ZeroTierOne/node/Dictionary.hpp

411 lines
11 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2024-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_DICTIONARY_HPP
#define ZT_DICTIONARY_HPP
#include "Constants.hpp"
#include "Utils.hpp"
#include "Address.hpp"
#include "Buf.hpp"
#include "FCV.hpp"
#include "SHA512.hpp"
#include "Fingerprint.hpp"
#include "Containers.hpp"
namespace ZeroTier {
class Identity;
/**
* A simple key-value store for short keys
*
* This data structure is used for network configurations, node meta-data,
* and other open-definition protocol objects. It consists of a key-value
* store with short (max: 7 characters) keys that map to strings, blobs,
* or integers with the latter being by convention in hex format.
*
* If this seems a little odd, it is. It dates back to the very first alpha
* versions of ZeroTier and if it were redesigned today we'd use some kind
* of simple or standardized binary encoding. Nevertheless it is efficient
* and it works so there is no need to change it and break backward
* compatibility.
*
* Use of the append functions is faster than building and then encoding a
* dictionary for creating outbound packets.
*/
class Dictionary
{
public:
Dictionary();
/**
* Get a reference to a value
*
* @param k Key to look up
* @return Reference to value
*/
Vector<uint8_t> &operator[](const char *k);
/**
* Get a const reference to a value
*
* @param k Key to look up
* @return Reference to value or to empty vector if not found
*/
const Vector<uint8_t> &operator[](const char *k) const;
/**
* Add a boolean as '1' or '0'
*/
void add(const char *k,bool v);
/**
* Add an integer as a hexadecimal string value
*/
ZT_INLINE void add(const char *const k,const uint64_t v) { char buf[17]; add(k,Utils::hex(v,buf)); }
ZT_INLINE void add(const char *const k,const int64_t v) { char buf[17]; add(k,Utils::hex((uint64_t)v,buf)); }
ZT_INLINE void add(const char *const k,const uint32_t v) { char buf[17]; add(k,Utils::hex((uint64_t)v,buf)); }
ZT_INLINE void add(const char *const k,const int32_t v) { char buf[17]; add(k,Utils::hex((uint64_t)v,buf)); }
ZT_INLINE void add(const char *const k,const uint16_t v) { char buf[17]; add(k,Utils::hex((uint64_t)v,buf)); }
ZT_INLINE void add(const char *const k,const int16_t v) { char buf[17]; add(k,Utils::hex((uint64_t)v,buf)); }
/**
* Add an address in 10-digit hex string format
*/
void add(const char *k,const Address &v);
/**
* Add a C string as a value
*/
void add(const char *k,const char *v);
/**
* Add a binary blob as a value
*/
void add(const char *k,const void *data,unsigned int len);
/**
* Get a boolean
*
* @param k Key to look up
* @param dfl Default value (default: false)
* @return Value of key or default if not found
*/
bool getB(const char *k,bool dfl = false) const;
/**
* Get an integer
*
* @param k Key to look up
* @param dfl Default value (default: 0)
* @return Value of key or default if not found
*/
uint64_t getUI(const char *k,uint64_t dfl = 0) const;
/**
* Get a C string
*
* If the buffer is too small the string will be truncated, but the
* buffer will always end in a terminating null no matter what.
*
* @param k Key to look up
* @param v Buffer to hold string
* @param cap Maximum size of string (including terminating null)
*/
char *getS(const char *k,char *v,unsigned int cap) const;
/**
* Get an object supporting the marshal/unmarshal interface pattern
*
* @param k Key to look up
* @param obj Object to unmarshal() into
* @return True if unmarshal was successful
*/
template<typename T>
ZT_INLINE bool getO(const char *k,T &obj) const
{
const Vector<uint8_t> &d = (*this)[k];
if (d.empty())
return false;
return (obj.unmarshal(d.data(),(unsigned int)d.size()) > 0);
}
/**
* Sign this identity
*
* This adds two fields:
* "@Si" contains the fingerprint (address followed by hash) of the signer
* "@Ss" contains the signature
*
* @param signer Signing identity (must contain secret)
* @return True if signature was successful
*/
bool sign(const Identity &signer);
/**
* Get the signer's fingerprint for this dictionary or a NIL fingerprint if not signed.
*
* @return Signer
*/
Fingerprint signer() const;
/**
* Verify this identity's signature
*
* @param signer
* @return
*/
bool verify(const Identity &signer) const;
/**
* Erase all entries in dictionary
*/
void clear();
/**
* @return Number of entries
*/
ZT_INLINE unsigned int size() const noexcept { return m_entries.size(); }
/**
* @return True if dictionary is not empty
*/
ZT_INLINE bool empty() const noexcept { return m_entries.empty(); }
/**
* Encode to a string in the supplied vector
*
* @param out String encoded dictionary
* @param omitSignatureFields If true omit the signature fields from encoding (default: false)
*/
void encode(Vector<uint8_t> &out,bool omitSignatureFields = false) const;
/**
* Decode a string encoded dictionary
*
* This will decode up to 'len' but will also abort if it finds a
* null/zero as this could be a C string.
*
* @param data Data to decode
* @param len Length of data
* @return True if dictionary was formatted correctly and valid, false on error
*/
bool decode(const void *data,unsigned int len);
/**
* Append a key=value pair to a buffer (vector or FCV)
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Value
*/
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const bool v)
{
s_appendKey(out,k);
out.push_back((uint8_t)(v ? '1' : '0'));
out.push_back((uint8_t)'\n');
}
/**
* Append a key=value pair to a buffer (vector or FCV)
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Value
*/
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const Address v)
{
s_appendKey(out,k);
const uint64_t a = v.toInt();
static_assert(ZT_ADDRESS_LENGTH_HEX == 10,"this must be rewritten for any change in address length");
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 36U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 32U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 28U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 24U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 20U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 16U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 12U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 8U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[(a >> 4U) & 0xfU]);
out.push_back((uint8_t)Utils::HEXCHARS[a & 0xfU]);
out.push_back((uint8_t)'\n');
}
/**
* Append a key=value pair to a buffer (vector or FCV)
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Value
*/
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const uint64_t v)
{
char buf[17];
Utils::hex(v,buf);
unsigned int i = 0;
while (buf[i])
out.push_back((uint8_t)buf[i++]);
out.push_back((uint8_t)'\n');
}
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const int64_t v) { append(out,k,(uint64_t)v); }
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const uint32_t v) { append(out,k,(uint64_t)v); }
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const int32_t v) { append(out,k,(uint64_t)v); }
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const uint16_t v) { append(out,k,(uint64_t)v); }
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const int16_t v) { append(out,k,(uint64_t)v); }
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const uint8_t v) { append(out,k,(uint64_t)v); }
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const int8_t v) { append(out,k,(uint64_t)v); }
/**
* Append a key=value pair to a buffer (vector or FCV)
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Value
*/
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const char *v)
{
if ((v)&&(*v)) {
s_appendKey(out,k);
while (*v)
s_appendValueByte(out,(uint8_t)*(v++));
out.push_back((uint8_t)'\n');
}
}
/**
* Append a key=value pair to a buffer (vector or FCV)
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Value
* @param vlen Value length in bytes
*/
template<typename V>
ZT_INLINE static void append(V &out,const char *const k,const void *const v,const unsigned int vlen)
{
s_appendKey(out,k);
for(unsigned int i=0;i<vlen;++i)
s_appendValueByte(out,reinterpret_cast<const uint8_t *>(v)[i]);
out.push_back((uint8_t)'\n');
}
/**
* Append a packet ID as raw bytes in the provided byte order
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param pid Packet ID
*/
template<typename V>
static ZT_INLINE void appendPacketId(V &out,const char *const k,const uint64_t pid)
{
append(out,k,&pid,8);
}
/**
* Append key=value with any object implementing the correct marshal interface
*
* @param out Buffer
* @param k Key (must be <= 8 characters)
* @param v Marshal-able object
* @return Bytes appended or negative on error (return value of marshal())
*/
template<typename V,typename T>
static ZT_INLINE int appendObject(V &out,const char *const k,const T &v)
{
uint8_t tmp[4096]; // large enough for any current object
if (T::marshalSizeMax() > sizeof(tmp))
return -1;
const int mlen = v.marshal(tmp);
if (mlen > 0)
append(out,k,tmp,(unsigned int)mlen);
return mlen;
}
private:
template<typename V>
ZT_INLINE static void s_appendValueByte(V &out,const uint8_t c)
{
switch(c) {
case 0:
out.push_back(92); // backslash
out.push_back(48);
break;
case 10:
out.push_back(92);
out.push_back(110);
break;
case 13:
out.push_back(92);
out.push_back(114);
break;
case 61:
out.push_back(92);
out.push_back(101);
break;
case 92:
out.push_back(92);
out.push_back(92);
break;
default:
out.push_back(c);
break;
}
}
template<typename V>
ZT_INLINE static void s_appendKey(V &out,const char *const k)
{
for(unsigned int i=0;i<7;++i) {
const char kc = k[i];
if (kc == 0)
break;
if ((kc >= 33)&&(kc <= 126)&&(kc != 61)&&(kc != 92)) // printable ASCII with no spaces, equals, or backslash
out.push_back((uint8_t)kc);
}
out.push_back((uint8_t)'=');
}
ZT_INLINE static FCV<char,8> &s_key(FCV<char,8> &buf,const char *k) noexcept
{
buf.clear();
for(unsigned int i=0;i<7;++i) {
const char kc = k[i];
if (kc == 0)
break;
if ((kc >= 33)&&(kc <= 126)&&(kc != 61)&&(kc != 92)) // printable ASCII with no spaces, equals, or backslash
buf.push_back(kc);
}
buf.push_back(0);
return buf;
}
SortedMap< FCV<char,8>,Vector<uint8_t> > m_entries;
};
} // namespace ZeroTier
#endif