ZeroTierOne/node/Peer.cpp
2020-02-07 13:54:17 -08:00

460 lines
12 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "Constants.hpp"
#include "RuntimeEnvironment.hpp"
#include "Trace.hpp"
#include "Peer.hpp"
#include "Topology.hpp"
#include "Node.hpp"
#include "Network.hpp"
#include "SelfAwareness.hpp"
#include "InetAddress.hpp"
#include "Protocol.hpp"
#include <set>
namespace ZeroTier {
struct _PathPriorityComparisonOperator
{
ZT_ALWAYS_INLINE bool operator()(const SharedPtr<Path> &a,const SharedPtr<Path> &b) const
{
return ( ((a)&&(a->lastIn() > 0)) && ((!b)||(b->lastIn() <= 0)||(a->lastIn() < b->lastIn())) );
}
};
Peer::Peer(const RuntimeEnvironment *renv) :
RR(renv),
_lastReceive(0),
_lastWhoisRequestReceived(0),
_lastEchoRequestReceived(0),
_lastPushDirectPathsReceived(0),
_lastAttemptedP2PInit(0),
_lastTriedStaticPath(0),
_lastPrioritizedPaths(0),
_latency(0xffff),
_alivePathCount(0),
_vProto(0),
_vMajor(0),
_vMinor(0),
_vRevision(0)
{
}
bool Peer::init(const Identity &myIdentity,const Identity &peerIdentity)
{
if (_id == peerIdentity)
return true;
_id = peerIdentity;
return myIdentity.agree(peerIdentity,_key);
}
void Peer::received(
void *tPtr,
const SharedPtr<Path> &path,
const unsigned int hops,
const uint64_t packetId,
const unsigned int payloadLength,
const Protocol::Verb verb,
const uint64_t inRePacketId,
const Protocol::Verb inReVerb,
const uint64_t networkId)
{
const int64_t now = RR->node->now();
_lastReceive = now;
if (hops == 0) {
_lock.rlock();
for(int i=0;i<(int)_alivePathCount;++i) {
if (_paths[i] == path) {
_lock.runlock();
goto path_check_done;
}
}
_lock.runlock();
if (verb == Protocol::VERB_OK) {
RWMutex::Lock l(_lock);
int64_t lastReceiveTimeMax = 0;
int lastReceiveTimeMaxAt = 0;
for(int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if ((_paths[i]->address().ss_family == path->address().ss_family) &&
(_paths[i]->localSocket() == path->localSocket()) && // TODO: should be localInterface when multipath is integrated
(_paths[i]->address().ipsEqual2(path->address()))) {
// Replace older path if everything is the same except the port number.
_paths[i] = path;
goto path_check_done;
} else {
if (_paths[i]) {
if (_paths[i]->lastIn() > lastReceiveTimeMax) {
lastReceiveTimeMax = _paths[i]->lastIn();
lastReceiveTimeMaxAt = i;
}
} else {
lastReceiveTimeMax = 0x7fffffffffffffffLL;
lastReceiveTimeMaxAt = i;
}
}
}
_lastPrioritizedPaths = now;
InetAddress old;
if (_paths[lastReceiveTimeMaxAt])
old = _paths[lastReceiveTimeMaxAt]->address();
_paths[lastReceiveTimeMaxAt] = path;
_bootstrap = path->address();
_prioritizePaths(now);
RR->t->learnedNewPath(tPtr,0x582fabdd,packetId,_id,path->address(),old);
} else {
if (RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id,path->localSocket(),path->address())) {
RR->t->tryingNewPath(tPtr,0xb7747ddd,_id,path->address(),path->address(),packetId,(uint8_t)verb,_id.address(),_id.hash(),ZT_TRACE_TRYING_NEW_PATH_REASON_PACKET_RECEIVED_FROM_UNKNOWN_PATH);
sendHELLO(tPtr,path->localSocket(),path->address(),now);
path->sent(now);
}
}
}
path_check_done:
if ((now - _lastAttemptedP2PInit) >= ((hops == 0) ? ZT_DIRECT_PATH_PUSH_INTERVAL_HAVEPATH : ZT_DIRECT_PATH_PUSH_INTERVAL)) {
_lastAttemptedP2PInit = now;
InetAddress addr;
if ((_bootstrap.type() == Endpoint::INETADDR_V4)||(_bootstrap.type() == Endpoint::INETADDR_V6)) {
RR->t->tryingNewPath(tPtr,0x0a009444,_id,_bootstrap.inetAddr(),InetAddress::NIL,0,0,0,nullptr,ZT_TRACE_TRYING_NEW_PATH_REASON_BOOTSTRAP_ADDRESS);
sendHELLO(tPtr,-1,_bootstrap.inetAddr(),now);
} if (RR->node->externalPathLookup(tPtr,_id,-1,addr)) {
if (RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id,-1,addr)) {
RR->t->tryingNewPath(tPtr,0x84a10000,_id,_bootstrap.inetAddr(),InetAddress::NIL,0,0,0,nullptr,ZT_TRACE_TRYING_NEW_PATH_REASON_EXPLICITLY_SUGGESTED_ADDRESS);
sendHELLO(tPtr,-1,addr,now);
}
}
std::vector<ZT_InterfaceAddress> localInterfaceAddresses(RR->node->localInterfaceAddresses());
std::multimap<unsigned long,InetAddress> detectedAddresses(RR->sa->externalAddresses(now));
std::set<InetAddress> addrs;
for(std::vector<ZT_InterfaceAddress>::const_iterator i(localInterfaceAddresses.begin());i!=localInterfaceAddresses.end();++i)
addrs.insert(asInetAddress(i->address));
for(std::multimap<unsigned long,InetAddress>::const_reverse_iterator i(detectedAddresses.rbegin());i!=detectedAddresses.rend();++i) {
if (i->first <= 1)
break;
if (addrs.count(i->second) == 0) {
addrs.insert(i->second);
break;
}
}
if (!addrs.empty()) {
#if 0
ScopedPtr<Packet> outp(new Packet(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS));
outp->addSize(2); // leave room for count
unsigned int count = 0;
for(std::set<InetAddress>::iterator a(addrs.begin());a!=addrs.end();++a) {
uint8_t addressType = 4;
uint8_t addressLength = 6;
unsigned int ipLength = 4;
const void *rawIpData = nullptr;
uint16_t port = 0;
switch(a->ss_family) {
case AF_INET:
rawIpData = &(reinterpret_cast<const sockaddr_in *>(&(*a))->sin_addr.s_addr);
port = Utils::ntoh((uint16_t)reinterpret_cast<const sockaddr_in *>(&(*a))->sin_port);
break;
case AF_INET6:
rawIpData = reinterpret_cast<const sockaddr_in6 *>(&(*a))->sin6_addr.s6_addr;
port = Utils::ntoh((uint16_t)reinterpret_cast<const sockaddr_in6 *>(&(*a))->sin6_port);
addressType = 6;
addressLength = 18;
ipLength = 16;
break;
default:
continue;
}
outp->append((uint8_t)0); // no flags
outp->append((uint16_t)0); // no extensions
outp->append(addressType);
outp->append(addressLength);
outp->append(rawIpData,ipLength);
outp->append(port);
++count;
if (outp->size() >= (ZT_PROTO_MAX_PACKET_LENGTH - 32))
break;
}
if (count > 0) {
outp->setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count);
outp->compress();
outp->armor(_key,true);
path->send(RR,tPtr,outp->data(),outp->size(),now);
}
#endif
}
}
}
bool Peer::shouldTryPath(void *tPtr,int64_t now,const SharedPtr<Peer> &suggestedBy,const InetAddress &addr) const
{
int maxHaveScope = -1;
{
RWMutex::RLock l(_lock);
for (unsigned int i = 0; i < _alivePathCount; ++i) {
if (_paths[i]) {
if (_paths[i]->address().ipsEqual2(addr))
return false;
int s = (int)_paths[i]->address().ipScope();
if (s > maxHaveScope)
maxHaveScope = s;
}
}
}
return ( ((int)addr.ipScope() > maxHaveScope) && RR->node->shouldUsePathForZeroTierTraffic(tPtr,_id,-1,addr) );
}
void Peer::sendHELLO(void *tPtr,const int64_t localSocket,const InetAddress &atAddress,int64_t now)
{
#if 0
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
outp.append(now);
RR->identity.serialize(outp,false);
atAddress.serialize(outp);
RR->node->expectReplyTo(outp.packetId());
if (atAddress) {
outp.armor(_key,false); // false == don't encrypt full payload, but add MAC
RR->node->putPacket(tPtr,localSocket,atAddress,outp.data(),outp.size());
} else {
RR->sw->send(tPtr,outp,false); // false == don't encrypt full payload, but add MAC
}
#endif
}
void Peer::ping(void *tPtr,int64_t now,const bool pingAllAddressTypes)
{
RWMutex::RLock l(_lock);
_lastPrioritizedPaths = now;
_prioritizePaths(now);
if (_alivePathCount > 0) {
for (unsigned int i = 0; i < _alivePathCount; ++i) {
sendHELLO(tPtr,_paths[i]->localSocket(),_paths[i]->address(),now);
_paths[i]->sent(now);
if (!pingAllAddressTypes)
return;
}
return;
}
if ((_bootstrap.type() == Endpoint::INETADDR_V4)||(_bootstrap.type() == Endpoint::INETADDR_V6))
sendHELLO(tPtr,-1,_bootstrap.inetAddr(),now);
SharedPtr<Peer> r(RR->topology->root());
if ((r)&&(r.ptr() != this)) {
SharedPtr<Path> rp(r->path(now));
if (rp) {
sendHELLO(tPtr,rp->localSocket(),rp->address(),now);
rp->sent(now);
return;
}
}
}
void Peer::resetWithinScope(void *tPtr,InetAddress::IpScope scope,int inetAddressFamily,int64_t now)
{
RWMutex::RLock l(_lock);
for(unsigned int i=0; i < _alivePathCount; ++i) {
if ((_paths[i])&&((_paths[i]->address().ss_family == inetAddressFamily)&&(_paths[i]->address().ipScope() == scope))) {
sendHELLO(tPtr,_paths[i]->localSocket(),_paths[i]->address(),now);
_paths[i]->sent(now);
}
}
}
void Peer::updateLatency(const unsigned int l)
{
if ((l > 0)&&(l < 0xffff)) {
unsigned int lat = _latency;
if (lat < 0xffff) {
_latency = (l + l + lat) / 3;
} else {
_latency = l;
}
}
}
bool Peer::sendDirect(void *tPtr,const void *data,const unsigned int len,const int64_t now)
{
if ((now - _lastPrioritizedPaths) > ZT_PEER_PRIORITIZE_PATHS_INTERVAL) {
_lastPrioritizedPaths = now;
_lock.lock();
_prioritizePaths(now);
if (_alivePathCount == 0) {
_lock.unlock();
return false;
}
const bool r = _paths[0]->send(RR,tPtr,data,len,now);
_lock.unlock();
return r;
} else {
_lock.rlock();
if (_alivePathCount == 0) {
_lock.runlock();
return false;
}
const bool r = _paths[0]->send(RR,tPtr,data,len,now);
_lock.runlock();
return r;
}
}
SharedPtr<Path> Peer::path(const int64_t now)
{
if ((now - _lastPrioritizedPaths) > ZT_PEER_PRIORITIZE_PATHS_INTERVAL) {
_lastPrioritizedPaths = now;
RWMutex::Lock l(_lock);
_prioritizePaths(now);
if (_alivePathCount == 0)
return SharedPtr<Path>();
return _paths[0];
} else {
RWMutex::RLock l(_lock);
if (_alivePathCount == 0)
return SharedPtr<Path>();
return _paths[0];
}
}
void Peer::getAllPaths(std::vector< SharedPtr<Path> > &paths)
{
RWMutex::RLock l(_lock);
paths.clear();
paths.assign(_paths,_paths + _alivePathCount);
}
void Peer::save(void *tPtr) const
{
uint8_t *const buf = (uint8_t *)malloc(ZT_PEER_MARSHAL_SIZE_MAX);
if (!buf) return;
_lock.rlock();
const int len = marshal(buf);
_lock.runlock();
if (len > 0) {
uint64_t id[2];
id[0] = _id.address().toInt();
id[1] = 0;
RR->node->stateObjectPut(tPtr,ZT_STATE_OBJECT_PEER,id,buf,(unsigned int)len);
}
free(buf);
}
int Peer::marshal(uint8_t data[ZT_PEER_MARSHAL_SIZE_MAX]) const
{
RWMutex::RLock l(_lock);
data[0] = 0; // serialized peer version
int s = _id.marshal(data + 1,false);
if (s <= 0)
return s;
int p = 1 + s;
s = _locator.marshal(data + p);
if (s <= 0)
return s;
p += s;
s = _bootstrap.marshal(data + p);
if (s <= 0)
return s;
p += s;
Utils::storeBigEndian(data + p,(uint16_t)_vProto);
p += 2;
Utils::storeBigEndian(data + p,(uint16_t)_vMajor);
p += 2;
Utils::storeBigEndian(data + p,(uint16_t)_vMinor);
p += 2;
Utils::storeBigEndian(data + p,(uint16_t)_vRevision);
p += 2;
data[p++] = 0;
data[p++] = 0;
return p;
}
int Peer::unmarshal(const uint8_t *restrict data,const int len)
{
RWMutex::Lock l(_lock);
if ((len <= 1)||(data[0] != 0))
return -1;
int s = _id.unmarshal(data + 1,len - 1);
if (s <= 0)
return s;
int p = 1 + s;
s = _locator.unmarshal(data + p,len - p);
if (s <= 0)
return s;
p += s;
s = _bootstrap.unmarshal(data + p,len - p);
if (s <= 0)
return s;
p += s;
if ((p + 10) > len)
return -1;
_vProto = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
_vMajor = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
_vMinor = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
_vRevision = Utils::loadBigEndian<uint16_t>(data + p);
p += 2;
p += 2 + (int)Utils::loadBigEndian<uint16_t>(data + p);
if (p > len)
return -1;
return p;
}
void Peer::_prioritizePaths(const int64_t now)
{
// assumes _lock is locked for writing
std::sort(_paths,_paths + ZT_MAX_PEER_NETWORK_PATHS,_PathPriorityComparisonOperator());
for(int i=0;i<ZT_MAX_PEER_NETWORK_PATHS;++i) {
if ((!_paths[i]) || (!_paths[i]->alive(now))) {
_alivePathCount = i;
for(;i<ZT_MAX_PEER_NETWORK_PATHS;++i)
_paths[i].zero();
return;
}
}
}
} // namespace ZeroTier