ZeroTierOne/core/VL1.cpp

971 lines
39 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "VL1.hpp"
#include "RuntimeEnvironment.hpp"
#include "Node.hpp"
#include "Topology.hpp"
#include "VL2.hpp"
#include "AES.hpp"
#include "Salsa20.hpp"
#include "LZ4.hpp"
#include "Poly1305.hpp"
#include "SHA512.hpp"
#include "Identity.hpp"
#include "SelfAwareness.hpp"
#include "Peer.hpp"
#include "Path.hpp"
#include "Expect.hpp"
namespace ZeroTier {
namespace {
ZT_INLINE const Identity &identityFromPeerPtr(const SharedPtr< Peer > &p)
{ return (p) ? p->identity() : Identity::NIL; }
struct p_SalsaPolyCopyFunction
{
Salsa20 s20;
Poly1305 poly1305;
unsigned int hdrRemaining;
ZT_INLINE p_SalsaPolyCopyFunction(const void *salsaKey, const void *salsaIv) :
s20(salsaKey, salsaIv),
poly1305(),
hdrRemaining(ZT_PROTO_PACKET_ENCRYPTED_SECTION_START)
{
uint8_t macKey[ZT_POLY1305_KEY_SIZE];
s20.crypt12(Utils::ZERO256, macKey, ZT_POLY1305_KEY_SIZE);
poly1305.init(macKey);
}
ZT_INLINE void operator()(void *dest, const void *src, unsigned int len) noexcept
{
if (hdrRemaining != 0) {
unsigned int hdrBytes = (len > hdrRemaining) ? hdrRemaining : len;
Utils::copy(dest, src, hdrBytes);
hdrRemaining -= hdrBytes;
dest = reinterpret_cast<uint8_t *>(dest) + hdrBytes;
src = reinterpret_cast<const uint8_t *>(src) + hdrBytes;
len -= hdrBytes;
}
poly1305.update(src, len);
s20.crypt12(src, dest, len);
}
};
struct p_PolyCopyFunction
{
Poly1305 poly1305;
unsigned int hdrRemaining;
ZT_INLINE p_PolyCopyFunction(const void *salsaKey, const void *salsaIv) :
poly1305(),
hdrRemaining(ZT_PROTO_PACKET_ENCRYPTED_SECTION_START)
{
uint8_t macKey[ZT_POLY1305_KEY_SIZE];
Salsa20(salsaKey, salsaIv).crypt12(Utils::ZERO256, macKey, ZT_POLY1305_KEY_SIZE);
poly1305.init(macKey);
}
ZT_INLINE void operator()(void *dest, const void *src, unsigned int len) noexcept
{
if (hdrRemaining != 0) {
unsigned int hdrBytes = (len > hdrRemaining) ? hdrRemaining : len;
Utils::copy(dest, src, hdrBytes);
hdrRemaining -= hdrBytes;
dest = reinterpret_cast<uint8_t *>(dest) + hdrBytes;
src = reinterpret_cast<const uint8_t *>(src) + hdrBytes;
len -= hdrBytes;
}
poly1305.update(src, len);
Utils::copy(dest, src, len);
}
};
} // anonymous namespace
VL1::VL1(const RuntimeEnvironment *renv) :
RR(renv)
{}
void VL1::onRemotePacket(void *const tPtr, const int64_t localSocket, const InetAddress &fromAddr, SharedPtr< Buf > &data, const unsigned int len) noexcept
{
const SharedPtr< Path > path(RR->topology->path(localSocket, fromAddr));
const int64_t now = RR->node->now();
ZT_SPEW("%u bytes from %s (local socket %lld)", len, fromAddr.toString().c_str(), localSocket);
path->received(now, len);
// NOTE: likely/unlikely are used here to highlight the most common code path
// for valid data packets. This may allow the compiler to generate very slightly
// faster code for that path.
try {
if (unlikely(len < ZT_PROTO_MIN_FRAGMENT_LENGTH))
return;
static_assert((ZT_PROTO_PACKET_ID_INDEX + sizeof(uint64_t)) < ZT_PROTO_MIN_FRAGMENT_LENGTH, "overflow");
const uint64_t packetId = Utils::loadAsIsEndian< uint64_t >(data->unsafeData + ZT_PROTO_PACKET_ID_INDEX);
static_assert((ZT_PROTO_PACKET_DESTINATION_INDEX + ZT_ADDRESS_LENGTH) < ZT_PROTO_MIN_FRAGMENT_LENGTH, "overflow");
const Address destination(data->unsafeData + ZT_PROTO_PACKET_DESTINATION_INDEX);
if (destination != RR->identity.address()) {
m_relay(tPtr, path, destination, data, len);
return;
}
// ----------------------------------------------------------------------------------------------------------------
// If we made it this far, the packet is at least MIN_FRAGMENT_LENGTH and is addressed to this node's ZT address
// ----------------------------------------------------------------------------------------------------------------
Buf::PacketVector pktv;
static_assert(ZT_PROTO_PACKET_FRAGMENT_INDICATOR_INDEX <= ZT_PROTO_MIN_FRAGMENT_LENGTH, "overflow");
if (data->unsafeData[ZT_PROTO_PACKET_FRAGMENT_INDICATOR_INDEX] == ZT_PROTO_PACKET_FRAGMENT_INDICATOR) {
// This looks like a fragment (excluding the head) of a larger packet.
static_assert(ZT_PROTO_PACKET_FRAGMENT_COUNTS < ZT_PROTO_MIN_FRAGMENT_LENGTH, "overflow");
const unsigned int totalFragments = (data->unsafeData[ZT_PROTO_PACKET_FRAGMENT_COUNTS] >> 4U) & 0x0fU;
const unsigned int fragmentNo = data->unsafeData[ZT_PROTO_PACKET_FRAGMENT_COUNTS] & 0x0fU;
switch (m_inputPacketAssembler.assemble(
packetId,
pktv,
data,
ZT_PROTO_PACKET_FRAGMENT_PAYLOAD_START_AT,
len - ZT_PROTO_PACKET_FRAGMENT_PAYLOAD_START_AT,
fragmentNo,
totalFragments,
now,
path)) {
case Defragmenter< ZT_MAX_PACKET_FRAGMENTS >::COMPLETE:
break;
default:
//case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::OK:
//case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_DUPLICATE_FRAGMENT:
//case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_INVALID_FRAGMENT:
//case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_TOO_MANY_FRAGMENTS_FOR_PATH:
//case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_OUT_OF_MEMORY:
return;
}
} else {
if (unlikely(len < ZT_PROTO_MIN_PACKET_LENGTH))
return;
static_assert(ZT_PROTO_PACKET_FLAGS_INDEX < ZT_PROTO_MIN_PACKET_LENGTH, "overflow");
if ((data->unsafeData[ZT_PROTO_PACKET_FLAGS_INDEX] & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
// This is the head of a series of fragments that we may or may not already have.
switch (m_inputPacketAssembler.assemble(
packetId,
pktv,
data,
0, // fragment index is 0 since this is the head
len,
0, // always the zero'eth fragment
0, // this is specified in fragments, not in the head
now,
path)) {
case Defragmenter< ZT_MAX_PACKET_FRAGMENTS >::COMPLETE:
break;
default:
//case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::OK:
//case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_DUPLICATE_FRAGMENT:
//case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_INVALID_FRAGMENT:
//case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_TOO_MANY_FRAGMENTS_FOR_PATH:
//case Defragmenter<ZT_MAX_PACKET_FRAGMENTS>::ERR_OUT_OF_MEMORY:
return;
}
} else {
// This is a single whole packet with no fragments.
Buf::Slice s = pktv.push();
s.b.swap(data);
s.s = 0;
s.e = len;
}
}
// ----------------------------------------------------------------------------------------------------------------
// If we made it this far without returning, a packet is fully assembled and ready to process.
// ----------------------------------------------------------------------------------------------------------------
const uint8_t *const hdr = pktv[0].b->unsafeData + pktv[0].s;
static_assert((ZT_PROTO_PACKET_SOURCE_INDEX + ZT_ADDRESS_LENGTH) < ZT_PROTO_MIN_PACKET_LENGTH, "overflow");
const Address source(hdr + ZT_PROTO_PACKET_SOURCE_INDEX);
static_assert(ZT_PROTO_PACKET_FLAGS_INDEX < ZT_PROTO_MIN_PACKET_LENGTH, "overflow");
const uint8_t hops = hdr[ZT_PROTO_PACKET_FLAGS_INDEX] & ZT_PROTO_FLAG_FIELD_HOPS_MASK;
const uint8_t cipher = (hdr[ZT_PROTO_PACKET_FLAGS_INDEX] >> 3U) & 3U;
SharedPtr< Buf > pkt(new Buf());
int pktSize = 0;
static_assert(ZT_PROTO_PACKET_VERB_INDEX < ZT_PROTO_MIN_PACKET_LENGTH, "overflow");
if (unlikely(((cipher == ZT_PROTO_CIPHER_SUITE__POLY1305_NONE) || (cipher == ZT_PROTO_CIPHER_SUITE__NONE)) && ((hdr[ZT_PROTO_PACKET_VERB_INDEX] & ZT_PROTO_VERB_MASK) == Protocol::VERB_HELLO))) {
// Handle unencrypted HELLO packets.
pktSize = pktv.mergeCopy(*pkt);
if (unlikely(pktSize < ZT_PROTO_MIN_PACKET_LENGTH)) {
ZT_SPEW("discarding packet %.16llx from %s(%s): assembled packet size: %d", packetId, source.toString().c_str(), fromAddr.toString().c_str(), pktSize);
return;
}
const SharedPtr< Peer > peer(m_HELLO(tPtr, path, *pkt, pktSize));
if (likely(peer))
peer->received(tPtr, path, hops, packetId, pktSize - ZT_PROTO_PACKET_PAYLOAD_START, Protocol::VERB_HELLO, Protocol::VERB_NOP);
return;
}
// This remains zero if authentication fails. Otherwise it gets set to a bit mask
// indicating authentication and other security flags like encryption and forward
// secrecy status.
unsigned int auth = 0;
SharedPtr< Peer > peer(RR->topology->peer(tPtr, source));
if (likely(peer)) {
switch (cipher) {
case ZT_PROTO_CIPHER_SUITE__POLY1305_NONE: {
uint8_t perPacketKey[ZT_SALSA20_KEY_SIZE];
Protocol::salsa2012DeriveKey(peer->rawIdentityKey(), perPacketKey, *pktv[0].b, pktv.totalSize());
p_PolyCopyFunction s20cf(perPacketKey, &packetId);
pktSize = pktv.mergeMap< p_PolyCopyFunction & >(*pkt, ZT_PROTO_PACKET_ENCRYPTED_SECTION_START, s20cf);
if (unlikely(pktSize < ZT_PROTO_MIN_PACKET_LENGTH)) {
ZT_SPEW("discarding packet %.16llx from %s(%s): assembled packet size: %d", packetId, source.toString().c_str(), fromAddr.toString().c_str(), pktSize);
return;
}
uint64_t mac[2];
s20cf.poly1305.finish(mac);
static_assert((ZT_PROTO_PACKET_MAC_INDEX + 8) < ZT_PROTO_MIN_PACKET_LENGTH, "overflow");
if (unlikely(Utils::loadAsIsEndian< uint64_t >(hdr + ZT_PROTO_PACKET_MAC_INDEX) != mac[0])) {
ZT_SPEW("discarding packet %.16llx from %s(%s): packet MAC failed (none/poly1305)", packetId, source.toString().c_str(), fromAddr.toString().c_str());
RR->t->incomingPacketDropped(tPtr, 0xcc89c812, packetId, 0, peer->identity(), path->address(), hops, Protocol::VERB_NOP, ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return;
}
auth = ZT_VL1_AUTH_RESULT_FLAG_AUTHENTICATED;
}
break;
case ZT_PROTO_CIPHER_SUITE__POLY1305_SALSA2012: {
uint8_t perPacketKey[ZT_SALSA20_KEY_SIZE];
Protocol::salsa2012DeriveKey(peer->rawIdentityKey(), perPacketKey, *pktv[0].b, pktv.totalSize());
p_SalsaPolyCopyFunction s20cf(perPacketKey, &packetId);
pktSize = pktv.mergeMap< p_SalsaPolyCopyFunction & >(*pkt, ZT_PROTO_PACKET_ENCRYPTED_SECTION_START, s20cf);
if (unlikely(pktSize < ZT_PROTO_MIN_PACKET_LENGTH)) {
ZT_SPEW("discarding packet %.16llx from %s(%s): assembled packet size: %d", packetId, source.toString().c_str(), fromAddr.toString().c_str(), pktSize);
return;
}
uint64_t mac[2];
s20cf.poly1305.finish(mac);
static_assert((ZT_PROTO_PACKET_MAC_INDEX + 8) < ZT_PROTO_MIN_PACKET_LENGTH, "overflow");
if (unlikely(Utils::loadAsIsEndian< uint64_t >(hdr + ZT_PROTO_PACKET_MAC_INDEX) != mac[0])) {
ZT_SPEW("discarding packet %.16llx from %s(%s): packet MAC failed (salsa/poly1305)", packetId, source.toString().c_str(), fromAddr.toString().c_str());
RR->t->incomingPacketDropped(tPtr, 0xcc89c812, packetId, 0, peer->identity(), path->address(), hops, Protocol::VERB_NOP, ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return;
}
auth = ZT_VL1_AUTH_RESULT_FLAG_AUTHENTICATED | ZT_VL1_AUTH_RESULT_FLAG_ENCRYPTED;
}
break;
case ZT_PROTO_CIPHER_SUITE__NONE: {
// TODO
}
break;
case ZT_PROTO_CIPHER_SUITE__AES_GMAC_SIV: {
// TODO
}
break;
default:
RR->t->incomingPacketDropped(tPtr, 0x5b001099, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, Protocol::VERB_NOP, ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
return;
}
}
if (likely(auth != 0)) {
// If authentication was successful go on and process the packet.
if (unlikely(pktSize < ZT_PROTO_MIN_PACKET_LENGTH)) {
ZT_SPEW("discarding packet %.16llx from %s(%s): assembled packet size %d is smaller than minimum packet length", packetId, source.toString().c_str(), fromAddr.toString().c_str(), pktSize);
return;
}
// TODO: should take instance ID into account here once that is fully implemented.
if (unlikely(peer->deduplicateIncomingPacket(packetId))) {
ZT_SPEW("discarding packet %.16llx from %s(%s): duplicate!", packetId, source.toString().c_str(), fromAddr.toString().c_str());
return;
}
static_assert(ZT_PROTO_PACKET_VERB_INDEX < ZT_PROTO_MIN_PACKET_LENGTH, "overflow");
const uint8_t verbFlags = pkt->unsafeData[ZT_PROTO_PACKET_VERB_INDEX];
const Protocol::Verb verb = (Protocol::Verb)(verbFlags & ZT_PROTO_VERB_MASK);
// Decompress packet payload if compressed. For additional safety decompression is
// only performed on packets whose MACs have already been validated. (Only HELLO is
// sent without this, and HELLO doesn't benefit from compression.)
if (((verbFlags & ZT_PROTO_VERB_FLAG_COMPRESSED) != 0) && (pktSize > ZT_PROTO_PACKET_PAYLOAD_START)) {
SharedPtr< Buf > dec(new Buf());
Utils::copy< ZT_PROTO_PACKET_PAYLOAD_START >(dec->unsafeData, pkt->unsafeData);
const int uncompressedLen = LZ4_decompress_safe(
reinterpret_cast<const char *>(pkt->unsafeData + ZT_PROTO_PACKET_PAYLOAD_START),
reinterpret_cast<char *>(dec->unsafeData + ZT_PROTO_PACKET_PAYLOAD_START),
pktSize - ZT_PROTO_PACKET_PAYLOAD_START,
ZT_BUF_MEM_SIZE - ZT_PROTO_PACKET_PAYLOAD_START);
if (likely((uncompressedLen >= 0) && (uncompressedLen <= (ZT_BUF_MEM_SIZE - ZT_PROTO_PACKET_PAYLOAD_START)))) {
pkt.swap(dec);
ZT_SPEW("decompressed packet: %d -> %d", pktSize, ZT_PROTO_PACKET_PAYLOAD_START + uncompressedLen);
pktSize = ZT_PROTO_PACKET_PAYLOAD_START + uncompressedLen;
} else {
RR->t->incomingPacketDropped(tPtr, 0xee9e4392, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, verb, ZT_TRACE_PACKET_DROP_REASON_INVALID_COMPRESSED_DATA);
return;
}
}
ZT_SPEW("%s from %s(%s) (%d bytes)", Protocol::verbName(verb), source.toString().c_str(), fromAddr.toString().c_str(), pktSize);
// NOTE: HELLO is normally sent in the clear (in terms of our usual AEAD modes) and is handled
// above. We will try to process it here, but if so it'll still get re-authenticated via HELLO's
// own internal authentication logic as usual. It would be abnormal to make it here with HELLO
// but not invalid.
Protocol::Verb inReVerb = Protocol::VERB_NOP;
bool ok = true;
switch (verb) {
case Protocol::VERB_NOP:
break;
case Protocol::VERB_HELLO:
ok = (bool)(m_HELLO(tPtr, path, *pkt, pktSize));
break;
case Protocol::VERB_ERROR:
ok = m_ERROR(tPtr, packetId, auth, path, peer, *pkt, pktSize, inReVerb);
break;
case Protocol::VERB_OK:
ok = m_OK(tPtr, packetId, auth, path, peer, *pkt, pktSize, inReVerb);
break;
case Protocol::VERB_WHOIS:
ok = m_WHOIS(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_RENDEZVOUS:
ok = m_RENDEZVOUS(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_FRAME:
ok = RR->vl2->m_FRAME(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_EXT_FRAME:
ok = RR->vl2->m_EXT_FRAME(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_ECHO:
ok = m_ECHO(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_MULTICAST_LIKE:
ok = RR->vl2->m_MULTICAST_LIKE(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_NETWORK_CREDENTIALS:
ok = RR->vl2->m_NETWORK_CREDENTIALS(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_NETWORK_CONFIG_REQUEST:
ok = RR->vl2->m_NETWORK_CONFIG_REQUEST(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_NETWORK_CONFIG:
ok = RR->vl2->m_NETWORK_CONFIG(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_MULTICAST_GATHER:
ok = RR->vl2->m_MULTICAST_GATHER(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_MULTICAST_FRAME_deprecated:
ok = RR->vl2->m_MULTICAST_FRAME_deprecated(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_PUSH_DIRECT_PATHS:
ok = m_PUSH_DIRECT_PATHS(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_USER_MESSAGE:
ok = m_USER_MESSAGE(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_MULTICAST:
ok = RR->vl2->m_MULTICAST(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
case Protocol::VERB_ENCAP:
ok = m_ENCAP(tPtr, packetId, auth, path, peer, *pkt, pktSize);
break;
default:
RR->t->incomingPacketDropped(tPtr, 0xeeeeeff0, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, verb, ZT_TRACE_PACKET_DROP_REASON_UNRECOGNIZED_VERB);
break;
}
if (likely(ok))
peer->received(tPtr, path, hops, packetId, pktSize - ZT_PROTO_PACKET_PAYLOAD_START, verb, inReVerb);
} else {
// If decryption and authentication were not successful, try to look up identities.
// This is rate limited by virtue of the retry rate limit timer.
if (pktSize <= 0)
pktSize = pktv.mergeCopy(*pkt);
if (likely(pktSize >= ZT_PROTO_MIN_PACKET_LENGTH)) {
ZT_SPEW("authentication failed or no peers match, queueing WHOIS for %s", source.toString().c_str());
bool sendPending;
{
Mutex::Lock wl(m_whoisQueue_l);
p_WhoisQueueItem &wq = m_whoisQueue[source];
const unsigned int wpidx = wq.waitingPacketCount++ % ZT_VL1_MAX_WHOIS_WAITING_PACKETS;
wq.waitingPacketSize[wpidx] = (unsigned int)pktSize;
wq.waitingPacket[wpidx] = pkt;
sendPending = (now - wq.lastRetry) >= ZT_WHOIS_RETRY_DELAY;
}
if (sendPending)
m_sendPendingWhois(tPtr, now);
}
}
} catch (...) {
RR->t->unexpectedError(tPtr, 0xea1b6dea, "unexpected exception in onRemotePacket() parsing packet from %s", path->address().toString().c_str());
}
}
void VL1::m_relay(void *tPtr, const SharedPtr< Path > &path, Address destination, SharedPtr< Buf > &pkt, int pktSize)
{
}
void VL1::m_sendPendingWhois(void *tPtr, int64_t now)
{
const SharedPtr< Peer > root(RR->topology->root());
if (unlikely(!root))
return;
const SharedPtr< Path > rootPath(root->path(now));
if (unlikely(!rootPath))
return;
Vector< Address > toSend;
{
Mutex::Lock wl(m_whoisQueue_l);
for (Map< Address, p_WhoisQueueItem >::iterator wi(m_whoisQueue.begin()); wi != m_whoisQueue.end(); ++wi) {
if ((now - wi->second.lastRetry) >= ZT_WHOIS_RETRY_DELAY) {
wi->second.lastRetry = now;
++wi->second.retries;
toSend.push_back(wi->first);
}
}
}
if (!toSend.empty()) {
const SharedPtr< SymmetricKey > key(root->key());
uint8_t outp[ZT_DEFAULT_UDP_MTU - ZT_PROTO_MIN_PACKET_LENGTH];
Vector< Address >::iterator a(toSend.begin());
while (a != toSend.end()) {
const uint64_t packetId = key->nextMessage(RR->identity.address(), root->address());
int p = Protocol::newPacket(outp, packetId, root->address(), RR->identity.address(), Protocol::VERB_WHOIS);
while ((a != toSend.end()) && (p < (sizeof(outp) - ZT_ADDRESS_LENGTH))) {
a->copyTo(outp + p);
++a;
p += ZT_ADDRESS_LENGTH;
}
Protocol::armor(outp, p, key, root->cipher());
RR->expect->sending(packetId, now);
root->send(tPtr, now, outp, p, rootPath);
}
}
}
SharedPtr< Peer > VL1::m_HELLO(void *tPtr, const SharedPtr< Path > &path, Buf &pkt, int packetSize)
{
const uint64_t packetId = Utils::loadAsIsEndian< uint64_t >(pkt.unsafeData + ZT_PROTO_PACKET_ID_INDEX);
const uint64_t mac = Utils::loadAsIsEndian< uint64_t >(pkt.unsafeData + ZT_PROTO_PACKET_MAC_INDEX);
const uint8_t hops = pkt.unsafeData[ZT_PROTO_PACKET_FLAGS_INDEX] & ZT_PROTO_FLAG_FIELD_HOPS_MASK;
const uint8_t protoVersion = pkt.lI8< ZT_PROTO_PACKET_PAYLOAD_START >();
if (unlikely(protoVersion < ZT_PROTO_VERSION_MIN)) {
RR->t->incomingPacketDropped(tPtr, 0x907a9891, packetId, 0, Identity::NIL, path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_PEER_TOO_OLD);
return SharedPtr< Peer >();
}
const unsigned int versionMajor = pkt.lI8< ZT_PROTO_PACKET_PAYLOAD_START + 1 >();
const unsigned int versionMinor = pkt.lI8< ZT_PROTO_PACKET_PAYLOAD_START + 2 >();
const unsigned int versionRev = pkt.lI16< ZT_PROTO_PACKET_PAYLOAD_START + 3 >();
const uint64_t timestamp = pkt.lI64< ZT_PROTO_PACKET_PAYLOAD_START + 5 >();
int ii = ZT_PROTO_PACKET_PAYLOAD_START + 13;
// Get identity and verify that it matches the sending address in the packet.
Identity id;
if (unlikely(pkt.rO(ii, id) < 0)) {
RR->t->incomingPacketDropped(tPtr, 0x707a9810, packetId, 0, Identity::NIL, path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
return SharedPtr< Peer >();
}
if (unlikely(id.address() != Address(pkt.unsafeData + ZT_PROTO_PACKET_SOURCE_INDEX))) {
RR->t->incomingPacketDropped(tPtr, 0x707a9010, packetId, 0, Identity::NIL, path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return SharedPtr< Peer >();
}
// Get the peer that matches this identity, or learn a new one if we don't know it.
SharedPtr< Peer > peer(RR->topology->peer(tPtr, id.address(), true));
if (peer) {
if (unlikely(peer->identity() != id)) {
RR->t->incomingPacketDropped(tPtr, 0x707a9891, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return SharedPtr< Peer >();
}
if (unlikely(peer->deduplicateIncomingPacket(packetId))) {
ZT_SPEW("discarding packet %.16llx from %s(%s): duplicate!", packetId, id.address().toString().c_str(), path->address().toString().c_str());
return SharedPtr< Peer >();
}
} else {
if (unlikely(!id.locallyValidate())) {
RR->t->incomingPacketDropped(tPtr, 0x707a9892, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
return SharedPtr< Peer >();
}
peer.set(new Peer(RR));
if (unlikely(!peer->init(id))) {
RR->t->incomingPacketDropped(tPtr, 0x707a9893, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_UNSPECIFIED);
return SharedPtr< Peer >();
}
peer = RR->topology->add(tPtr, peer);
}
// ------------------------------------------------------------------------------------------------------------------
// If we made it this far, peer is non-NULL and the identity is valid and matches it.
// ------------------------------------------------------------------------------------------------------------------
if (protoVersion >= 11) {
// V2.x and newer use HMAC-SHA384 for HELLO, which offers a larger security margin
// to guard key exchange and connection setup than typical AEAD. The packet MAC
// field is ignored, and eventually it'll be undefined.
uint8_t hmac[ZT_HMACSHA384_LEN];
if (unlikely(packetSize < ZT_HMACSHA384_LEN)) {
RR->t->incomingPacketDropped(tPtr, 0xab9c9891, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return SharedPtr< Peer >();
}
packetSize -= ZT_HMACSHA384_LEN;
pkt.unsafeData[ZT_PROTO_PACKET_FLAGS_INDEX] &= ~ZT_PROTO_FLAG_FIELD_HOPS_MASK; // mask hops to 0
Utils::storeAsIsEndian< uint64_t >(pkt.unsafeData + ZT_PROTO_PACKET_MAC_INDEX, 0); // set MAC field to 0
HMACSHA384(peer->identityHelloHmacKey(), pkt.unsafeData, packetSize, hmac);
if (unlikely(!Utils::secureEq(hmac, pkt.unsafeData + packetSize, ZT_HMACSHA384_LEN))) {
RR->t->incomingPacketDropped(tPtr, 0x707a9891, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return SharedPtr< Peer >();
}
} else {
// Older versions use Poly1305 MAC (but no whole packet encryption) for HELLO.
if (likely(packetSize > ZT_PROTO_PACKET_ENCRYPTED_SECTION_START)) {
uint8_t perPacketKey[ZT_SALSA20_KEY_SIZE];
Protocol::salsa2012DeriveKey(peer->rawIdentityKey(), perPacketKey, pkt, packetSize);
uint8_t macKey[ZT_POLY1305_KEY_SIZE];
Salsa20(perPacketKey, &packetId).crypt12(Utils::ZERO256, macKey, ZT_POLY1305_KEY_SIZE);
Poly1305 poly1305(macKey);
poly1305.update(pkt.unsafeData + ZT_PROTO_PACKET_ENCRYPTED_SECTION_START, packetSize - ZT_PROTO_PACKET_ENCRYPTED_SECTION_START);
uint64_t polyMac[2];
poly1305.finish(polyMac);
if (unlikely(mac != polyMac[0])) {
RR->t->incomingPacketDropped(tPtr, 0x11bfff82, packetId, 0, id, path->address(), hops, Protocol::VERB_NOP, ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return SharedPtr< Peer >();
}
} else {
RR->t->incomingPacketDropped(tPtr, 0x11bfff81, packetId, 0, id, path->address(), hops, Protocol::VERB_NOP, ZT_TRACE_PACKET_DROP_REASON_MAC_FAILED);
return SharedPtr< Peer >();
}
}
// ------------------------------------------------------------------------------------------------------------------
// This far means we passed MAC (Poly1305 or HMAC-SHA384 for newer peers)
// ------------------------------------------------------------------------------------------------------------------
InetAddress sentTo;
if (unlikely(pkt.rO(ii, sentTo) < 0)) {
RR->t->incomingPacketDropped(tPtr, 0x707a9811, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
return SharedPtr< Peer >();
}
const SharedPtr< SymmetricKey > key(peer->identityKey());
if (protoVersion >= 11) {
// V2.x and newer supports an encrypted section and has a new OK format.
ii += 4; // skip reserved field
if (likely((ii + 12) < packetSize)) {
AES::CTR ctr(peer->identityHelloDictionaryEncryptionCipher());
const uint8_t *const ctrNonce = pkt.unsafeData + ii;
ii += 12;
ctr.init(ctrNonce, 0, pkt.unsafeData + ii);
ctr.crypt(pkt.unsafeData + ii, packetSize - ii);
ctr.finish();
ii += 2; // skip reserved field
const unsigned int dictSize = pkt.rI16(ii);
if (unlikely((ii + dictSize) > packetSize)) {
RR->t->incomingPacketDropped(tPtr, 0x707a9815, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
return peer;
}
Dictionary md;
if (!md.decode(pkt.unsafeData + ii, dictSize)) {
RR->t->incomingPacketDropped(tPtr, 0x707a9816, packetId, 0, identityFromPeerPtr(peer), path->address(), hops, Protocol::VERB_HELLO, ZT_TRACE_PACKET_DROP_REASON_INVALID_OBJECT);
return peer;
}
if (!md.empty()) {
// TODO
}
}
}
Protocol::newPacket(pkt, key->nextMessage(RR->identity.address(), peer->address()), peer->address(), RR->identity.address(), Protocol::VERB_OK);
ii = ZT_PROTO_PACKET_PAYLOAD_START;
pkt.wI8(ii, Protocol::VERB_HELLO);
pkt.wI64(ii, packetId);
pkt.wI64(ii, timestamp);
pkt.wI8(ii, ZT_PROTO_VERSION);
pkt.wI8(ii, ZEROTIER_VERSION_MAJOR);
pkt.wI8(ii, ZEROTIER_VERSION_MINOR);
pkt.wI16(ii, ZEROTIER_VERSION_REVISION);
pkt.wO(ii, path->address());
pkt.wI16(ii, 0); // reserved, specifies no "moons" for older versions
if (protoVersion >= 11) {
FCV< uint8_t, 1024 > okmd;
pkt.wI16(ii, (uint16_t)okmd.size());
pkt.wB(ii, okmd.data(), okmd.size());
if (unlikely((ii + ZT_HMACSHA384_LEN) > ZT_BUF_MEM_SIZE)) // sanity check, should be impossible
return SharedPtr< Peer >();
HMACSHA384(peer->identityHelloHmacKey(), pkt.unsafeData, ii, pkt.unsafeData + ii);
ii += ZT_HMACSHA384_LEN;
}
peer->setRemoteVersion(protoVersion, versionMajor, versionMinor, versionRev);
peer->send(tPtr, RR->node->now(), pkt.unsafeData, ii, path);
return peer;
}
bool VL1::m_ERROR(void *tPtr, const uint64_t packetId, const unsigned int auth, const SharedPtr< Path > &path, const SharedPtr< Peer > &peer, Buf &pkt, int packetSize, Protocol::Verb &inReVerb)
{
#if 0
if (packetSize < (int)sizeof(Protocol::ERROR::Header)) {
RR->t->incomingPacketDropped(tPtr,0x3beb1947,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_ERROR,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false;
}
Protocol::ERROR::Header &eh = pkt.as<Protocol::ERROR::Header>();
inReVerb = (Protocol::Verb)eh.inReVerb;
const int64_t now = RR->node->now();
if (!RR->expect->expecting(eh.inRePacketId,now)) {
RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_REPLY_NOT_EXPECTED);
return false;
}
switch(eh.error) {
//case Protocol::ERROR_INVALID_REQUEST:
//case Protocol::ERROR_BAD_PROTOCOL_VERSION:
//case Protocol::ERROR_CANNOT_DELIVER:
default:
break;
case Protocol::ERROR_OBJ_NOT_FOUND:
if (eh.inReVerb == Protocol::VERB_NETWORK_CONFIG_REQUEST) {
}
break;
case Protocol::ERROR_UNSUPPORTED_OPERATION:
if (eh.inReVerb == Protocol::VERB_NETWORK_CONFIG_REQUEST) {
}
break;
case Protocol::ERROR_NEED_MEMBERSHIP_CERTIFICATE:
break;
case Protocol::ERROR_NETWORK_ACCESS_DENIED_:
if (eh.inReVerb == Protocol::VERB_NETWORK_CONFIG_REQUEST) {
}
break;
}
return true;
#endif
}
bool VL1::m_OK(void *tPtr, const uint64_t packetId, const unsigned int auth, const SharedPtr< Path > &path, const SharedPtr< Peer > &peer, Buf &pkt, int packetSize, Protocol::Verb &inReVerb)
{
int ii = ZT_PROTO_PACKET_PAYLOAD_START + 13;
inReVerb = (Protocol::Verb)pkt.rI8(ii);
const uint64_t inRePacketId = pkt.rI64(ii);
if (unlikely(Buf::readOverflow(ii, packetSize))) {
RR->t->incomingPacketDropped(tPtr, 0x4c1f1ff7, packetId, 0, identityFromPeerPtr(peer), path->address(), 0, Protocol::VERB_OK, ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false;
}
const int64_t now = RR->node->now();
if (unlikely(!RR->expect->expecting(inRePacketId, now))) {
RR->t->incomingPacketDropped(tPtr, 0x4c1f1ff8, packetId, 0, identityFromPeerPtr(peer), path->address(), 0, Protocol::VERB_OK, ZT_TRACE_PACKET_DROP_REASON_REPLY_NOT_EXPECTED);
return false;
}
ZT_SPEW("got OK in-re %s (packet ID %.16llx) from %s(%s)", Protocol::verbName(inReVerb), inRePacketId, peer->address().toString().c_str(), path->address().toString().c_str());
switch (inReVerb) {
case Protocol::VERB_HELLO:
break;
case Protocol::VERB_WHOIS:
break;
case Protocol::VERB_NETWORK_CONFIG_REQUEST:
break;
case Protocol::VERB_MULTICAST_GATHER:
break;
}
return true;
}
bool VL1::m_WHOIS(void *tPtr, const uint64_t packetId, const unsigned int auth, const SharedPtr< Path > &path, const SharedPtr< Peer > &peer, Buf &pkt, int packetSize)
{
#if 0
if (packetSize < (int)sizeof(Protocol::OK::Header)) {
RR->t->incomingPacketDropped(tPtr,0x4c1f1ff7,0,0,identityFromPeerPtr(peer),path->address(),0,Protocol::VERB_OK,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false;
}
Protocol::Header &ph = pkt.as<Protocol::Header>();
if (!peer->rateGateInboundWhoisRequest(RR->node->now())) {
RR->t->incomingPacketDropped(tPtr,0x19f7194a,ph.packetId,0,peer->identity(),path->address(),Protocol::packetHops(ph),Protocol::VERB_WHOIS,ZT_TRACE_PACKET_DROP_REASON_RATE_LIMIT_EXCEEDED);
return true;
}
Buf outp;
Protocol::OK::WHOIS &outh = outp.as<Protocol::OK::WHOIS>();
int ptr = sizeof(Protocol::Header);
while ((ptr + ZT_ADDRESS_LENGTH) <= packetSize) {
outh.h.h.packetId = Protocol::getPacketId();
peer->address().copyTo(outh.h.h.destination);
RR->identity.address().copyTo(outh.h.h.source);
outh.h.h.flags = 0;
outh.h.h.verb = Protocol::VERB_OK;
outh.h.inReVerb = Protocol::VERB_WHOIS;
outh.h.inRePacketId = ph.packetId;
int outl = sizeof(Protocol::OK::WHOIS);
while ( ((ptr + ZT_ADDRESS_LENGTH) <= packetSize) && ((outl + ZT_IDENTITY_MARSHAL_SIZE_MAX + ZT_LOCATOR_MARSHAL_SIZE_MAX) < ZT_PROTO_MAX_PACKET_LENGTH) ) {
const SharedPtr<Peer> &wp(RR->topology->peer(tPtr,Address(pkt.unsafeData + ptr)));
if (wp) {
outp.wO(outl,wp->identity());
if (peer->remoteVersionProtocol() >= 11) { // older versions don't know what a locator is
const Locator loc(wp->locator());
outp.wO(outl,loc);
}
if (Buf::writeOverflow(outl)) { // sanity check, shouldn't be possible
RR->t->unexpectedError(tPtr,0xabc0f183,"Buf write overflow building OK(WHOIS) to reply to %s",Trace::str(peer->address(),path).s);
return false;
}
}
ptr += ZT_ADDRESS_LENGTH;
}
if (outl > (int)sizeof(Protocol::OK::WHOIS)) {
Protocol::armor(outp,outl,peer->key(),peer->cipher());
path->send(RR,tPtr,outp.unsafeData,outl,RR->node->now());
}
}
return true;
#endif
}
bool VL1::m_RENDEZVOUS(void *tPtr, const uint64_t packetId, const unsigned int auth, const SharedPtr< Path > &path, const SharedPtr< Peer > &peer, Buf &pkt, int packetSize)
{
#if 0
if (RR->topology->isRoot(peer->identity())) {
if (packetSize < (int)sizeof(Protocol::RENDEZVOUS)) {
RR->t->incomingPacketDropped(tPtr,0x43e90ab3,Protocol::packetId(pkt,packetSize),0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_RENDEZVOUS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false;
}
Protocol::RENDEZVOUS &rdv = pkt.as<Protocol::RENDEZVOUS>();
const SharedPtr<Peer> with(RR->topology->peer(tPtr,Address(rdv.peerAddress)));
if (with) {
const int64_t now = RR->node->now();
const unsigned int port = Utils::ntoh(rdv.port);
if (port != 0) {
switch(rdv.addressLength) {
case 4:
case 16:
if ((int)(sizeof(Protocol::RENDEZVOUS) + rdv.addressLength) <= packetSize) {
const InetAddress atAddr(pkt.unsafeData + sizeof(Protocol::RENDEZVOUS),rdv.addressLength,port);
peer->tryToContactAt(tPtr,Endpoint(atAddr),now,false);
RR->t->tryingNewPath(tPtr,0x55a19aaa,with->identity(),atAddr,path->address(),Protocol::packetId(pkt,packetSize),Protocol::VERB_RENDEZVOUS,peer->identity(),ZT_TRACE_TRYING_NEW_PATH_REASON_RENDEZVOUS);
}
break;
case 255: {
Endpoint ep;
int p = sizeof(Protocol::RENDEZVOUS);
int epl = pkt.rO(p,ep);
if ((epl > 0) && (ep) && (!Buf::readOverflow(p,packetSize))) {
switch (ep.type()) {
case Endpoint::TYPE_INETADDR_V4:
case Endpoint::TYPE_INETADDR_V6:
peer->tryToContactAt(tPtr,ep,now,false);
RR->t->tryingNewPath(tPtr,0x55a19aab,with->identity(),ep.inetAddr(),path->address(),Protocol::packetId(pkt,packetSize),Protocol::VERB_RENDEZVOUS,peer->identity(),ZT_TRACE_TRYING_NEW_PATH_REASON_RENDEZVOUS);
break;
default:
break;
}
}
} break;
}
}
}
}
return true;
#endif
}
bool VL1::m_ECHO(void *tPtr, const uint64_t packetId, const unsigned int auth, const SharedPtr< Path > &path, const SharedPtr< Peer > &peer, Buf &pkt, int packetSize)
{
#if 0
const uint64_t packetId = Protocol::packetId(pkt,packetSize);
const uint64_t now = RR->node->now();
if (packetSize < (int)sizeof(Protocol::Header)) {
RR->t->incomingPacketDropped(tPtr,0x14d70bb0,packetId,0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_ECHO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false;
}
if (peer->rateGateEchoRequest(now)) {
Buf outp;
Protocol::OK::ECHO &outh = outp.as<Protocol::OK::ECHO>();
outh.h.h.packetId = Protocol::getPacketId();
peer->address().copyTo(outh.h.h.destination);
RR->identity.address().copyTo(outh.h.h.source);
outh.h.h.flags = 0;
outh.h.h.verb = Protocol::VERB_OK;
outh.h.inReVerb = Protocol::VERB_ECHO;
outh.h.inRePacketId = packetId;
int outl = sizeof(Protocol::OK::ECHO);
outp.wB(outl,pkt.unsafeData + sizeof(Protocol::Header),packetSize - sizeof(Protocol::Header));
if (Buf::writeOverflow(outl)) {
RR->t->incomingPacketDropped(tPtr,0x14d70bb0,packetId,0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_ECHO,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false;
}
Protocol::armor(outp,outl,peer->key(),peer->cipher());
path->send(RR,tPtr,outp.unsafeData,outl,now);
} else {
RR->t->incomingPacketDropped(tPtr,0x27878bc1,packetId,0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_ECHO,ZT_TRACE_PACKET_DROP_REASON_RATE_LIMIT_EXCEEDED);
}
return true;
#endif
}
bool VL1::m_PUSH_DIRECT_PATHS(void *tPtr, const uint64_t packetId, const unsigned int auth, const SharedPtr< Path > &path, const SharedPtr< Peer > &peer, Buf &pkt, int packetSize)
{
#if 0
if (packetSize < (int)sizeof(Protocol::PUSH_DIRECT_PATHS)) {
RR->t->incomingPacketDropped(tPtr,0x1bb1bbb1,Protocol::packetId(pkt,packetSize),0,peer->identity(),path->address(),Protocol::packetHops(pkt,packetSize),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false;
}
Protocol::PUSH_DIRECT_PATHS &pdp = pkt.as<Protocol::PUSH_DIRECT_PATHS>();
int ptr = sizeof(Protocol::PUSH_DIRECT_PATHS);
const unsigned int numPaths = Utils::ntoh(pdp.numPaths);
InetAddress a;
Endpoint ep;
for(unsigned int pi=0;pi<numPaths;++pi) {
/*const uint8_t flags = pkt.rI8(ptr);*/ ++ptr; // flags are not presently used
const int xas = (int)pkt.rI16(ptr);
//const uint8_t *const extendedAttrs = pkt.rBnc(ptr,xas);
ptr += xas;
const unsigned int addrType = pkt.rI8(ptr);
const unsigned int addrRecordLen = pkt.rI8(ptr);
if (addrRecordLen == 0) {
RR->t->incomingPacketDropped(tPtr,0xaed00118,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false;
}
if (Buf::readOverflow(ptr,packetSize)) {
RR->t->incomingPacketDropped(tPtr,0xb450e10f,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false;
}
const void *addrBytes = nullptr;
unsigned int addrLen = 0;
unsigned int addrPort = 0;
switch(addrType) {
case 0:
addrBytes = pkt.rBnc(ptr,addrRecordLen);
addrLen = addrRecordLen;
break;
case 4:
addrBytes = pkt.rBnc(ptr,4);
addrLen = 4;
addrPort = pkt.rI16(ptr);
break;
case 6:
addrBytes = pkt.rBnc(ptr,16);
addrLen = 16;
addrPort = pkt.rI16(ptr);
break;
//case 200:
// TODO: this would be a WebRTC SDP offer contained in the extended attrs field
//break;
default: break;
}
if (Buf::readOverflow(ptr,packetSize)) {
RR->t->incomingPacketDropped(tPtr,0xb4d0f10f,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false;
}
if (addrPort) {
a.set(addrBytes,addrLen,addrPort);
} else if (addrLen) {
if (ep.unmarshal(reinterpret_cast<const uint8_t *>(addrBytes),(int)addrLen) <= 0) {
RR->t->incomingPacketDropped(tPtr,0x00e0f00d,pdp.h.packetId,0,peer->identity(),path->address(),Protocol::packetHops(pdp.h),Protocol::VERB_PUSH_DIRECT_PATHS,ZT_TRACE_PACKET_DROP_REASON_MALFORMED_PACKET);
return false;
}
switch(ep.type()) {
case Endpoint::TYPE_INETADDR_V4:
case Endpoint::TYPE_INETADDR_V6:
a = ep.inetAddr();
break;
default: // other types are not supported yet
break;
}
}
if (a) {
RR->t->tryingNewPath(tPtr,0xa5ab1a43,peer->identity(),a,path->address(),Protocol::packetId(pkt,packetSize),Protocol::VERB_RENDEZVOUS,peer->identity(),ZT_TRACE_TRYING_NEW_PATH_REASON_RECEIVED_PUSH_DIRECT_PATHS);
}
ptr += (int)addrRecordLen;
}
// TODO: add to a peer try-queue
return true;
#endif
}
bool VL1::m_USER_MESSAGE(void *tPtr, const uint64_t packetId, const unsigned int auth, const SharedPtr< Path > &path, const SharedPtr< Peer > &peer, Buf &pkt, int packetSize)
{
// TODO
return true;
}
bool VL1::m_ENCAP(void *tPtr, const uint64_t packetId, const unsigned int auth, const SharedPtr< Path > &path, const SharedPtr< Peer > &peer, Buf &pkt, int packetSize)
{
// TODO: not implemented yet
return true;
}
} // namespace ZeroTier