ZeroTierOne/node/Identity.hpp
Adam Ierymenko 9642ff5fb9
.
2020-01-08 18:08:41 -08:00

509 lines
17 KiB
C++

/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2023-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_IDENTITY_HPP
#define ZT_IDENTITY_HPP
#include <cstdio>
#include <cstdlib>
#include "Constants.hpp"
#include "Utils.hpp"
#include "Address.hpp"
#include "C25519.hpp"
#include "Buffer.hpp"
#include "SHA512.hpp"
#include "ECC384.hpp"
#define ZT_IDENTITY_STRING_BUFFER_LENGTH 1024
#define ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE (ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE + ZT_C25519_SIGNATURE_LEN + ZT_ECC384_SIGNATURE_SIZE)
#define ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE (ZT_C25519_PRIVATE_KEY_LEN + ZT_ECC384_PRIVATE_KEY_SIZE)
#define ZT_IDENTITY_MARSHAL_SIZE_MAX (ZT_ADDRESS_LENGTH + 4 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE)
namespace ZeroTier {
/**
* A ZeroTier identity
*
* An identity consists of a public key, a 40-bit ZeroTier address computed
* from that key in a collision-resistant fashion, and a self-signature.
*
* The address derivation algorithm makes it computationally very expensive to
* search for a different public key that duplicates an existing address. (See
* code for deriveAddress() for this algorithm.)
*/
class Identity
{
public:
/**
* Identity type -- numeric values of these enums are protocol constants
*/
enum Type
{
C25519 = ZT_CRYPTO_ALG_C25519, // Type 0 -- Curve25519 and Ed25519 (1.x and 2.x, default)
P384 = ZT_CRYPTO_ALG_P384 // Type 1 -- NIST P-384 with linked Curve25519/Ed25519 secondaries (2.x+)
};
ZT_ALWAYS_INLINE Identity() { memset(reinterpret_cast<void *>(this),0,sizeof(Identity)); }
ZT_ALWAYS_INLINE ~Identity() { Utils::burn(reinterpret_cast<void *>(&this->_priv),sizeof(this->_priv)); }
/**
* Construct identity from string
*
* If the identity is not basically valid (no deep checking is done) the result will
* be a null identity.
*
* @param str Identity in canonical string format
*/
ZT_ALWAYS_INLINE Identity(const char *str) { fromString(str); }
/**
* Set identity to NIL value (all zero)
*/
ZT_ALWAYS_INLINE void zero() { memset(reinterpret_cast<void *>(this),0,sizeof(Identity)); }
/**
* @return Identity type (undefined if identity is null or invalid)
*/
ZT_ALWAYS_INLINE Type type() const { return _type; }
/**
* Generate a new identity (address, key pair)
*
* This is a time consuming operation taking up to 5-10 seconds on some slower systems.
*
* @param t Type of identity to generate
*/
void generate(const Type t);
/**
* Check the validity of this identity's pairing of key to address
*
* @return True if validation check passes
*/
bool locallyValidate() const;
/**
* @return True if this identity contains a private key
*/
ZT_ALWAYS_INLINE bool hasPrivate() const { return _hasPrivate; }
/**
* This generates a SHA384 hash of this identity's keys.
*
* @param h Buffer to receive SHA384 of public key(s)
* @param includePrivate If true, hash private key(s) as well
*/
inline bool hash(uint8_t h[48],const bool includePrivate = false) const
{
switch(_type) {
case C25519:
if ((_hasPrivate)&&(includePrivate))
SHA384(h,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN,_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN);
else SHA384(h,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
return true;
case P384:
if ((_hasPrivate)&&(includePrivate))
SHA384(h,&_pub,sizeof(_pub),&_priv,sizeof(_priv));
else SHA384(h,&_pub,sizeof(_pub));
return true;
}
return false;
}
/**
* Sign a message with this identity (private key required)
*
* The signature buffer should be large enough for the largest
* signature, which is currently 96 bytes.
*
* @param data Data to sign
* @param len Length of data
* @param sig Buffer to receive signature
* @param siglen Length of buffer
* @return Number of bytes actually written to sig or 0 on error
*/
inline unsigned int sign(const void *data,unsigned int len,void *sig,unsigned int siglen) const
{
if (_hasPrivate) {
switch(_type) {
case C25519:
if (siglen >= ZT_C25519_SIGNATURE_LEN) {
C25519::sign(_priv.c25519,_pub.c25519,data,len,sig);
return ZT_C25519_SIGNATURE_LEN;
}
case P384:
if (siglen >= ZT_ECC384_SIGNATURE_SIZE) {
// When signing with P384 we also hash the C25519 public key as an
// extra measure to ensure that only this identity can verify.
uint8_t h[48];
SHA384(h,data,len,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
ECC384ECDSASign(_priv.p384,h,(uint8_t *)sig);
return ZT_ECC384_SIGNATURE_SIZE;
}
}
}
return 0;
}
/**
* Verify a message signature against this identity
*
* @param data Data to check
* @param len Length of data
* @param signature Signature bytes
* @param siglen Length of signature in bytes
* @return True if signature validates and data integrity checks
*/
inline bool verify(const void *data,unsigned int len,const void *sig,unsigned int siglen) const
{
switch(_type) {
case C25519:
return C25519::verify(_pub.c25519,data,len,sig,siglen);
case P384:
if (siglen == ZT_ECC384_SIGNATURE_SIZE) {
uint8_t h[48];
SHA384(h,data,len,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
return ECC384ECDSAVerify(_pub.p384,h,(const uint8_t *)sig);
}
break;
}
return false;
}
/**
* Shortcut method to perform key agreement with another identity
*
* This identity must have a private key. (Check hasPrivate())
*
* @param id Identity to agree with
* @param key Result parameter to fill with key bytes
* @return Was agreement successful?
*/
inline bool agree(const Identity &id,uint8_t key[ZT_PEER_SECRET_KEY_LENGTH]) const
{
uint8_t rawkey[128];
uint8_t h[64];
if (_hasPrivate) {
if (_type == C25519) {
if ((id._type == C25519)||(id._type == P384)) {
// If we are a C25519 key we can agree with another C25519 key or with only the
// C25519 portion of a type 1 P-384 key.
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
SHA512(h,rawkey,ZT_C25519_SHARED_KEY_LEN);
memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
return true;
}
} else if (_type == P384) {
if (id._type == P384) {
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
ECC384ECDH(id._pub.p384,_priv.p384,rawkey + ZT_C25519_SHARED_KEY_LEN);
SHA384(h,rawkey,ZT_C25519_SHARED_KEY_LEN + ZT_ECC384_SHARED_SECRET_SIZE);
memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
return true;
} else if (id._type == C25519) {
// If the other identity is a C25519 identity we can agree using only that type.
C25519::agree(_priv.c25519,id._pub.c25519,rawkey);
SHA512(h,rawkey,ZT_C25519_SHARED_KEY_LEN);
memcpy(key,h,ZT_PEER_SECRET_KEY_LENGTH);
return true;
}
}
}
return false;
}
/**
* @return This identity's address
*/
ZT_ALWAYS_INLINE const Address &address() const { return _address; }
/**
* Serialize this identity (binary)
*
* @param b Destination buffer to append to
* @param includePrivate If true, include private key component (if present) (default: false)
*/
template<unsigned int C>
inline void serialize(Buffer<C> &b,bool includePrivate = false) const
{
_address.appendTo(b);
switch(_type) {
case C25519:
b.append((uint8_t)C25519);
b.append(_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
if ((_hasPrivate)&&(includePrivate)) {
b.append((uint8_t)ZT_C25519_PRIVATE_KEY_LEN);
b.append(_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN);
} else {
b.append((uint8_t)0);
}
break;
case P384:
b.append((uint8_t)P384);
b.append(&_pub,ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE + ZT_C25519_SIGNATURE_LEN + ZT_ECC384_SIGNATURE_SIZE);
if ((_hasPrivate)&&(includePrivate)) {
b.append((uint8_t)(ZT_C25519_PRIVATE_KEY_LEN + ZT_ECC384_PRIVATE_KEY_SIZE));
b.append(_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN);
b.append(_priv.p384,ZT_ECC384_PRIVATE_KEY_SIZE);
} else {
b.append((uint8_t)0);
}
b.append((uint8_t)0); // size of additional fields (should have included such a thing in v0!)
break;
}
}
/**
* Deserialize a binary serialized identity
*
* If an exception is thrown, the Identity object is left in an undefined
* state and should not be used.
*
* @param b Buffer containing serialized data
* @param startAt Index within buffer of serialized data (default: 0)
* @return Length of serialized data read from buffer
*/
template<unsigned int C>
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
{
_hasPrivate = false;
unsigned int p = startAt;
unsigned int pkl;
_address.setTo(b.field(p,ZT_ADDRESS_LENGTH),ZT_ADDRESS_LENGTH);
p += ZT_ADDRESS_LENGTH;
switch((_type = (Type)b[p++])) {
case C25519:
memcpy(_pub.c25519,b.field(p,ZT_C25519_PUBLIC_KEY_LEN),ZT_C25519_PUBLIC_KEY_LEN);
p += ZT_C25519_PUBLIC_KEY_LEN;
pkl = (unsigned int)b[p++];
if (pkl) {
if (pkl != ZT_C25519_PRIVATE_KEY_LEN)
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
_hasPrivate = true;
memcpy(_priv.c25519,b.field(p,ZT_C25519_PRIVATE_KEY_LEN),ZT_C25519_PRIVATE_KEY_LEN);
p += ZT_C25519_PRIVATE_KEY_LEN;
} else {
_hasPrivate = false;
}
break;
case P384:
memcpy(&_pub,b.field(p,ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE + ZT_C25519_SIGNATURE_LEN + ZT_ECC384_SIGNATURE_SIZE),ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE + ZT_C25519_SIGNATURE_LEN + ZT_ECC384_SIGNATURE_SIZE);
p += ZT_C25519_PUBLIC_KEY_LEN + ZT_ECC384_PUBLIC_KEY_SIZE + ZT_C25519_SIGNATURE_LEN + ZT_ECC384_SIGNATURE_SIZE;
pkl = (unsigned int)b[p++];
if (pkl) {
if (pkl != (ZT_C25519_PRIVATE_KEY_LEN + ZT_ECC384_PRIVATE_KEY_SIZE))
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_CRYPTOGRAPHIC_TOKEN;
_hasPrivate = true;
memcpy(_priv.c25519,b.field(p,ZT_C25519_PRIVATE_KEY_LEN),ZT_C25519_PRIVATE_KEY_LEN);
p += ZT_C25519_PRIVATE_KEY_LEN;
memcpy(_priv.p384,b.field(p,ZT_ECC384_PRIVATE_KEY_SIZE),ZT_ECC384_PRIVATE_KEY_SIZE);
p += ZT_ECC384_PRIVATE_KEY_SIZE;
} else {
_hasPrivate = false;
}
p += b.template at<uint8_t>(p) + 2;
break;
default:
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
}
return (p - startAt);
}
/**
* Serialize to a more human-friendly string
*
* @param includePrivate If true, include private key (if it exists)
* @param buf Buffer to store string
* @return ASCII string representation of identity (pointer to buf)
*/
char *toString(bool includePrivate,char buf[ZT_IDENTITY_STRING_BUFFER_LENGTH]) const;
/**
* Deserialize a human-friendly string
*
* Note: validation is for the format only. The locallyValidate() method
* must be used to check signature and address/key correspondence.
*
* @param str String to deserialize
* @return True if deserialization appears successful
*/
bool fromString(const char *str);
/**
* @return True if this identity contains something
*/
explicit ZT_ALWAYS_INLINE operator bool() const { return (_address); }
ZT_ALWAYS_INLINE bool operator==(const Identity &id) const
{
if ((_address == id._address)&&(_type == id._type)) {
switch(_type) {
case C25519: return (memcmp(_pub.c25519,id._pub.c25519,ZT_C25519_PUBLIC_KEY_LEN) == 0);
// case P384:
default: return (memcmp(&_pub,&id._pub,sizeof(_pub)) == 0);
}
}
return false;
}
ZT_ALWAYS_INLINE bool operator<(const Identity &id) const
{
if (_address < id._address)
return true;
if (_address == id._address) {
if ((int)_type < (int)id._type)
return true;
if (_type == id._type) {
switch(_type) {
case C25519: return (memcmp(_pub.c25519,id._pub.c25519,ZT_C25519_PUBLIC_KEY_LEN) < 0);
// case P384:
default: return (memcmp(&_pub,&id._pub,sizeof(_pub)) < 0);
}
}
}
return false;
}
ZT_ALWAYS_INLINE bool operator!=(const Identity &id) const { return !(*this == id); }
ZT_ALWAYS_INLINE bool operator>(const Identity &id) const { return (id < *this); }
ZT_ALWAYS_INLINE bool operator<=(const Identity &id) const { return !(id < *this); }
ZT_ALWAYS_INLINE bool operator>=(const Identity &id) const { return !(*this < id); }
ZT_ALWAYS_INLINE unsigned long hashCode() const { return ((unsigned long)_address.toInt() + (unsigned long)_pub.c25519[0] + (unsigned long)_pub.c25519[1] + (unsigned long)_pub.c25519[2]); }
// Marshal interface ///////////////////////////////////////////////////////
static ZT_ALWAYS_INLINE int marshalSizeMax() { return ZT_IDENTITY_MARSHAL_SIZE_MAX; }
inline int marshal(uint8_t data[ZT_IDENTITY_MARSHAL_SIZE_MAX],const bool includePrivate = false) const
{
_address.copyTo(data,ZT_ADDRESS_LENGTH);
switch(_type) {
case C25519:
data[ZT_ADDRESS_LENGTH] = (uint8_t)C25519;
memcpy(data + ZT_ADDRESS_LENGTH + 1,_pub.c25519,ZT_C25519_PUBLIC_KEY_LEN);
if ((includePrivate)&&(_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = ZT_C25519_PRIVATE_KEY_LEN;
memcpy(data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,_priv.c25519,ZT_C25519_PRIVATE_KEY_LEN);
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN);
}
data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1);
case P384:
data[ZT_ADDRESS_LENGTH] = (uint8_t)P384;
memcpy(data + ZT_ADDRESS_LENGTH + 1,&_pub,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
if ((includePrivate)&&(_hasPrivate)) {
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = ZT_C25519_PRIVATE_KEY_LEN + ZT_ECC384_PRIVATE_KEY_SIZE;
memcpy(data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,&_priv,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1);
}
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE] = 0;
data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1] = 0;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2);
}
return -1;
}
inline int unmarshal(const uint8_t *restrict data,const int len)
{
if (len < (ZT_ADDRESS_LENGTH + 1))
return -1;
unsigned int privlen;
switch((_type = (Type)data[ZT_ADDRESS_LENGTH])) {
case C25519:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1))
return -1;
memcpy(_pub.c25519,data + ZT_ADDRESS_LENGTH + 1,ZT_C25519_PUBLIC_KEY_LEN);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN];
if (privlen == ZT_C25519_PRIVATE_KEY_LEN) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN))
return -1;
_hasPrivate = true;
memcpy(_priv.c25519,data + ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1,ZT_C25519_PRIVATE_KEY_LEN);
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1 + ZT_C25519_PRIVATE_KEY_LEN);
} else if (privlen == 0) {
_hasPrivate = false;
return (ZT_ADDRESS_LENGTH + 1 + ZT_C25519_PUBLIC_KEY_LEN + 1);
}
break;
case P384:
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2))
return -1;
memcpy(&_pub,data + ZT_ADDRESS_LENGTH + 1,ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE];
if (privlen == ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE) {
if (len < (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1))
return -1;
_hasPrivate = true;
memcpy(&_priv,data + ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1,ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE);
privlen = data[ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE];
if (len < (privlen + (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1)))
return -1;
return (privlen + (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 1 + ZT_IDENTITY_P384_COMPOUND_PRIVATE_KEY_SIZE + 1));
} else if (privlen == 0) {
_hasPrivate = false;
return (ZT_ADDRESS_LENGTH + 1 + ZT_IDENTITY_P384_COMPOUND_PUBLIC_KEY_SIZE + 2);
}
break;
}
return -1;
}
////////////////////////////////////////////////////////////////////////////
private:
Address _address;
Type _type; // _type determines which fields in _priv and _pub are used
bool _hasPrivate;
ZT_PACKED_STRUCT(struct { // don't re-order these
uint8_t c25519[ZT_C25519_PRIVATE_KEY_LEN];
uint8_t p384[ZT_ECC384_PRIVATE_KEY_SIZE];
}) _priv;
ZT_PACKED_STRUCT(struct { // don't re-order these
uint8_t c25519[ZT_C25519_PUBLIC_KEY_LEN]; // Curve25519 and Ed25519 public keys
uint8_t p384[ZT_ECC384_PUBLIC_KEY_SIZE]; // NIST P-384 public key
uint8_t c25519s[ZT_C25519_SIGNATURE_LEN]; // signature of both keys with ed25519
uint8_t p384s[ZT_ECC384_SIGNATURE_SIZE]; // signature of both keys with p384
}) _pub;
};
} // namespace ZeroTier
#endif