ZT_Peer) * peers.size()) +
((sizeof(ZT_Path) * ZT_MAX_PEER_NETWORK_PATHS) * peers.size()) +
(sizeof(Identity) * peers.size()) +
(ZT_LOCATOR_MARSHAL_SIZE_MAX * peers.size());
char *buf = (char *)malloc(bufSize);
if (!buf)
return nullptr;
Utils::zero(buf, bufSize);
ZT_PeerList *pl = reinterpret_cast<ZT_PeerList *>(buf);
buf += sizeof(ZT_PeerList);
pl->peers = reinterpret_cast<ZT_Peer *>(buf);
buf += sizeof(ZT_Peer) * peers.size();
ZT_Path *peerPath = reinterpret_cast<ZT_Path *>(buf);
buf += (sizeof(ZT_Path) * ZT_MAX_PEER_NETWORK_PATHS) * peers.size();
Identity *identities = reinterpret_cast<Identity *>(buf);
buf += sizeof(Identity) * peers.size();
uint8_t *locatorBuf = reinterpret_cast<uint8_t *>(buf);
const int64_t now = m_now;
pl->peerCount = 0;
for (Vector< SharedPtr< Peer > >::iterator pi(peers.begin()); pi != peers.end(); ++pi) {
ZT_Peer *const p = pl->peers + pl->peerCount;
p->address = (*pi)->address().toInt();
identities[pl->peerCount] = (*pi)->identity(); // need to make a copy in case peer gets deleted
p->identity = identities + pl->peerCount;
p->fingerprint.address = p->address;
Utils::copy< ZT_FINGERPRINT_HASH_SIZE >(p->fingerprint.hash, (*pi)->identity().fingerprint().hash);
if ((*pi)->remoteVersionKnown()) {
p->versionMajor = (int)(*pi)->remoteVersionMajor();
p->versionMinor = (int)(*pi)->remoteVersionMinor();
p->versionRev = (int)(*pi)->remoteVersionRevision();
} else {
p->versionMajor = -1;
p->versionMinor = -1;
p->versionRev = -1;
}
p->latency = (*pi)->latency();
p->root = RR->topology->isRoot((*pi)->identity()) ? 1 : 0;
p->networkCount = 0;
// TODO: enumerate network memberships
Vector< SharedPtr< Path > > paths;
(*pi)->getAllPaths(paths);
p->pathCount = (unsigned int)paths.size();
p->paths = peerPath;
for (Vector< SharedPtr< Path > >::iterator path(paths.begin()); path != paths.end(); ++path) {
ZT_Path *const pp = peerPath++;
pp->endpoint.type = ZT_ENDPOINT_TYPE_IP_UDP; // only type supported right now
Utils::copy< sizeof(sockaddr_storage) >(&pp->endpoint.value.ss, &((*path)->address().as.ss));
pp->lastSend = (*path)->lastOut();
pp->lastReceive = (*path)->lastIn();
pp->alive = (*path)->alive(now) ? 1 : 0;
pp->preferred = (p->pathCount == 0) ? 1 : 0;
}
const SharedPtr< const Locator > loc((*pi)->locator());
if (loc) {
const int ls = loc->marshal(locatorBuf);
if (ls > 0) {
p->locatorSize = (unsigned int)ls;
p->locator = locatorBuf;
locatorBuf += ls;
}
}
++pl->peerCount;
}
return pl;
}
ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const
{
SharedPtr< Network > nw(network(nwid));
if (nw) {
ZT_VirtualNetworkConfig *const nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig));
nw->externalConfig(nc);
return nc;
}
return nullptr;
}
ZT_VirtualNetworkList *Node::networks() const
{
RWMutex::RLock l(m_networks_l);
char *const buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * m_networks.size()));
if (!buf)
return nullptr;
ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf; // NOLINT(modernize-use-auto,hicpp-use-auto)
nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList));
nl->networkCount = 0;
for (Map< uint64_t, SharedPtr< Network > >::const_iterator i(m_networks.begin()); i != m_networks.end(); ++i) // NOLINT(modernize-use-auto,modernize-loop-convert,hicpp-use-auto)
i->second->externalConfig(&(nl->networks[nl->networkCount++]));
return nl;
}
void Node::setNetworkUserPtr(
uint64_t nwid,
void *ptr)
{
SharedPtr< Network > nw(network(nwid));
if (nw)
*(nw->userPtr()) = ptr;
}
void Node::setInterfaceAddresses(
const ZT_InterfaceAddress *addrs,
unsigned int addrCount)
{
Mutex::Lock _l(m_localInterfaceAddresses_m);
m_localInterfaceAddresses.clear();
for (unsigned int i = 0; i < addrCount; ++i) {
bool dupe = false;
for (unsigned int j = 0; j < i; ++j) {
if (*(reinterpret_cast<const InetAddress *>(&addrs[j].address)) == *(reinterpret_cast<const InetAddress *>(&addrs[i].address))) {
dupe = true;
break;
}
}
if (!dupe)
m_localInterfaceAddresses.push_back(addrs[i]);
}
}
ZT_ResultCode Node::addPeer(
void *tptr,
const ZT_Identity *identity)
{
if (!identity)
return ZT_RESULT_ERROR_BAD_PARAMETER;
SharedPtr< Peer > peer(RR->topology->peer(tptr, reinterpret_cast<const Identity *>(identity)->address()));
if (!peer) {
peer.set(new Peer(RR));
peer->init(*reinterpret_cast<const Identity *>(identity));
peer = RR->topology->add(tptr, peer);
}
return (peer->identity() == *reinterpret_cast<const Identity *>(identity)) ? ZT_RESULT_OK : ZT_RESULT_ERROR_COLLIDING_OBJECT;
}
int Node::tryPeer(
void *tptr,
const ZT_Fingerprint *fp,
const ZT_Endpoint *endpoint,
int retries)
{
if ((!fp) || (!endpoint))
return 0;
const SharedPtr< Peer > peer(RR->topology->peer(tptr, fp->address, true));
if ((peer) && (peer->identity().fingerprint().bestSpecificityEquals(*fp))) {
peer->contact(tptr, m_now, Endpoint(*endpoint), std::min(retries, 1));
return 1;
}
return 0;
}
int Node::sendUserMessage(
void *tptr,
uint64_t dest,
uint64_t typeId,
const void *data,
unsigned int len)
{
try {
if (RR->identity.address().toInt() != dest) {
// TODO
/*
Packet outp(Address(dest),RR->identity.address(),Packet::VERB_USER_MESSAGE);
outp.append(typeId);
outp.append(data,len);
outp.compress();
RR->sw->send(tptr,outp,true);
*/
return 1;
}
} catch (...) {}
return 0;
}
void Node::setController(void *networkControllerInstance)
{
RR->localNetworkController = reinterpret_cast<NetworkController *>(networkControllerInstance);
if (networkControllerInstance)
RR->localNetworkController->init(RR->identity, this);
}
// Methods used only within the core ----------------------------------------------------------------------------------
Vector< uint8_t > Node::stateObjectGet(void *const tPtr, ZT_StateObjectType type, const uint64_t *id)
{
Vector< uint8_t > r;
if (m_cb.stateGetFunction) {
void *data = nullptr;
void (*freeFunc)(void *) = nullptr;
int l = m_cb.stateGetFunction(
reinterpret_cast<ZT_Node *>(this),
m_uPtr,
tPtr,
type,
id,
&data,
&freeFunc);
if ((l > 0) && (data) && (freeFunc)) {
r.assign(reinterpret_cast<const uint8_t *>(data), reinterpret_cast<const uint8_t *>(data) + l);
freeFunc(data);
}
}
return r;
}
bool Node::shouldUsePathForZeroTierTraffic(void *tPtr, const Identity &id, const int64_t localSocket, const InetAddress &remoteAddress)
{
{
RWMutex::RLock l(m_networks_l);
for (Map< uint64_t, SharedPtr< Network > >::iterator i(m_networks.begin()); i != m_networks.end(); ++i) { // NOLINT(hicpp-use-auto,modernize-use-auto,modernize-loop-convert)
for (unsigned int k = 0, j = i->second->config().staticIpCount; k < j; ++k) {
if (i->second->config().staticIps[k].containsAddress(remoteAddress))
return false;
}
}
}
if (m_cb.pathCheckFunction) {
return (m_cb.pathCheckFunction(
reinterpret_cast<ZT_Node *>(this),
m_uPtr,
tPtr,
id.address().toInt(),
(const ZT_Identity *)&id,
localSocket,
reinterpret_cast<const struct sockaddr_storage *>(&remoteAddress)) != 0);
}
return true;
}
bool Node::externalPathLookup(void *tPtr, const Identity &id, int family, InetAddress &addr)
{
if (m_cb.pathLookupFunction) {
return (m_cb.pathLookupFunction(
reinterpret_cast<ZT_Node *>(this),
m_uPtr,
tPtr,
id.address().toInt(),
reinterpret_cast<const ZT_Identity *>(&id),
family,
reinterpret_cast<sockaddr_storage *>(&addr)) == ZT_RESULT_OK);
}
return false;
}
bool Node::localControllerHasAuthorized(const int64_t now, const uint64_t nwid, const Address &addr) const
{
m_localControllerAuthorizations_l.lock();
const int64_t *const at = m_localControllerAuthorizations.get(p_LocalControllerAuth(nwid, addr));
m_localControllerAuthorizations_l.unlock();
if (at)
return ((now - *at) < (ZT_NETWORK_AUTOCONF_DELAY * 3));
return false;
}
// Implementation of NetworkController::Sender ------------------------------------------------------------------------
void Node::ncSendConfig(uint64_t nwid, uint64_t requestPacketId, const Address &destination, const NetworkConfig &nc, bool sendLegacyFormatConfig)
{
m_localControllerAuthorizations_l.lock();
m_localControllerAuthorizations[p_LocalControllerAuth(nwid, destination)] = now();
m_localControllerAuthorizations_l.unlock();
if (destination == RR->identity.address()) {
SharedPtr< Network > n(network(nwid));
if (!n)
return;
n->setConfiguration((void *)0, nc, true);
} else {
Dictionary dconf;
if (nc.toDictionary(dconf)) {
uint64_t configUpdateId = Utils::random();
if (!configUpdateId)
++configUpdateId;
Vector< uint8_t > ddata;
dconf.encode(ddata);
// TODO
/*
unsigned int chunkIndex = 0;
while (chunkIndex < totalSize) {
const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256)));
Packet outp(destination,RR->identity.address(),(requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG);
if (requestPacketId) {
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
}
const unsigned int sigStart = outp.size();
outp.append(nwid);
outp.append((uint16_t)chunkLen);
outp.append((const void *)(dconf->data() + chunkIndex),chunkLen);
outp.append((uint8_t)0); // no flags
outp.append((uint64_t)configUpdateId);
outp.append((uint32_t)totalSize);
outp.append((uint32_t)chunkIndex);
uint8_t sig[256];
const unsigned int siglen = RR->identity.sign(reinterpret_cast<const uint8_t *>(outp.data()) + sigStart,outp.size() - sigStart,sig,sizeof(sig));
outp.append((uint8_t)1);
outp.append((uint16_t)siglen);
outp.append(sig,siglen);
outp.compress();
RR->sw->send((void *)0,outp,true);
chunkIndex += chunkLen;
}
*/
}
}
}
void Node::ncSendRevocation(const Address &destination, const RevocationCredential &rev)
{
if (destination == RR->identity.address()) {
SharedPtr< Network > n(network(rev.networkId()));
if (!n) return;
n->addCredential(nullptr, RR->identity, rev);
} else {
// TODO
/*
Packet outp(destination,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS);
outp.append((uint8_t)0x00);
outp.append((uint16_t)0);
outp.append((uint16_t)0);
outp.append((uint16_t)1);
rev.serialize(outp);
outp.append((uint16_t)0);
RR->sw->send((void *)0,outp,true);
*/
}
}
void Node::ncSendError(uint64_t nwid, uint64_t requestPacketId, const Address &destination, NetworkController::ErrorCode errorCode)
{
if (destination == RR->identity.address()) {
SharedPtr< Network > n(network(nwid));
if (!n) return;
switch (errorCode) {
case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
n->setNotFound();
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
n->setAccessDenied();
break;
default:
break;
}
} else if (requestPacketId) {
// TODO
/*
Packet outp(destination,RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
switch(errorCode) {
//case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
//case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
default:
outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
break;
}
outp.append(nwid);
RR->sw->send((void *)0,outp,true);
*/
} // else we can't send an ERROR() in response to nothing, so discard
}
} // namespace ZeroTier
// C API --------------------------------------------------------------------------------------------------------------
extern "C" {
// These macros make the idiom of passing buffers to outside code via the API work properly even
// if the first address of Buf does not overlap with its data field, since the C++ standard does
// not absolutely guarantee this.
#define _ZT_PTRTOBUF(p) ((ZeroTier::Buf *)( ((uintptr_t)(p)) - ((uintptr_t)&(((ZeroTier::Buf *)0)->unsafeData[0])) ))
#define _ZT_BUFTOPTR(b) ((void *)(&((b)->unsafeData[0])))
void *ZT_getBuffer()
{
// When external code requests a Buf, grab one from the pool (or freshly allocated)
// and return it with its reference count left at zero. It's the responsibility of
// external code to bring it back via freeBuffer() or one of the processX() calls.
// When this occurs it's either sent back to the pool with Buf's delete operator or
// wrapped in a SharedPtr<> to be passed into the core.
try {
return _ZT_BUFTOPTR(new ZeroTier::Buf());
} catch (...) {
return nullptr; // can only happen on out of memory condition
}
}
void ZT_freeBuffer(void *b)
{
if (b)
delete _ZT_PTRTOBUF(b);
}
void ZT_freeQueryResult(void *qr)
{
if (qr)
free(qr);
}
enum ZT_ResultCode ZT_Node_new(ZT_Node **node, void *uptr, void *tptr, const struct ZT_Node_Callbacks *callbacks, int64_t now)
{
*node = (ZT_Node *)0;
try {
*node = reinterpret_cast<ZT_Node *>(new ZeroTier::Node(uptr, tptr, callbacks, now));
return ZT_RESULT_OK;
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (std::runtime_error &exc) {
return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
void ZT_Node_delete(ZT_Node *node, void *tPtr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->shutdown(tPtr);
delete (reinterpret_cast<ZeroTier::Node *>(node));
} catch (...) {}
}
enum ZT_ResultCode ZT_Node_processWirePacket(
ZT_Node *node,
void *tptr,
int64_t now,
int64_t localSocket,
const struct sockaddr_storage *remoteAddress,
const void *packetData,
unsigned int packetLength,
int isZtBuffer,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
ZeroTier::SharedPtr< ZeroTier::Buf > buf((isZtBuffer) ? _ZT_PTRTOBUF(packetData) : new ZeroTier::Buf(packetData, packetLength & ZT_BUF_MEM_MASK));
return reinterpret_cast<ZeroTier::Node *>(node)->processWirePacket(tptr, now, localSocket, remoteAddress, buf, packetLength, nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
// "OK" since invalid packets are simply dropped, but the system is still up.
// We should never make it here, but if we did that would be the interpretation.
return ZT_RESULT_OK;
}
}
enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(
ZT_Node *node,
void *tptr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void *frameData,
unsigned int frameLength,
int isZtBuffer,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
ZeroTier::SharedPtr< ZeroTier::Buf > buf((isZtBuffer) ? _ZT_PTRTOBUF(frameData) : new ZeroTier::Buf(frameData, frameLength & ZT_BUF_MEM_MASK));
return reinterpret_cast<ZeroTier::Node *>(node)->processVirtualNetworkFrame(tptr, now, nwid, sourceMac, destMac, etherType, vlanId, buf, frameLength, nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_processHTTPResponse(
ZT_Node *node,
void *tptr,
int64_t now,
void *requestId,
int responseCode,
const char **headerNames,
const char **headerValues,
const void *body,
unsigned int bodySize,
unsigned int flags)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processHTTPResponse(tptr, now, requestId, responseCode, headerNames, headerValues, body, bodySize, flags);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node, void *tptr, int64_t now, volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processBackgroundTasks(tptr, now, nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_join(ZT_Node *node, uint64_t nwid, const ZT_Fingerprint *controllerFingerprint, void *uptr, void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->join(nwid, controllerFingerprint, uptr, tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_leave(ZT_Node *node, uint64_t nwid, void **uptr, void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->leave(nwid, uptr, tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node, void *tptr, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastSubscribe(tptr, nwid, multicastGroup, multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node, uint64_t nwid, uint64_t multicastGroup, unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastUnsubscribe(nwid, multicastGroup, multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_addRoot(ZT_Node *node, void *tptr, const ZT_Identity *id)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->addRoot(tptr, id);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_removeRoot(ZT_Node *node, void *tptr, const uint64_t address)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->removeRoot(tptr, address);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
uint64_t ZT_Node_address(ZT_Node *node)
{
return reinterpret_cast<ZeroTier::Node *>(node)->address();
}
const ZT_Identity *ZT_Node_identity(ZT_Node *node)
{
return (const ZT_Identity *)(&(reinterpret_cast<ZeroTier::Node *>(node)->identity()));
}
void ZT_Node_status(ZT_Node *node, ZT_NodeStatus *status)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->status(status);
} catch (...) {}
}
ZT_PeerList *ZT_Node_peers(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->peers();
} catch (...) {
return (ZT_PeerList *)0;
}
}
ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node, uint64_t nwid)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networkConfig(nwid);
} catch (...) {
return (ZT_VirtualNetworkConfig *)0;
}
}
ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networks();
} catch (...) {
return (ZT_VirtualNetworkList *)0;
}
}
int ZT_Node_tryPeer(
ZT_Node *node,
void *tptr,
const ZT_Fingerprint *fp,
const ZT_Endpoint *endpoint,
int retries)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->tryPeer(tptr, fp, endpoint, retries);
} catch (...) {
return 0;
}
}
void ZT_Node_setNetworkUserPtr(ZT_Node *node, uint64_t nwid, void *ptr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setNetworkUserPtr(nwid, ptr);
} catch (...) {}
}
void ZT_Node_setInterfaceAddresses(ZT_Node *node, const ZT_InterfaceAddress *addrs, unsigned int addrCount)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setInterfaceAddresses(addrs, addrCount);
} catch (...) {}
}
enum ZT_ResultCode ZT_Node_addPeer(
ZT_Node *node,
void *tptr,
const ZT_Identity *id)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->addPeer(tptr, id);
} catch (...) {
return ZT_RESULT_ERROR_INTERNAL;
}
}
int ZT_Node_sendUserMessage(ZT_Node *node, void *tptr, uint64_t dest, uint64_t typeId, const void *data, unsigned int len)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->sendUserMessage(tptr, dest, typeId, data, len);
} catch (...) {
return 0;
}
}
void ZT_Node_setController(ZT_Node *node, void *networkControllerInstance)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setController(networkControllerInstance);
} catch (...) {}
}
void ZT_version(int *major, int *minor, int *revision, int *build)
{
if (major)
*major = ZEROTIER_VERSION_MAJOR;
if (minor)
*minor = ZEROTIER_VERSION_MINOR;
if (revision)
*revision = ZEROTIER_VERSION_REVISION;
if (build)
*build = ZEROTIER_VERSION_BUILD;
}
} // extern "C"